Integrating Ecosystem Vulnerability in the Environmental Regulation Plan of Izmir (Turkey)—What Are the Limits and Potentialities?
Abstract
:1. Introduction
1.1. A General Overview of Izmir Metropolitan City
1.2. Literature Review
1.3. Aims of This Study
2. Materials and Methods
2.1. The Physical, Social and Economic Dynamics in the Area of Interest (AoI)
2.2. Planning Processes and Evaluation of Environmental Regulation Plan
2.3. Production of Land-Use Land Cover and Normalized Difference Vegetation Index
- •
- Urban (15 samples);
- •
- Industry/High impermeable urban layers (10 samples);
- •
- Agricultural Land (10 samples);
- •
- Water (15 samples).
- •
- Streets (7 samples);
- •
- Shrubs (10 samples);
- •
- Natural (7 samples);
- •
- Barren/Rock (15 samples).
- 1.
- We combined the Digital Elevation Model and GHSL (the urban density Layer);
- 2.
- We delated the urban built-up land above 500 m of altitude;
- 3.
- We combined our supervised classification with the urban density layer while removing incoherencies by visual checking;
- 4.
- We exported the new file usi5g raster lookup.
2.4. ES Processing
3. Mapping Results
3.1. The Ecosystem Vulnerability Map
- •
- Critical, the mean quality is below the average while the mean decay is above;
- •
- Threatened, the mean quality is above the average and the mean Decay too;
- •
- Low Biodiversity (Low_Bio), the condition is “fair” but NDVI is below the average;
- •
- Fair, the mean quality is above the average while the mean Decay is below;
- •
- Health, the condition is “fair” (not critical nor threatened) and NDVI is above the average.
3.2. Conflicts and Synergies with ES Vulnerability
- •
- Health—no conflict but high synergy;
- •
- Fair—no conflict but synergy;
- •
- Low biodiversity—conflict, some action needed to mitigate the effect of urbanization;
- •
- Threatened—moderate conflict action needed (compensation with afforestation action needed);
- •
- Critical—high conflict strong action needed (De-sealing, reducing urban footprint and afforestation).
4. Discussion
4.1. The Need for Updated and Detailed Environmental Spatial Data
4.2. Ecosystem Service Assessment to Support the Karaburun SEPA Implementation
4.3. General Implications and Policy Suggestions
- 1.
- Where conflict is detected, environmental actions are needed to mitigate the effect of urbanization. The guidelines to limit, mitigate or compensate soil sealing [77] provides a wide extent of examples to see how the impact of land transformation to the ecosystem can be minimized while adopting green mitigative solutions. These solutions rely on the possibility to mitigate (if the transformation is necessary) the direct impact of soil sealing [78] by adopting design and technological solutions that facilitate the permeability of the soil, the shadowing, the presence of green and the concentration of the built volume to reduce impacts on the environment [79,80,81].
- 2.
- Where moderate conflict is detected, specific green compensation and afforestation actions are needed while re-balancing the ecosystem status affected by soil inefficiencies due to the pressure of the anthropic system [9,40,82]. These actions include typical agro-environmental afforestation policies to protect core ecological areas, minimize urbanization’s impact and regenerate biodiversity in degraded places [83,84,85]. These areas should be selected to prioritize natural landscape intervention to connect ecological corridors and existent biodiversity core sites.
- 3.
- Where high conflict is detected, the ES condition is already alerting and seriously compromised; thus the priority is to reduce the anthropic pressure through a range of complicated ecological interventions. Here the de-sealing, building replacement, the reduction of the urban footprint and the adoption of costly Nature-Based Solutions [86,87,88,89] are needed to decrease the impacts of urbanization. The ERP should pay great attention to these areas while amending local masterplans by introducing greening planning solutions to the built environment and demonstrating the tangible benefits that Performance-Based Planning Solutions [90,91] can provide with quantitative assessment.
- 4.
