A Review of the Impact of Climate Change on the Presence of Microorganisms in Drinking Water
Abstract
1. Introduction
2. Materials and Methods
3. Microbiological Risks in Water Sources Due to Extreme Weather Events
4. Effects of Extreme Weather Events on Microbial Risks in Drinking Water Treatment and Distribution Systems
4.1. Coagulation-Flocculation-Sedimentation
4.2. Filtration
4.3. Disinfection
4.4. Drinking Water Distribution Systems (DWDSs)
5. Main Microorganisms in Drinking Water and Diseases They Lead to
6. Incidence of Waterborne Diseases in Europe Associated with Drinking Water
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ECDC | European Centre for Disease Prevention and Control Digital Publishing Institute |
SDG | Sustainable Development Goals |
NOAA | National Oceanic and Atmospheric Administration |
AWD | Atmospheric water demand |
WHO | World Health Organization |
WoS | Web of Science |
TSS | Total Suspended Solids |
ARGs | Antibiotic Resistance Genes |
OM | Organic Matter |
DOM | Dissolved Organic Matter |
PPCPs | Pharmaceutical and Personal Care Products |
HABs | Harmful Algae Blooms |
DO | Dissolved Oxygen |
DWTPs | Drinking Water Treatment Plants |
UV | Ultraviolet |
PAA | Peracetic Acid |
DBPs | Disinfection By-products |
THMs | Trihalomethanes |
DWDS | Drinking Water Distribution System |
EU | European Union |
PCR | Polymerase Chain Reaction |
References
- United Nations. Goal 6: Ensure Access to Water and Sanitation for All. Available online: https://www.un.org/sustainabledevelopment/water-and-sanitation/ (accessed on 17 October 2024).
- United Nations Economic Commission for Europe. Equitable Access to Water and Sanitation. Available online: https://unece.org/environment-policy/water/areas-work-protocol/equitable-access-water-and-sanitation (accessed on 17 October 2024).
- Bruno, A.; Agostinetto, G.; Fumagalli, S.; Ghisleni, G.; Sandionigi, A. It’s a Long Way to the Tap: Microbiome and DNA-Based Omics at the Core of Drinking Water Quality. Int. J. Environ. Res. Public Health 2022, 19, 7940. [Google Scholar] [CrossRef]
- Sidibe, I.; Coulibaly, T.; Togola, A.; Keita, M.; Guindo, M.; Kassambara, M. Assessment of Drinking Water Quality in Peri-urban Areas of Bamako City, Mali. E3S Web Conf. 2024, 537, 03004. [Google Scholar] [CrossRef]
- Lakhani, S.; Shah, N.V.; Bhalodia, N. Microbial Quality of Water Used as Drinking Sources in Urban and Rural Households of Gujarat, India: A Cross-Sectional Study. Int. J. Health Sci. Res. 2024, 14, 309–320. [Google Scholar] [CrossRef]
- Nyika, J.M.; Dinka, M.O. A Scientometric Study on Quantitative Microbial Risk Assessment in Water Quality Analysis Across 6 Years (2016–2021). J. Water Health 2022, 20, 329–343. [Google Scholar] [CrossRef]
- Douterelo, I.; Sharpe, R.; Husband, S.; Fish, K.E.; Boxall, J. Understanding Microbial Ecology to Improve Management of Drinking Water Distribution Systems. Wiley Interdiscip. Rev. Water 2019, 6, e1325. [Google Scholar] [CrossRef]
- Simazaki, D.; Hirose, M.; Hashimoto, H.; Yamanaka, S.; Takamura, M.; Watanabe, J.; Akiba, M. Occurrence and Fate of Endotoxin Activity at Drinking Water Purification Plants and Healthcare Facilities in Japan. Water Res. 2018, 145, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Rossi, F.; Santonicola, S.; Amadoro, C.; Marino, L.; Colavita, G. Food and Drinking Water as Sources of Pathogenic Protozoans: An Update. Appl. Sci. 2024, 14, 5339. [Google Scholar] [CrossRef]
- Omarova, A.; Tussupova, K.; Berndtsson, R.; Kalishev, M.; Sharapatova, K. Protozoan Parasites in Drinking Water: A System Approach for Improved Water, Sanitation and Hygiene in Developing Countries. Int. J. Environ. Res. Public Health 2018, 15, 495. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2022; Available online: https://iris.who.int/bitstream/handle/10665/352532/9789240045064-eng.pdf (accessed on 11 June 2025).
