Sustainable Extraction of Flavonoids from Citrus Waste: A Fast and Simple Approach with UHPLC-PDA ESI-MS Characterization
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials: Plant Material and Sampling
2.2. Extraction Procedures
2.2.1. Pre-Selection of Extraction Procedures
2.2.2. Ultrasound-Assisted Extraction Procedures
2.3. Flavonoid UHPLC-MS Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Selection of Optimal Extraction Procedure
3.2. Effect of Ethanol-Water Ratio on Flavonoid Extraction Efficiency
3.3. The Profile of Flavonoid Compounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| DW | Dry Weight |
| DM | Microwave extraction using a domestic microwave oven |
| MAE | Microwave extraction using a high-performance microwave digestion system |
| UAE | Ultrasonic extraction using an ultrasound-assisted extraction system |
| US | Ultrasonic extraction using an ultrasound cleaner |
| UHPLC | Ultra-High-Performance Liquid Chromatography |
References
- Dhuique-Mayer, C.; Servent, A. An overview of the nutritional quality and health benefits linked to the world diversity of citrus fruits/juices. J. Food Sci. 2025, 90, e17576. [Google Scholar] [CrossRef]
- World Citrus Organization. Citrus World Statistics. Available online: https://worldcitrusorganisation.org/activities/citrus-world-statistics) (accessed on 5 May 2025).
- Andrade, M.A.; Barbosa, C.H.; Shah, M.A.; Ahmad, N.; Vilarinho, F.; Khwaldia, K.; Silva, A.S.; Ramos, F. Citrus by-products: Valuable source of bioactive compounds for food applications. Antioxidants 2023, 12, 38. [Google Scholar] [CrossRef]
- Sanches, V.L.; Cunha, T.A.; Viganó, J.; de Souza Mesquita, L.M.; Faccioli, L.H.; Breitkreitz, M.C.; Rostagno, M.A. Comprehensive analysis of phenolics compounds in citrus fruits peels by UPLC-PDA and UPLC-Q/TOF MS using a fused-core column. Food Chem. X 2022, 14, 100262. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic composition, antioxidant potential and health benefits of citrus peel. Food Res. Int. 2020, 132, 109114. [Google Scholar] [CrossRef] [PubMed]
- Suri, S.; Singh, A.; Nema, P.K. Current applications of citrus fruit processing waste: A scientific outlook. Appl. Food Res. 2022, 2, 100050. [Google Scholar] [CrossRef]
- Kumar, H.; Guleria, S.; Kimta, N.; Nepovimova, E.; Dhanjal, D.S.; Sethi, N.; Suthar, T.; Shaikh, A.M.; Bela, K.; Harsányi, E. Applications of citrus peels valorisation in circular bioeconomy. J. Agric. Food Res. 2025, 20, 101780. [Google Scholar] [CrossRef]
- Maqbool, Z.; Khalid, W.; Atiq, H.T.; Koraqi, H.; Javaid, Z.; Alhag, S.K.; Al-Farga, A. Citrus waste as source of bioactive compounds: Extraction and utilization in health and food industry. Molecules 2023, 28, 1636. [Google Scholar] [CrossRef]
- Rafiq, S.; Kaul, R.; Sofi, S.A.; Bashir, N.; Nazir, F.; Ahmad Nayik, G. Citrus peel as a source of functional ingredient: A review. J. Saudi Soc. Agric. Sci. 2018, 17, 351–358. [Google Scholar] [CrossRef]