- Lastly, the perimeter of conservation areas should include all those healthy ecosystems that are not protected by any planning document but are pivotal to regenerating the Natural Capital in the catchment (see Figure 11). The new 47,738.71 ha of conserved areas should be included in the revised perimeter of the Conservation Zones of the ERP. These new areas should be only “conserved” while maintaining the existing biodiversity [83,92,93,94]. Figure 11 clarifies that the Karaburun promontory is largely “uncovered” by special protection, thus requiring immediate intervention, as other already approved documents have already clarified.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Matthews, H. Greco-Romans Cities of Aegean Turkey. History, Archaeology, Architecture; Ege Yayinlari: Istanbul, Turkey, 2014. [Google Scholar]
- Velibeyoğlu, K.; Özdemir, S.; Baba, A.; Arsan, Z.D.; Yazdani, H.; Hazar, D.; Kaplan, A.; Boyacı, M.; Kurucu, Y.; Erdoğan, N.; et al. ‘Urla-Çeşme-Karaburun’ Peninsula Sustainable Development Strategy 2014–2023; İZKA (İzmir Development Agency): Izmir, Turkey, 2014. [Google Scholar]
- Disperati, L.; Virdis, S.G.P. Assessment of land-use and land-cover changes from 1965 to 2014 in Tam Giang-Cau Hai Lagoon, central Vietnam. Appl. Geogr. 2015, 58, 48–64. [Google Scholar] [CrossRef]
- Erddoğan, N.; Nurlu, E.; Erdem, Ü. Modelling land use changes in Karaburun by using CLUE-s. J. Fac. Archit.-Ege Univ. 2011, 8, 91–102. [Google Scholar]
- Atay Kaya, İ.; Kaya Erol, N. Conflicts over Locally Unwanted Land Uses (LULUs): Reasons and solutions for case studies in Izmir (Turkey). Land Use Policy 2016, 58, 83–94. [Google Scholar] [CrossRef] [Green Version]
- Meerow, S.; Newell, J.P. Spatial planning for multifunctional green infrastructure: Growing resilience in Detroit. Landsc. Urban Plan. 2017, 159, 62–75. [Google Scholar] [CrossRef]
- Li, F.; Wang, L.; Chen, Z.; Clarke, K.C.; Li, M.; Jiang, P. Extending the SLEUTH model to integrate habitat quality into urban growth simulation. J. Environ. Manag. 2018, 217, 486–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- İzmir Büyükşehir Belediyesi İzmir’in “Doğaya Saygı” Plan. Available online: https://www.izmir.bel.tr/tr/Haberler/izmirin-dogaya-saygi-plani/22219/156 (accessed on 23 August 2021).
- Lovell, S.T.; Taylor, J.R. Supplying urban ecosystem services through multifunctional green infrastructure in the United States. Landsc. Ecol. 2013, 28, 1447–1463. [Google Scholar] [CrossRef]
- Dizdaroglu, D.; Yigitcanlar, T. Integrating urban ecosystem sustainability assessment into policy-making: Insights from the Gold Coast City. J. Environ. Plan. Manag. 2016, 59, 1982–2006. [Google Scholar] [CrossRef] [Green Version]
- Çörek Öztaş, Ç. How to Best Classify Rural in Metropolitan Areas? The Turkish Case. Plan. Pract. Res. 2021, 36, 456–466. [Google Scholar] [CrossRef]
- Brunetta, G.; Ceravolo, R.; Barbieri, C.A.; Borghini, A.; de Carlo, F.; Mela, A.; Beltramo, S.; Longhi, A.; De Lucia, G.; Ferraris, S.; et al. Territorial Resilience: Toward a Proactive Meaning for Spatial Planning. Sustainability 2019, 11, 2286. [Google Scholar] [CrossRef] [Green Version]
- Sala, S.; Ciuffo, B.; Nijkamp, P. A systemic framework for sustainability assessment. Ecol. Econ. 2015, 119, 314–325. [Google Scholar] [CrossRef]
- Maragno, D.; Dall’omo, C.F.; Pozzer, G.; Musco, F. Multi-risk climate mapping for the adaptation of the venice metropolitan area. Sustainability 2021, 13, 1334. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Braat, L.; Kubiszewski, I.; Fioramonti, L.; Sutton, P.; Farber, S.; Grasso, M. Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosyst. Serv. 2017, 28, 1–16. [Google Scholar] [CrossRef]