- Rani, D.; Rana, V.; Rani, A.; Malyan, S.K.; Kumar, A.; Dhaka, R.K.; Rana, A. Microbial Contamination in Municipal Water: Potential Sources, Analytical Methods and Remediation Strategies. In Algae Based Bioelectrochemical Systems for Carbon Secuestration, Carbon Storage, Bioremediation and Bioproduct Generation, 1st ed.; Mahapatra, D.M., Kumar, S.S., Singh, L., Eds.; Academic Press: Cambridge, MA, USA, 2024; Volume 3, pp. 125–141. [Google Scholar] [CrossRef]
- Rodgers, M.; Boczek, L. Microbes and Water Quality in Developed Countries. In Encyclopedia of Environmental Health; Nriagu, J.O., Ed.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 749–756. ISBN 9780444522726. [Google Scholar] [CrossRef]
- Levallois, P.; Villanueva, C.M. Drinking Water Quality and Human Health: An Editorial. Int. J. Environ. Res. Public Health 2019, 16, 631. [Google Scholar] [CrossRef]
- Islam, M.M.M. Quantifying Microbial Risk from Drinking Water Production Process under Changing Climate and Socio-Economic Conditions. Microb. Risk Anal. 2024, 27–28, 100321. [Google Scholar] [CrossRef]
- Freeman, J.T.; Anderson, D.J.; Sexton, D.J. Seasonal Peaks in Escherichia coli Infections: Possible Explanations and Implications. Clin. Microbiol. Infect. 2009, 15, 951–953. [Google Scholar] [CrossRef]
- Hofstra, N. Quantifying the Impact of Climate Change on Enteric Waterborne Pathogen Concentrations in Surface Water. Curr. Open Environ. Sustain. 2011, 3, 471–479. [Google Scholar] [CrossRef]
- Mohammed, H.; Seidu, R. Climate-Driven QMRA Model for Selected Water Supply Systems in Norway Accounting for Raw Water Sources and Treatment Processes. Sci. Total Environ. 2019, 660, 306–320. [Google Scholar] [CrossRef]
- Funari, E.; Manganelli, M.; Sinisi, L. Impact of Climate Change on Waterborne Diseases. Ann. Ist. Super. Sanita 2012, 48, 473–487. [Google Scholar] [CrossRef]
- De los Ríos, M.A. Los Microorganismos son los Grandes Olvidados en los Modelos de Cambio Climático. 2022. Available online: https://www.csic.es/es/actualidad-del-csic/los-microorganismos-son-los-grandes-olvidados-en-los-modelos-de-cambio-climatico (accessed on 19 June 2025).
- NOAA. Climate Change: Global Temperature. Available online: https://www.climate.gov/news-features/understanding-climate/climate-change-global-temperature (accessed on 11 June 2025).
- NOAA. Climate at a Glance: Global Time Series. Available online: https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/global/time-series/globe/tavg/land_ocean/12/5/1900-2025 (accessed on 19 June 2025).
- NOAA. Climate at a Glance: Haywood. Available online: https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/global/haywood (accessed on 11 August 2025).