- Roselli, V.; Pugliese, G.; Leuci, R.; Brunetti, L.; Gambacorta, L.; Tufarelli, V.; Piemontese, L. Green methods to recover bioactive compounds from food industry waste: A sustainable practice from the perspective of the circular economy. Molecules 2024, 29, 2682. [Google Scholar] [CrossRef]
- Addi, M.; Elbouzidi, A.; Abid, M.; Tungmunnithum, D.; Elamrani, A.; Hano, C. An overview of bioactive flavonoids from citrus fruits. Appl. Sci. 2022, 12, 29. [Google Scholar] [CrossRef]
- Liga, S.; Paul, C.; Péter, F. Flavonoids: Overview of biosynthesis, biological activity, and current extraction techniques. Plants 2023, 12, 2732. [Google Scholar] [CrossRef]
- Lima, G.P.P.; Vianello, F.; Correa, C.R.; Campos, R.A.d.; Borguini, M.G. Polyphenols in fruits and vegetables and its effect on human health. Food Nutri. Sci. 2014, 5, 1065–1082. [Google Scholar] [CrossRef]
- Gattuso, G.; Barreca, D.; Gargiulli, C.; Leuzzi, U.; Caristi, C. Flavonoid composition of citrus juices. Molecules 2007, 12, 1641–1673. [Google Scholar] [CrossRef]
- Kawaii, S.; Tomono, Y.; Katase, E.; Ogawa, K.; Yano, M. Quantitation of flavonoid constituents in citrus fruits. J. Agric. Food Chem. 1999, 47, 3565–3571. [Google Scholar] [CrossRef]
- Nogata, Y.; Sakamoto, K.; Shiratsuchi, H.; Ishii, T.; Yano, M.; Ohta, H. Flavonoid composition of fruit tissues of citrus species. Biosci. Biotechnol. Biochem. 2006, 70, 178–192. [Google Scholar] [CrossRef]
- Tripoli, E.; La Guardia, M.; Giammanco, S.; Di Majo, D.; Giammanco, M. Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chem. 2007, 104, 466–479. [Google Scholar] [CrossRef]
- Anticona, M.; Blesa, J.; Frigola, A.; Esteve, M.J. High biological value compounds extraction from citrus waste with non-conventional methods. Foods 2020, 9, 811. [Google Scholar] [CrossRef] [PubMed]
- Sagar, N.A.; Pareek, S.; Sharma, S.; Yahia, E.M.; Lobo, M.G. Fruit and vegetable waste: Bioactive compounds, their extraction, and possible utilization. Compr. Rev. Food Sci. Food Saf. 2018, 17, 512–531. [Google Scholar] [CrossRef]
- Bitwell, C.; Indra, S.S.; Luke, C.; Kakoma, M.K. A review of modern and conventional extraction techniques and their applications for extracting phytochemicals from plants. Sci. Afr. 2023, 19, e01585. [Google Scholar] [CrossRef]
- Gattuso, A.; Piscopo, A.; Romeo, R.; De Bruno, A.; Poiana, M. Recovery of bioactive compounds from calabrian bergamot citrus waste: Selection of best green extraction. Agriculture 2023, 13, 1095. [Google Scholar] [CrossRef]
- Chaves, J.O.; De Souza, M.C.; Da Silva, L.C.; Lachos-Perez, D.; Torres-Mayanga, P.C.; Machado, A.P.D.F.; Rostagno, M.A. Extraction of flavonoids from natural sources using modern techniques. Front. Chem. 2020, 8, 507887. [Google Scholar] [CrossRef]
- Fierascu, R.C.; Sieniawska, E.; Ortan, A.; Fierascu, I.; Xiao, J. Fruits by-products–A source of valuable active principles. A Short Review. Front. Bioeng. Biotechnol. 2020, 8, 319. [Google Scholar] [CrossRef]