- Ronchi, S. Ecosystem Services for Planning: A Generic Recommendation or a Real Framework? Insights from a Literature Review. Sustainability 2021, 13, 6595. [Google Scholar] [CrossRef]
- Weißhuhn, P.; Müller, F.; Wiggering, H. Ecosystem Vulnerability Review: Proposal of an Interdisciplinary Ecosystem Assessment Approach. Environ. Manag. 2018, 61, 904–915. [Google Scholar] [CrossRef] [Green Version]
- Gunderson, L. Ecological and human community resilience in response to natural disasters. Ecol. Soc. 2010, 15, 29. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2014 Part A: Global and Sectoral Aspects; IPCC: Geneva, Switzerland, 2014; ISBN 9781107641655. [Google Scholar]
- Prăvălie, R.; Patriche, C.; Bandoc, G. Quantification of land degradation sensitivity areas in Southern and Central Southeastern Europe. New results based on improving DISMED methodology with new climate data. Catena 2017, 158, 309–320. [Google Scholar] [CrossRef]
- Fuchs, S.; Keiler, M.; Ortlepp, R.; Schinke, R.; Papathoma-Köhle, M. Recent advances in vulnerability assessment for the built environment exposed to torrential hazards: Challenges and the way forward. J. Hydrol. 2019, 575, 587–595. [Google Scholar] [CrossRef]
- Kaly, U.; Pratt, C.; Mitchell, J. The Environmental Vulnerability Index (EVI)/SOPAC Technical Report 384; UNEP: Nairobi, Kenya, 2004. [Google Scholar]
- McPhearson, T.; Hamstead, Z.A.; Kremer, P. Urban Ecosystem Services for Resilience Planning and Management in New York City. Ambio 2014, 43, 502–515. [Google Scholar] [CrossRef] [Green Version]
- Albert, C.; Galler, C.; Hermes, J.; Neuendorf, F.; Von Haaren, C.; Lovett, A. Applying ecosystem services indicators in landscape planning and management: The ES-in-Planning framework. Ecol. Indic. 2016, 61, 100–113. [Google Scholar] [CrossRef]
- Geneletti, D.; Cortinovis, C.; Zardo, L.; Adem Esmail, B. Planning for Ecosystem Services in Cities; Springer Nature Switzerland AG: Cham, Switzerland, 2020; ISBN 978-3-030-20024-4. [Google Scholar]
- Brenner, N.; Schmid, C. Towards a new epistemology of the urban? City 2015, 19, 151–182. [Google Scholar] [CrossRef]
- Brenner, N. Decoding the Newest “Metropolitan Regionalism” in the USA: A Critical Overview. Cities 2002, 19, 3–21. [Google Scholar] [CrossRef]
- Pyka, R. Minimizing the side effects of the metropolization as a condition for maintenance of transition and resilience in Post-industrial Agglomerations. J. Econ. Manag. Econ. Katowice 2012, 10, 121–136. [Google Scholar]
- Vaz, E.; Nijkamp, P. Gravitational forces in the spatial impacts of urban sprawl: An investigation of the region of Veneto, Italy. Habitat Int. 2015, 45, 99–105. [Google Scholar] [CrossRef]
- Gómez-Baggethun, E.; Barton, D.N. Classifying and valuing ecosystem services for urban planning. Ecol. Econ. 2012, 86, 235–245. [Google Scholar] [CrossRef]
- Childers, D.L.; Bois, P.; Hartnett, H.E.; Exploration, S.; Mcphearson, T.; Metson, G.S. Urban Ecological Infrastructure: An inclusive concept for the non-built urban environment. Elem. Sci. Anthr. 2019, 7, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Weichselgartner, J.; Kelman, I. Geographies of resilience: Challenges and opportunities of a descriptive concept. Prog. Hum. Geogr. 2015, 39, 249–267. [Google Scholar] [CrossRef] [Green Version]
- Meerow, S.; Newell, J.P. Urban resilience for whom, what, when, where, and why? Urban Geogr. 2016, 1–21. [Google Scholar] [CrossRef]