- Parvaze, S.; Kumar, R.; Khan, J.N.; Parvaze, S. Climate Change, Drought, and Water Resources. In Book Integrated Drought Management, 1st ed.; Singh, V.P., Jhajharia, D., Mirabbasi, R., Kumar, R., Eds.; Taylor and Francis Group: Boca Raton, FL, USA, 2023; Volume 1. [Google Scholar] [CrossRef]
- Alobid, M.; Chellai, F.; Szűcs, I. Trends and Drivers of Flood Occurrence in Germany: A Time Series Analysis of Temperature, Precipitation, and River Discharge. Water 2024, 16, 2589. [Google Scholar] [CrossRef]
- World Health Organization. Climate Change. 2013. Available online: https://www.who.int/news-room/fact-sheets/detail/climate-change-and-health (accessed on 17 October 2024).
- Korkmaz, M. Impacts of Climate Change: Examining Precipitation, Temperature Anomalies, and Effects on Water Resources in Turkey. J. Anatol. Environ. Anim. Sci. 2024, 9, 558–569. [Google Scholar] [CrossRef]
- Dowlati, M.; Seyedin, H.; Behnami, A.; Marzban, A.; Gholami, M. Water Resources Resilience Model in Climate Changes with Community Health Approach: Qualitative Study. Case Stud. Chem. Environ. Eng. 2023, 8, 100521. [Google Scholar] [CrossRef]
- Wang, D.; Chen, Y.; Jarin, M.; Xie, X. Increasingly Frequent Extreme Weather Events Urge the Development of Point-of-Use Water Treatment Systems. npj Clean Water 2022, 5, 36. [Google Scholar] [CrossRef]
- Chand, M.B.; Bhattarai, B.C.; Pradhananga, N.S.; Baral, P. Trend Analysis of Temperature Data for the Narayani River Basin, Nepal. Sci 2021, 3, 1. [Google Scholar] [CrossRef]
- Myhre, G.; Alterskjær, K.; Stjern, C.W.; Hodnebrog, O.; Marelle, L.; Samser, B.H.; Sillmann, J.; Schaller, N.; Fisher, E.; Schulz, M.; et al. Frequency of Extreme Precipitation Increases Extensively with Event Rareness under Global Warming. Sci. Rep. 2019, 9, 16063. [Google Scholar] [CrossRef]
- Li, J.; Thompson, D.W.J. Widespread Changes in Surface Temperature Persistence under Climate Change. Nature 2021, 599, 425–430. [Google Scholar] [CrossRef]
- Xiao, X.; Fu, J.; Yu, X. Impact of Extreme Weather on Microbiological Risk of Drinking Water in Coastal Cities: A Review. Curr. Pollut. Rep. 2023, 9, 259–271. [Google Scholar] [CrossRef]
- Konapala, G.; Mishra, A.K.; Wada, Y.; Mann, M.E. Climate Change will Affect Global Water Availability through Compounding Changes in Seasonal Precipitation and Evaporation. Nat. Commun. 2020, 11, 3044. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. Updating guidance for reporting systematic reviews: Development of the PRISMA 2020 statement. J. Clin. Epidemiol. 2021, 134, 103–112. [Google Scholar] [CrossRef]
- Prest, E.I.; Hammes, F.; van Loosdrecht, M.C.M.; Vrouwenvelder, J.S. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges. Front. Microbiol. 2016, 7, 45. [Google Scholar] [CrossRef]
- Hoefel, D.; Monis, P.T.; Grooby, W.L.; Andrews, S.; Saint, C.P. Profiling Bacterial Survival through a Water Treatment Process and Subsequent Distribution System. J. Appl. Microbiol. 2005, 99, 175–186. [Google Scholar] [CrossRef]