- Putnik, P.; Bursać Kovačević, D.; Režek Jambrak, A.; Barba, F.J.; Cravotto, G.; Binello, A.; Shpigelman, A. Innovative “green” and novel strategies for the extraction of bioactive added value compounds from citrus wastes—A Review. Molecules 2017, 22, 680. [Google Scholar] [CrossRef]
- Trigo, J.P.; Alexandre, E.M.; Saraiva, J.A.; Pintado, M.E. High value-added compounds from fruit and vegetable by-products–Characterization, bioactivities, and application in the development of novel food products. Crit. Rev. Food Sci. Nutr. 2020, 60, 1388–1416. [Google Scholar] [CrossRef]
- Zhu, C.Q.; Chen, J.B.; Zhao, C.N.; Liu, X.J.; Chen, Y.Y.; Liang, J.J.; Sun, C.D. Advances in extraction and purification of citrus flavonoids. Food Front. 2023, 4, 750–781. [Google Scholar] [CrossRef]
- Morales, J.; Gómez-Martínez, H.; Bermejo, A. Phenolic profiles of different apricot varieties grown in Spain. Discrimination among cultivars during the harvest season. Agronomy 2025, 15, 1652. [Google Scholar] [CrossRef]
- Giménez-Sanchis, A.; Bermejo, A.; Besada, C. Changes in the sugars and volatile compounds profiles associated with anthocyanin accumulation in oranges: Blood vs. blond varieties, and slightly pigmented vs. intensely pigmented blood fruit. Food Res. Int. 2024, 197, 115199. [Google Scholar] [CrossRef]
- Mahato, N.; Sinha, M.; Sharma, K.; Koteswararao, R.; Cho, M.H. Modern extraction and purification techniques for obtaining high purity food-grade bioactive compounds and value-added co-products from citrus wastes. Foods 2019, 8, 523. [Google Scholar] [CrossRef]
- Routray, W.; Orsat, V. Microwave-assisted extraction of flavonoids: A Review. Food Bioprocess Technol. 2012, 5, 409–424. [Google Scholar] [CrossRef]
- Vo, T.P.; Nguyen, N.T.U.; Le, V.H.; Phan, T.H.; Nguyen, T.H.Y.; Nguyen, D.Q. Optimizing ultrasonic-assisted and microwave-assisted extraction processes to recover phenolics and flavonoids from passion fruit peels. ACS Omega 2023, 8, 33870–33882. [Google Scholar] [CrossRef] [PubMed]
- Xuereb, M.A.; Psakis, G.; Attard, K.; Lia, F.; Gatt, R. A comprehensive analysis of non-thermal ultrasonic-assisted extraction of bioactive compounds from citrus peel waste through a one-factor-at-a-time approach. Molecules 2025, 30, 648. [Google Scholar] [CrossRef]
- Bubalo, M.C.; Vidović, S.; Radojčić Redovniković, I.; Jokić, S. Green solvents for green technologies. J. Chem. Technol. Biotechnol. 2015, 90, 1631–1639. [Google Scholar] [CrossRef]
- Papoutsis, K.; Pristijono, P.; Golding, J.B.; Stathopoulos, C.E.; Scarlett, C.J.; Bowyer, M.C.; Vuong, Q.V. Impact of different solvents on the recovery of bioactive compounds and antioxidant properties from lemon (Citrus limon L.) pomace waste. Food Sci. Biotechnol. 2016, 25, 971–977. [Google Scholar] [CrossRef]