- Cumming, G.S.; Peterson, G.D. Unifying Research on Social – Ecological Resilience and Collapse. Trends Ecol. Evol. 2017, 32, 695–713. [Google Scholar] [CrossRef]
- Miller, F.; Osbahr, H.; Boyd, E.; Thomalla, F.; Bharwani, S.; Ziervogel, G.; Walker, B.; Birkmann, J.; van der Leeuw, S.; Rockström, J.; et al. Resilience and Vulnerability: Complementary or Conflicting Concepts? Ecol. Soc. 2010, 15, 1–11. [Google Scholar] [CrossRef]
- Hamstead, Z.; Iwaniec, D.; McPhearson, T.; Berbés-Blázquez, M.; Cook, E.M.; Muñoz-Erickson, T.A. Resilient Urban Futures; Springer Nature: Dordrecht, The Netherlands, 2021; ISBN 9783030631307. [Google Scholar]
- Lugato, E.; Bampa, F.; Panagos, P.; Montanarella, L.; Jones, A. Potential carbon sequestration of European arable soils estimated by modelling a comprehensive set of management practices. Glob. Chang. Biol. 2014, 20, 3557–3567. [Google Scholar] [CrossRef] [Green Version]
- Pelling, M.; Manuel-navarrete, D. From Resilience to Transformation: The Adaptive Cycle in Two Mexican Urban Centers. Ecol. Soc. 2011, 16. [Google Scholar] [CrossRef] [Green Version]
- Lamandé, M.; Greve, M.H.; Schjønning, P. Risk assessment of soil compaction in Europe—Rubber tracks or wheels on machinery. Catena 2018, 167, 353–362. [Google Scholar] [CrossRef]
- Nin, M.; Soutullo, A.; Rodríguez-Gallego, L.; Di Minin, E. Ecosystem services-based land planning for environmental impact avoidance. Ecosyst. Serv. 2016, 17, 172–184. [Google Scholar] [CrossRef]
- Kremer, P.; Hamstead, Z.A.; McPhearson, T. The value of urban ecosystem services in New York City: A spatially explicit multicriteria analysis of landscape scale valuation scenarios. Environ. Sci. Policy 2015, 62, 57–68. [Google Scholar] [CrossRef]
- Wilkinson, C.; Saarne, T.; Peterson, G.D.; Colding, J. Strategic spatial planning and the ecosystem services concept an historical exploration. Ecol. Soc. 2013, 18, 37. [Google Scholar] [CrossRef] [Green Version]
- Setälä, H.; Bardgett, R.D.; Birkhofer, K.; Brady, M.; Byrne, L.; de Ruiter, P.C.; de Vries, F.T.; Gardi, C.; Hedlund, K.; Hemerik, L.; et al. Urban and agricultural soils: Conflicts and trade-offs in the optimization of ecosystem services. Urban Ecosyst. 2014, 17, 239–253. [Google Scholar] [CrossRef]
- Kesgin Atak, B.; Ersoy Tonyaloğlu, E. Monitoring the spatiotemporal changes in regional ecosystem health: A case study in Izmir, Turkey. Environ. Monit. Assess. 2020, 192, 385. [Google Scholar] [CrossRef]
- Crossman, N.D.; Bryan, B.A.; King, D. Integration of landscape-scale and site-scale metrics for prioritising investments in natural capital. In Proceedings of the 18th World IMACS Congress and MODSIM09 International Congress on Modelling and Simulation: Interfacing Modelling and Simulation with Mathematical and Computational Sciences, Cairns, Australia, 13–17 July 2009; pp. 2363–2369. [Google Scholar]
- Arcidiacono, A.; Ronchi, S.; Salata, S. Ecosystem services assessment using invest as a tool to support decision making process: Critical issues and opportunities. In Proceedings of the International Conference on Computational Science and Its Applications, Banff, AB, Canada, 22–25 June 2015; Springer: Cham, Germany, 2015; Volume 9158, ISBN 9783319214092. [Google Scholar]
- Sallustio, L.; De Toni, A.; Strollo, A.; Di Febbraro, M.; Gissi, E.; Casella, L.; Geneletti, D.; Munafò, M.; Vizzarri, M.; Marchetti, M. Assessing habitat quality in relation to the spatial distribution of protected areas in Italy. J. Environ. Manag. 2017, 201, 129–137. [Google Scholar] [CrossRef]