- Hammes, F.; Berney, M.; Wang, Y.; Vital, M.; Koster, O.; Egli, T. Flow-Cytometric Total Bacterial Cell Counts as a Descriptive Microbiological Parameter for Drinking Water Treatment Processes. Water Res. 2008, 42, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Vital, M.; Dignum, M.; Magic-Knezev, A.; Ross, P.; Rietveld, L.; Hammes, F. Flow Cytometry and Adenosine Tri-Phosphate Analysis: Alternative Possibilities to Evaluate Major Bacteriological Changes in Drinking Water Treatment and Distribution Systems. Water Res. 2012, 46, 4665–4676. [Google Scholar] [CrossRef] [PubMed]
- Cann, K.F.; Thomas, D.R.; Salmon, R.L.; Wyn-Jones, A.P.; Kay, D. Extreme Water-Related Weather Events and Waterborne Disease. Epidemiol. Infect. 2013, 141, 671–686. [Google Scholar] [CrossRef]
- Tornevi, A.; Bergstedt, O.; Forsberg, B. Precipitation Effects on Microbial Pollution in a River: Lag Structures and seasonal Effect Modification. PLoS ONE 2014, 9, e98546. [Google Scholar] [CrossRef] [PubMed]
- Hipsey, M.R.; Brookes, J.D.; Regel, R.H.; Antenucci, J.P.; Burch, M.D. In Situ Evidence for the Association of Total Coliforms and Escherichia coli with Suspended Inorganic Particles in an Australian Reservoir. Water Air Soil Pollut. 2006, 170, 191–209. [Google Scholar] [CrossRef]
- Liao, C.; Liang, X.; Soupir, M.L.; Jarboe, L.R. Cellular, Particle and Environmental Parameters Influencing Attachment in Surface Waters: A Review. J. Appl. Microbiol. 2015, 119, 315–330. [Google Scholar] [CrossRef]
- Bagra, K.; Kneis, D.; Padfield, D.; Szekeres, E.; Teban-Man, A.; Coman, C.; Singh, G.; Berendonk, T.U.; Klümper, U. Contrary effects of increasing temperatures on the spread of antimicrobial resistance in river biofilms. Environ. Microbiol. 2024, 9, e00573-23. [Google Scholar] [CrossRef]
- MacFadden, D.R.; McGough, S.F.; Fisman, D.; Santillana, M.; Brownstein, J.S. Antibiotic Resistance Increases with Local Temperature. Nat. Clim. Change 2018, 8, 510–514. [Google Scholar] [CrossRef]
- Meisner, A.; Leizeaga, A.; Rousk, J.; Bååth, E. Partial drying accelerates bacterial growth recovery to rewetting. Soil. Biol. Biochem. 2017, 112, 269–273. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (EPA). Harmful Algal Blooms (HABs) in Water Bodies. Available online: https://www.epa.gov/habs (accessed on 22 June 2025).
- Mosley, L.M. Drought Impacts on the Water Quality of Freshwater Systems; Review and Integration. Earth-Sci. Rev. 2015, 140, 203–2014. [Google Scholar] [CrossRef]
- Coffey, R.; Paul, M.J.; Stamp, J.; Hamilton, A.; Johnson, T. A Review of Water Quality Responses to Air Temperature and Precipitation Changes 2: Nutrients, Algal Blooms, Sediment, Pathogens. J. Am. Water Res. Assoc. 2019, 55, 844–868. [Google Scholar] [CrossRef]
- Wiley, D.Y.; McPherson, R.A. The Role of Climate Change in the Proliferation of Freshwater Harmful Algal Blooms in Inland Water Bodies of the United States. Earth Interact 2024, 28, e230008. [Google Scholar] [CrossRef]