- Mustafa, A.; Turner, C. Pressurized liquid extraction as a green approach in food and herbal plants extraction: A review. Anal. Chim. Acta 2011, 703, 8–18. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Sicaire, A.G.; Meullemiestre, A.; Fabiano-Tixier, A.S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Castello, E.M.; Rodriguez-Lopez, A.D.; Mayor, L.; Ballesteros, R.; Conidi, C.; Cassano, A. Optimization of conventional and ultrasound assisted extraction of flavonoids from grapefruit (Citrus paradisi L.) solid wastes. LWT-Food Sci. Technol. 2015, 64, 1114–1122. [Google Scholar] [CrossRef]
- Elkhatim, K.A.; Elagib, R.A.; Hassan, A.B. Content of phenolic compounds and vitamin C and antioxidant activity in wasted parts of Sudanese citrus fruits. Food Sci. Nutr. 2018, 6, 1214–1219. [Google Scholar] [CrossRef] [PubMed]
- Cano, A.; Bermejo, A. Influence of rootstock and cultivar on bioactive compounds in citrus peels. J. Sci. Food Agric. 2011, 91, 1702–1711. [Google Scholar] [CrossRef]
- Deng, M.; Dong, L.; Jia, X.; Huang, F.; Chi, J.; Muhammad, Z.; Zhang, R. The flavonoid profiles in the pulp of different pomelo (Citrus grandis L. Osbeck) and grapefruit (Citrus paradisi Mcfad) cultivars and their in vitro bioactivity. Food Chem. X 2022, 15, 100368. [Google Scholar] [CrossRef]
- Wang, C.; Xia, N.; Yu, M.; Zhu, S. Physicochemical properties and mechanism of solubilised neohesperidin system based on inclusion complex of hydroxypropyl-β-cyclodextrin. Int. J. Food Sci. Technol. 2023, 58, 107–115. [Google Scholar] [CrossRef]
- Palaiogiannis, D.; Chatzimitakos, T.; Athanasiadis, V.; Bozinou, E.; Makris, D.P.; Lalas, S.I. Successive solvent extraction of polyphenols and flavonoids from Cistus criticus L. leaves. Oxygen 2023, 3, 274–286. [Google Scholar] [CrossRef]


| Sample | Pedigree | Juice (%) | TSS 1 | TA 2 | MI 3 |
|---|---|---|---|---|---|
| ‘Marsh’ grapefruit | C. paradisi Macf. | 46.88 ± 5.65 b | 11.53 ± 0.21 a | 21.01 ± 1.46 b | 5.51 ± 0.48 a |
| ‘Comun’ mandarin | C. deliciosa Ten | 31.00 ± 2.26 a | 11.95 ± 0.71 a | 11.60 ± 2.14 a | 10.65 ± 2.80 b |
| Equipment | Solvent | Extraction Conditions |
|---|---|---|
| Ultrasound cleaner (US) 1 | Water | 20 min, 50 °C, 180 W |
| Ultrasound cleaner (US) 1 | Ethanol | 20 min, 50 °C, 180 W |
| UAE 2 | Water | 15 min, (pulses 5 s), ramp 20–60 °C, 40 W |
| UAE 2 | Ethanol | 15 min, (pulses 5 s), ramp 20–60 °C, 40 W |
| Domestic microwave oven (DM) 3 | Water | 850 W, 1 min (pulses 5 s), 60 °C |
| Domestic microwave oven (DM) 3 | Ethanol | 850 W, 1 min, (pulses 5 s), 60 °C |
| MAE 4 | Water | ramp 1 h to 60 °C at 1800 W |
| MAE 4 | Ethanol | ramp 1 h to 60 °C at 1800 W |
| Compounds a | Flavanone glycoside forms | ||
| RT b (min) | [M-H]− (m/z) | λmax (nm) | |
| Eriocitrin | 3.86 | 595 | 225/283/329 |
| Neoeriocitrin | 3.91 | 595 | 225/283/324 |
| Narirutin | 4.05 | 579 | 225/283/329 |
| Naringin | 4.10 | 579 | 222/282/330 |
| Hesperidin | 4.14 | 609 | 225/283/327 |