- Münch, Z.; Gibson, L.; Palmer, A. Monitoring Effects of Land Cover Change on Biophysical Drivers in Rangelands Using Albedo. Land 2019, 8, 33. [Google Scholar] [CrossRef] [Green Version]
- Grillenzoni, C. Adaptive spatio-temporal models for satellite ecological data. J. Agric. Biol. Environ. Stat. 2004, 9, 158–180. [Google Scholar] [CrossRef]
- Zhang, J.; Niu, J.; Buyantuev, A.; Wu, J. A multilevel analysis of effects of land use policy on land-cover change and local land use decisions. J. Arid Environ. 2014, 108, 19–28. [Google Scholar] [CrossRef]
- Burkhard, B.; Kroll, F.; Nedkov, S.; Müller, F. Mapping ecosystem service supply, demand and budgets. Ecol. Indic. 2012, 21, 17–29. [Google Scholar] [CrossRef]
- Inostroza, L.; Hamstead, Z.; Spyra, M.; Qhreshi, S. Beyond urban–rural dichotomies: Measuring urbanisation degrees in central European landscapes using the technomass as an explicit indicator. Ecol. Indic. 2019, 96, 466–476. [Google Scholar] [CrossRef]
- Salata, S. The Utilization of Supervised Classification Sampling for Environmental Monitoring in Turin (Italy). Sustainability 2021, 13, 2494. [Google Scholar] [CrossRef]
- Liu, T.; Yang, X. Monitoring land changes in an urban area using satellite imagery, GIS and landscape metrics. Appl. Geogr. 2015, 56, 42–54. [Google Scholar] [CrossRef]
- Veldkamp, A.; Verburg, P.H. Modelling land use change and environmental impact. J. Environ. Manag. 2004, 72, 1–3. [Google Scholar] [CrossRef]
- Stürck, J.; Schulp, C.J.E.; Verburg, P.H. Spatio-temporal dynamics of regulating ecosystem services in Europe – The role of past and future land use change. Appl. Geogr. 2015, 63, 121–135. [Google Scholar] [CrossRef]
- European Environment Agency. Urban Sprawl in Europe-The Ignored Challenge; European Environment Agency: København, Denmark, 2006; Volume 10, ISBN1 9781405139175. (pbk. alk. paper); ISBN2 140513917X. (pbk. alk. paper). [Google Scholar]
- Alparslan, C.; Mirici, M.E.; Saricam, S.; Cabuk, A. Landscape Inventory and Character analysis: A case study from urla, cesme, karaburun district, Turkey. Fresenius Environ. Bull. 2019, 28, 3281–3294. [Google Scholar]
- Hewitt, R.; Escobar, F. The territorial dynamics of fast-growing regions: Unsustainable land use change and future policy challenges in Madrid, Spain. Appl. Geogr. 2011, 31, 650–667. [Google Scholar] [CrossRef]
- Salata Stefano; Gardi Ciro From quantitative to qualitative analysis of Land-Take. The application of a Composite Indicator for targeted policies of Land Take reduction. CSE J. 2015, 1, 15–31.
- Pelorosso, R.; Apollonio, C.; Rocchini, D.; Petroselli, A. Effects of land use-land cover thematic resolution on environmental evaluations. Remote Sens. 2021, 13, 1232. [Google Scholar] [CrossRef]
- Grullón, Y.R.; Alhaddad, B.; Cladera, J.R. The analysis accuracy assessment of CORINE land cover in the Iberian coast. In Remote Sensing for Environmental Monitoring, GIS Applications, and Geology IX; Michel, U., Civco, D.L., Eds.; SPIE: Bellingham, WA, USA, 2009; Volume 7478, pp. 443–450. [Google Scholar]
- TURKSTAT Turkish Statistical Institute. Address Based Population Registration System. Available online: https://www.tuik.gov.tr/Home/Index (accessed on 15 September 2021).
- Velibeyoglu, K. Regional Acupuncture for Izmir Peninsula: Creating Capital Web for Creative Eco-Tourism. J. Environ. Prot. Ecol. 2016, 17, 666–674. [Google Scholar]
- Knight Frank Global Residential Cities Index. Available online: https://content.knightfrank.com/research/1026/documents/en/global-residential-cities-index-q3-2020-7701.pdf (accessed on 21 September 2021).