- Nalley, J.O.; O’Donnell, D.R.; Litchman, E. Temperature Effects on Growth Rates and Fatty Acid Content in Freshwater Algae and Cyanobacteria. Algal. Res. 2018, 35, 500–507. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, D.; Woolway, R.I.; Yan, H.; Paerl, H.W.; Zheng, Y.; Zheng, C.; Feng, L. Global Elevation of Algal Bloom Frequency in Large L and akes over the Past Two Decades. Natl. Sci. Rev. 2025, 12, nwaf011. [Google Scholar] [CrossRef]
- Bryan, K.; Ward, S.; Roberts, L.; White, M.P.; Landeg, O.; Taylor, T.; McEwen, L. The Health and Well-Being Effects of Drought: Assessing Multi-Stakeholder Perspectives through Narratives from the UK. Clim. Change 2020, 163, 2073–2095. [Google Scholar] [CrossRef]
- Winterfeldt, S.; Cruz-Paredes, C.; Rousk, J.; Leizeaga, A. Microbial Resistance and Resilience to Drought across a European Climate Gradient. In Proceedings of the EGU General Assembly, Vienna, Austria, 14–19 April 2024. [Google Scholar] [CrossRef]
- Sillanpää, M.; Ncibi, M.C.; Matilainen, A.; Vepsäläinen, M. Removal of Natural Organic Matter in Drinking Water Treatment by Coagulation: A Comprehensive Review. Chemosphere 2018, 190, 54–71. [Google Scholar] [CrossRef] [PubMed]
- Levine, A.D.; Yang, Y.J.; Goodrich, J.A. Enhancing Climate Adaptation Capacity for Drinking Water Treatment Facilities. J. Water Clim. Change 2016, 7, 485–497. [Google Scholar] [CrossRef]
- Gerrity, D.; Arnold, M.; Dickenson, E.; Moser, D.; Sackett, J.D.; Wert, E.C. Microbial Community Characterization of Ozone-Biofiltration Systems in Drinking Water and Potable Reuse Applications. Water Res. 2018, 135, 2017–2219. [Google Scholar] [CrossRef] [PubMed]
- Lutukurthi, D.N.V.V.K.; Dutta, S. Chapter 12—Recent Advances on the Technologies for the Disinfection of Drinking Water. In Advances in Drinking Water Purification. Small Systems and Emerging Issues; Bandyopadhyay, S., Ed.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 271–293. [Google Scholar] [CrossRef]
- Goodarzi, D.; Abolfathi, S.; Borzooei, S. Modelling Solute Transport in Water Disinfection Systems: Effects of Temperature Gradient on the Hydraulic and Disinfection Efficiency of Serpentine Chlorine Contact Tanks. J. Water Process Eng. 2020, 37, 101411. [Google Scholar] [CrossRef]
- Ao, X.; Chen, Z.; Li, S.; Lu, Z.; Sun, W. The Impact of UV Treatment on Microbial Control and DBPs Formation in Full-Scale Drinking Water Systems in Northern China. J. Environ. Sci. 2020, 87, 398–410. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, W.; Roddick, F.; Porter, N.; Drikas, M. Fractionation of UV and VUV Pretreated Natural Organic Matter from Drinking Water. Environ. Sci. Technol. 2005, 39, 4647–4654. [Google Scholar] [CrossRef]
- Goslan, E.H.; Gurses, F.; Banks, J.; Parsons, S.A. An Investigation into Reservoir NOM Reduction by UV Photolysis and Advanced Oxidation Processes. Chemosphere 2006, 65, 1113–1119. [Google Scholar] [CrossRef] [PubMed]
- Agudelo-Vera, C.; Avvedimento, S.; Boxall, J.; Creaco, E.; de Kater, H.; Di Nardo, A.; Djukic, A.; Douterelo, I.; Fish, K.E.; Iglesias Rey, P.L.; et al. Drinking Water Temperature around the Globe: Understanding, Policies, Challenges and Opportunities. Water 2020, 12, 1049. [Google Scholar] [CrossRef]