| Neohesperidin | 4.19 | 609 | 225/283/325 |
| Didymin | 4.52 | 593 | 224/285/330 |
| Poncirin | 4.57 | 593 | 224/283/335 |
| Compounds a | PMs forms | ||
| RT b (min) | [MH]+ (m/z) | λmax (nm) | |
| Sinensetin | 5.49 | 373 | 238/265/327 |
| Nobiletin | 5.73 | 403 | 246/270/331 |
| Tangeretin | 5.98 | 373 | 271/320 |
| Grapefruit waste | ||||||||
| Solvent ratio | Eriocitrin | Neoeriocitrin | Narirutin | Naringin | Hesperidin | Neohesperidin | Didymin | Poncirin |
| Water | 3.60 ± 0.57 c | 34.87 ± 0.00 b | 116.41 ± 6.87 ab | 935.82 ± 7.39 a | 65.32 ± 4.28 b | 661.59 ± 9.20 c | 0.49 ± 0.00 a | 22.10 ± 0.49 a |
| Ethanol | 1.63 ± 0.28 a | 32.45 ± 0.28 a | 122.31 ± 1.70 b | 943.41 ± 9.46 a | 59.36 ± 5.46 ab | 650.03 ± 4.90 c | 5.06 ± 0.57 b | 26.09 ± 0.57 cd |
| EtOH-Water (1:1) | 8.10 ± 0.28 b | 36.21 ± 0.86 c | 120.00 ± 12.99 ab | 1643.35 ± 27.17 b | 58.70 ± 2.44 ab | 603.01 ± 4.87 b | 8.76 ± 0.57 d | 27.28 ± 1.31 d |
| EtOH-Water (7:3) | 8.47 ± 0.50 b | 34.40 ± 0.50 b | 113.83 ± 9.75 ab | 1706.05 ± 4.73 d | 53.84 ± 1.31 a | 570.62 ± 2.91 a | 8.48 ± 0.99 d | 24.59 ± 1.26 bc |
| EtOH-Water (3:7) | 8.80 ± 0.29 b | 34.57 ± 0.29 b | 104.52 ± 11.80 a | 1672.81 ± 3.74 c | 54.67 ± 8.22 a | 566.47± 8.99 a | 6.81 ± 0.58 c | 23.10 ± 1.52 ab |
| Mandarin waste | ||||||||
| Solvent ratio | Eriocitrin | Neoeriocitrin | Narirutin | Naringin | Hesperidin | Neohesperidin | Didymin | Poncirin |
| Water | 8.47 ± 0.86 b | ND | 126.33 ± 2.08 b | ND | 327.53 ± 3.20 a | ND | 18.76 ± 0.76 a | ND |
| Ethanol | 3.17 ± 0.29 a | ND | 62.11 ± 0.76 a | ND | 345.65 ± 1.73 b | ND | 17.15 ± 0.76 a | ND |
| EtOH-Water (1:1) | 16.10 ± 0.28 d | ND | 163.84 ± 2.77 c | ND | 834.66 ± 2.18 c | ND | 44.82 ± 2.28 b | ND |
| EtOH-Water (7:3) | 13.83 ± 1.26 c | ND | 164.17 ± 1.26 c | ND | 890.33 ± 4.80 d | ND | 45.67 ± 0.76 b | ND |
| EtOH-Water (3:7) | 12.99 ± 0.50 c | ND | 171.99 ± 2.08 d | ND | 944.55 ± 5.26 e | ND | 46.95 ± 0.50 b | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales, J.; Medina, A.; Bermejo, A. Sustainable Extraction of Flavonoids from Citrus Waste: A Fast and Simple Approach with UHPLC-PDA ESI-MS Characterization. Sci 2025, 7, 156. https://doi.org/10.3390/sci7040156
Morales J, Medina A, Bermejo A. Sustainable Extraction of Flavonoids from Citrus Waste: A Fast and Simple Approach with UHPLC-PDA ESI-MS Characterization. Sci. 2025; 7(4):156. https://doi.org/10.3390/sci7040156
Chicago/Turabian StyleMorales, Julia, Alejandro Medina, and Almudena Bermejo. 2025. "Sustainable Extraction of Flavonoids from Citrus Waste: A Fast and Simple Approach with UHPLC-PDA ESI-MS Characterization" Sci 7, no. 4: 156. https://doi.org/10.3390/sci7040156
APA StyleMorales, J., Medina, A., & Bermejo, A. (2025). Sustainable Extraction of Flavonoids from Citrus Waste: A Fast and Simple Approach with UHPLC-PDA ESI-MS Characterization. Sci, 7(4), 156. https://doi.org/10.3390/sci7040156