- Endeksa Izmir Urla for Sale Residential m2 Unit Prices. Available online: https://www.endeksa.com/tr/analiz/izmir/urla/endeks/satilik/konut?e=V1dfX0t%252FYmN5WWRgaF1of2RiaV9fVFQ%252BSUlfX11%252FYn1of3l0Tmx5aGpif3RfX1RUPElJX19df2J9aH95dF1%252FZG5oWXR9aF9fVFQ8SUlfX11%252FZG5oS2RheWh%252FX19UVDxJSV9fT3hkYWlUaGx%252FX19UVDhJSV9fX2J (accessed on 7 August 2021).
- TMMOB Şehir Plancıları Odası [Union of Chambers of Turkish Engineers and Architects (UCTEA) Chamber of City Planners]. Izmir-Manisa Planlama Bölgesi 1/100.000 Ölçekli Çevre Düzeni Plani Değişikliği Değerlendirme Raporu [Izmir-Manisa Planning Region 1/100.000 Scale Landscape Plan Change Assessment Report]; UCTEA: Izmir, Turkey, 2019. [Google Scholar]
- Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Wood, S.A.; Sharp, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; Vigerstol, K.; et al. InVEST 2.0 Beta User’s Guide; Stanford: Palo Alto, CA, USA, 2011. [Google Scholar]
- Arcidiacono, A.; Ronchi, S.; Salata, S. Managing Multiple Ecosystem Services for Landscape Conservation: A Green Infrastructure in Lombardy Region. Procedia Eng. 2016, 161, 2297–2303. [Google Scholar] [CrossRef] [Green Version]
- Tanda, G.; Chiarabini, V. Use of multispectral and thermal imagery in precision viticulture. J. Phys. Conf. Ser. 2019, 1224. [Google Scholar] [CrossRef]
- Salata, S.; Giaimo, C.; Barbieri, C.A.; Ballocca, A.; Scalise, F.; Pantaloni, G. The Utilization of Normalized Difference Vegetation Index to Map Habitat Quality in Turin (Italy). Sustainability 2020, 12, 7751. [Google Scholar] [CrossRef]
- Di Palma, F.; Amato, F.; Nolè, G.; Martellozzo, F.; Murgante, B. A SMAP Supervised Classification of Landsat Images for Urban Sprawl Evaluation. ISPRS Int. J. Geo-Inform. 2016, 5, 109. [Google Scholar] [CrossRef] [Green Version]
- Bocher, E.; Petit, G.; Bernard, J.; Palominos, S. A geoprocessing framework to compute urban indicators: The MApUCE tools chain. Urban Clim. 2018, 24, 153–174. [Google Scholar] [CrossRef] [Green Version]
- Romano, B.; Fiorini, L.; Zullo, F.; Marucci, A. Urban growth control DSS techniques for de-sprinkling process in Italy. Sustainability 2017, 9, 1852. [Google Scholar] [CrossRef] [Green Version]
- Cive, Y.Ö.; Avar, A.A. Neoliberal Governance and Accumulation by Dispossession in Karaburun Peninsula, Izmir, Turkey. In Proceedings of the AESOP 2019 Planning for Transition: Planning, Law and Property, Venice, Italy, 6–13 July 2019. [Google Scholar]
- Saricam, S.Y.; Erdem, U. Planning of Izmir-Karaburun Peninsula as Biosphere Reserve Area. EKOLOJI 2010, 19, 42–50. [Google Scholar] [CrossRef]
- European Commission. Guidelines on Best Practice to Limit, Mitigate or Compensate Soil Sealing; European Commission: Brussels, Belgium, 2012; ISBN 9789279262104. [Google Scholar]
- Artmann, M. Institutional efficiency of urban soil sealing management – From raising awareness to better implementation of sustainable development in Germany. Landsc. Urban Plan. 2014, 131, 83–95. [Google Scholar] [CrossRef]
- Davis, M.; Naumann, S. Making the Case for Sustainable Urban Drainage Systems as a Nature-Based Solution to Urban Flooding. In Theory and Practice of Urban Sustainability Transitions; Springer: Cham, Switzerland, 2017; pp. 123–137. [Google Scholar]
- Pappalardo, V.; La Rosa, D.; Campisano, A.; La Greca, P. The potential of green infrastructure application in urban runoff control for land use planning: A preliminary evaluation from a southern Italy case study. Ecosyst. Serv. 2017, 26, 345–354. [Google Scholar] [CrossRef]