- van der Wielen, P.W.J.J.; Dignum, M.; Donocik, A.; Prest, E.I. Influence of Temperature on Growth of Four Different Opportunistic Pathogens in Drinking Water Biofilms. Microorganisms 2023, 11, 1574. [Google Scholar] [CrossRef]
- Lam, O.; Wheeler, J.; Tang, C.M. Thermal Control of Virulence Factors in Bacteria: A Hot Topic. Virulence 2014, 5, 852–862. [Google Scholar] [CrossRef]
- Batool, A.; Shafqat, M.; Kazmi, S.S.; Imad, S.; Ghufran, M.A.; Samad, N. Drinking Water Quality, Water Distribution Systems and Human Health: A Microbial Evaluation of Drinking Water Sources in Salt Range. Int. J. Hydrog. 2018, 5, 542–547. [Google Scholar] [CrossRef][Green Version]
- Yates, M.V. Drinking Water Microbiology. In Encyclopedia of Microbiology, 4th ed.; Schmidt, T.M., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 83–89. [Google Scholar] [CrossRef]
- Atnafu, B.; Desta, A.; Assefa, F. Microbial Community Structure and Diversity in Drinking Water Supply, Distribution Systems as well as Household Point of Use Sites in Addis Ababa City, Ethiopia. Microb. Ecol. 2022, 84, 73–89. [Google Scholar] [CrossRef] [PubMed]
- Plutzer, J.; Törökné, A. Free-Living Microscopic Organisms as Indicator of Changes in Drinking-Water Quality. Water Pract. Technol. 2012, 7, wpt2012050. [Google Scholar] [CrossRef]
- Melaram, R.; López-Dueñas, B. Detection and Occurrence of Microcystins and Nodularins in Lake Manatee and Lake Washington Two Floridian Drinking Water Systems. Front. Water 2022, 4, 899572. [Google Scholar] [CrossRef]
- Melaram, R.; Newton, A.R.; Chafin, J. Microcystin Contamination and Toxicity: Implications for Agriculture and Public Health. Toxins 2022, 14, 350. [Google Scholar] [CrossRef]
- Mokoena, M.M. Microcystins in Water Containers Used in the Home: A Review of their Potential Health Effects. Ecotoxicol. Environ. Saf. 2024, 269, 115787. [Google Scholar] [CrossRef]
- World Health Organization. Legionellosis. 2022. Available online: https://www.who.int/news-room/fact-sheets/detail/legionellosis#:~:text=The%20bacteria%20live%20and%20grow,which%20develop%20in%20water%20systems (accessed on 14 August 2025).
- World Health Organization. Drinking-Water. 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/drinking-water (accessed on 26 June 2025).
- Ziemer, C.J.; Bonner, J.M.; Cole, D.; Vinje, J.; Constantini, V.; Goyal, S.; Gramer, M.; Mackie, R.; Meng, X.J.; Myers, G.; et al. Fate and Transport of Zoonotic, Bacterial, Viral, and Parasitic Pathogens during Swine Manure Treatment, Storage, and Land Application. J. Anim. Sci. 2010, 88, 84–94. [Google Scholar] [CrossRef]
- Smoguła, M.; Wesołowski, R.; Pawłowska, M.; Mila-Kierzenkowska, C. Influence of Selected Factors on the Survival Assessment and Detection of Giardia intestinalis DNA in Axenic Culture. Pathogens 2023, 12, 316. [Google Scholar] [CrossRef]
- Health Canada. Consultation on Escherichia coli in Drinking Water. Available online: https://www.canada.ca/en/health-canada/programs/consultation-e-coli-drinking-water/document.html#a4-2 (accessed on 14 August 2025).