- Artmann, M. Managing urban soil sealing in Munich and Leipzig (Germany)—From a wicked problem to clumsy solutions. Land Use Policy 2015, 46, 21–37. [Google Scholar] [CrossRef]
- Yang, J.; Sun, J.; Quansheng, G.; Li, X. Assessing the impacts of urbanization-associated green space on urban land surface temperature: A case study of Dalian, China. Urban For. Urban Green. 2017, 22, 1–10. [Google Scholar] [CrossRef]
- Gavrilidis, A.A.; Niţă, M.R.; Onose, D.A.; Badiu, D.L.; Năstase, I.I. Methodological framework for urban sprawl control through sustainable planning of urban green infrastructure. Ecol. Indic. 2017, 96, 67–78. [Google Scholar] [CrossRef]
- Dupras, J.; Marull, J.; Parcerisas, L.; Coll, F.; Gonzalez, A.; Girard, M.; Tello, E. The impacts of urban sprawl on ecological connectivity in the Montreal Metropolitan Region. Environ. Sci. Policy 2016, 58, 61–73. [Google Scholar] [CrossRef] [Green Version]
- Bennett, G.; Mulongoy, K.J. Review of Experience with Ecological Networks, Corridors and Buffer Zones; Technical Series; Secretariat of the Convention on Biological Diversity: Montreal, QC, Canada, 2006; Volume 23, ISBN 9292250426. [Google Scholar]
- Venter, Z.S.; Barton, D.N.; Martinez-Izquierdo, L.; Langemeyer, J.; Baró, F.; McPhearson, T. Interactive spatial planning of urban green infrastructure – Retrofitting green roofs where ecosystem services are most needed in Oslo. Ecosyst. Serv. 2021, 50, 101314. [Google Scholar] [CrossRef]
- Xu, C.; Rahman, M.; Haase, D.; Wu, Y.; Su, M.; Pauleit, S. Surface runoff in urban areas: The role of residential cover and urban growth form. J. Clean. Prod. 2020, 262, 121421. [Google Scholar] [CrossRef]
- Raymond, C.M.; Frantzeskaki, N.; Kabisch, N.; Berry, P.; Breil, M.; Nita, M.R.; Geneletti, D.; Calfapietra, C. A framework for assessing and implementing the co-benefits of nature-based solutions in urban areas. Environ. Sci. Policy 2017, 77, 15–24. [Google Scholar] [CrossRef]
- Davies, C.; Lafortezza, R. Transitional path to the adoption of nature-based solutions. Land Use Policy 2019, 80, 406–409. [Google Scholar] [CrossRef]
- Cortinovis, C.; Geneletti, D. Ecosystem services in urban plans: What is there, and what is still needed for better decisions. Land Use Policy 2018, 70, 298–312. [Google Scholar] [CrossRef]
- Geneletti, D. Ecosystem services in environmental impact assessment and strategic environmental assessment. Environ. Impact Assess. Rev. 2013, 40, 1–2. [Google Scholar] [CrossRef]
- Coutts, C.; Hahn, M. Green Infrastructure, Ecosystem Services, and Human Health. Int. J. Environ. Res. Public Health 2015, 12, 9768–9798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glæsner, N.; Helming, K.; de Vries, W. Do current European policies prevent soil threats and support soil functions? Sustainability 2014, 6, 9538–9563. [Google Scholar] [CrossRef] [Green Version]
- Commission, E. The Multifunctionality of Green Infrastructure. Sci. Environ. Policy 2012, 1–36. [Google Scholar]
- Sharifi, A. A critical review of selected tools for assessing community resilience. Ecol. Indic. 2016, 69, 629–647. [Google Scholar] [CrossRef] [Green Version]
- Dorst, H.; van der Jagt, S.; Raven, R.; Runhaar, H. Urban greening through Nature-Based Solutions—Key characteristics of an emerging concept. Sustain. Cities Soc. 2019, 49, 101620. [Google Scholar] [CrossRef]
- Bhaskaran, S.; Paramananda, S.; Ramnarayan, M. Per-pixel and object-oriented classification methods for mapping urban features using Ikonos satellite data. Appl. Geogr. 2010, 30, 650–665. [Google Scholar] [CrossRef]
- Bozdağ, A.; Yavuz, F.; Günay, A.S. AHP and GIS based land suitability analysis for Cihanbeyli (Turkey) County. Environ. Earth Sci. 2016, 75, 813. [Google Scholar] [CrossRef]
- Nesbitt, A.; Dorling, S.; Lovett, A. A suitability model for viticulture in England and Wales: Opportunities for investment, sector growth and increased climate resilience. J. Land Use Sci. 2018, 13, 414–438. [Google Scholar] [CrossRef] [Green Version]
- McGarigal, K.; Plunkett, E.B.; Willey, L.L.; Compton, B.W.; DeLuca, W.V.; Grand, J. Modeling non-stationary urban growth: The SPRAWL model and the ecological impacts of development. Landsc. Urban Plan. 2018, 177, 178–190. [Google Scholar] [CrossRef]
- Mazzocchi, C.; Sali, G.; Corsi, S. Land use conversion in metropolitan areas and the permanence of agriculture: Sensitivity Index of Agricultural Land (SIAL), a tool for territorial analysis. Land Use Policy 2013, 35, 155–162. [Google Scholar] [CrossRef]
- Romano, B.; Zullo, F.; Fiorini, L.; Marucci, A.; Ciabò, S. Land transformation of Italy due to half a century of urbanization. Land Use Policy 2017, 67, 387–400. [Google Scholar] [CrossRef]
- Şehircilik Şûrası Genel Sekreterliği [Urban Planning Council General Secretariat]. Şehircilik Şûrası Komisyon Raporları [Urban Planning Council Commission Reports]; Urban Planning Council General Secretariat: Ankara, Turkey, 2017. [Google Scholar]
Product Name | Creation Date | Size | Instrument | Processing Level | Product Type |
---|---|---|---|---|---|
S2B_MSIL2A_20210328T085559_N0214_R007_T35SNC_20210328T113525.SAFE _20200928T131819 | 28 March 2021 | 1.01 GB | MSI Multi-Spectral Instrument | 2A | S2MSI2A |
Band | Resolution | Central Wavelength | Description |
---|---|---|---|
B2 | 10 m | 490 nm | Blue |
B3 | 10 m | 560 nm | Green |
B4 | 10 m | 665 nm | Red |
B8 | 10 m | 842 nm | Visible and Near Infrared (VNIR) |
THREAT | MAX_DIST | WEIGHT | DECAY | CUR_PATH |
---|---|---|---|---|
urban | 0.8 | 0.9 | linear | threat/urban.tif |
LULC | NAME | HABITAT | Urban |
---|---|---|---|
Urban | 0.05 | 0 | |
0 | Industry | 0 | 0 |
35 | Streets | 0 | 0 |
230 | Barren | 0.40 | 0.6 |
100 | Agriculture | 0.5 | 0.7 |
177 | Harbustive | 0.8 | 0.9 |
211 | Natural | 0.95 | 1 |
9 | Water | 1 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salata, S.; Özkavaf-Şenalp, S.; Velibeyoğlu, K. Integrating Ecosystem Vulnerability in the Environmental Regulation Plan of Izmir (Turkey)—What Are the Limits and Potentialities? Urban Sci. 2022, 6, 19. https://doi.org/10.3390/urbansci6010019
Salata S, Özkavaf-Şenalp S, Velibeyoğlu K. Integrating Ecosystem Vulnerability in the Environmental Regulation Plan of Izmir (Turkey)—What Are the Limits and Potentialities? Urban Science. 2022; 6(1):19. https://doi.org/10.3390/urbansci6010019
Chicago/Turabian StyleSalata, Stefano, Sıla Özkavaf-Şenalp, and Koray Velibeyoğlu. 2022. "Integrating Ecosystem Vulnerability in the Environmental Regulation Plan of Izmir (Turkey)—What Are the Limits and Potentialities?" Urban Science 6, no. 1: 19. https://doi.org/10.3390/urbansci6010019
APA StyleSalata, S., Özkavaf-Şenalp, S., & Velibeyoğlu, K. (2022). Integrating Ecosystem Vulnerability in the Environmental Regulation Plan of Izmir (Turkey)—What Are the Limits and Potentialities? Urban Science, 6(1), 19. https://doi.org/10.3390/urbansci6010019