- Baker-Austin, C.; Trinanes, J.; Gonzalez-Escalona, N.; Martinez-Urtaza, J. Non-Cholera Vibrios: The Microbial Barometer of Climate Change. Trends Microbiol. 2017, 25, 76–84. [Google Scholar] [CrossRef]
- Mahieddine, F.C.; Mathieu-Denoncourt, A.; Duperthuy, M. Temperature Influences Antimicrobial Resistance and Virulence of Vibrio parahaemolyticus Clinical Isolates from Quebec, Canada. Pathogens 2025, 14, 521. [Google Scholar] [CrossRef]
- Kristanti, R.A.; Hadibarata, T.; Syafrudin, M.; Yilmaz, M.; Abdullah, S. Microbiological Contaminants in Drinking Water: Current Status and Challenges. Water Air Soil Pollut. 2022, 233, 299. [Google Scholar] [CrossRef]
- Salvadori, M.I.; Sontrop, J.M.; Garg, A.X.; Moist, L.M.; Suri, R.S.; Clark, W.F. Epidemiological Association between Climate and Renal Disease: A Potential Role for Heat- and Drought-related Water Quality. Kidney Int. 2009, 76, 1139–1146. [Google Scholar] [CrossRef]
- Acosta-España, J.D.; Romero-Álvarez, D.; Luna, C.; Rodríguez-Morales, A.J. Infectious Disease Outbreaks in the Wake of Natural Flood Disasters: Global Patterns and Local Implications. Infez. Med. 2024, 32, 451–462. [Google Scholar] [CrossRef] [PubMed]
- Rath, S. Microbial Contamination of Drinking Water. In Water Pollution and Management Practices; Singh, A., Agrawal, M., Agrawal, S.B., Eds.; Springer: Singapore, 2021; pp. 1–17. [Google Scholar] [CrossRef]
- Chung The, H.; Bodhidatta, L.; Pham, D.T.; Mason, C.J.; Thanh, T.H.; Vinh, P.V.; Turner, P.; Hem, D.A.B.; Newton, P.N.; Phetsouvanh, R.; et al. Evolutionary Histories and Antimicrobial Resistance in Shigella flexneri and Shigella sonnei in Southeast Asia. Commun. Biol. 2021, 4, 353. [Google Scholar] [CrossRef]
- Mondino, S.; Schmidt, S.; Schmidt, S.; Rolando, M.; Escoll, P.; Gomez-Valero, L.; Buchrieser, C. Legionnaires’ Disease: State of the Art Knowledge of Pathogenesis Mechanisms of Legionella. Annu. Rev. Pathol. Mech. Dis. 2020, 15, 439–466. [Google Scholar] [CrossRef] [PubMed]
- Kunz, J.M.; Lawinger, H.; Miko, S.; Miko, S.; Gerdes, M.; Thuneibat, M.; Hannapel, E.; Roberts, V.A. Surveillance of Waterborne Disease Outbreaks Associated with Drinking Water—United States, 2015–2020. MMWR Surveill. Summ. 2024, 73, 1–23. [Google Scholar] [CrossRef]
- LeChevallier, M.W.; Prosser, T.; Stevens, M. Opportunistic Pathogens in Drinking Water Distribution Systems—A Review. Microorganisms 2024, 12, 916. [Google Scholar] [CrossRef] [PubMed]
- Franceschelli, A.; Bonadonna, L.; Cacciò, S.M.; Sannella, A.R.; Cintori, C.; Gargiulo, R.; Coccia, A.M.; Paradiso, R.; Iaconelli, M.; Briancesco, R.; et al. An Outbreak of Cryptosporidiosis associated with Drinking Water in North-Eastern Italy, August 2019: Microbiological and Environmental Investigations. Euro Surveill. 2022, 27, 2200038. [Google Scholar] [CrossRef]
- Wójcik, O.P.; Holt, J.; Kjerulf, A.; Müller, L.; Ethelberg, S.; Molbak, K. Personal Protective Equipment, Hygiene Behaviours and Occupational Risk of Illness after July 2011 Flood in Copenhagen, Denmark. Epidemiol. Infect. 2013, 141, 1756–1763. [Google Scholar] [CrossRef]
- Gertler, M.; Dürr, M.; Renner, P.; Poppert, S.; Askar, M.; Breidenbach, J.; Frank, C.; Preussel, K.; Schielke, A.; Werber, D.; et al. Outbreak of Cryptosporidium Hominis following River Flooding in the City of Halle (Saale), Germany, August 2013. BMC Infect. Dis. 2015, 15, 88. [Google Scholar] [CrossRef]
- Bratburd, J.R.; McLellan, S.L. Waterborne Diseases. In Climate Change and Public Health, 2nd ed.; Levy, B.S., Patz, J.A., Eds.; Oxford Academic: New York, NY, USA, 2024; pp. 133–152. [Google Scholar] [CrossRef]
- Marcheggiani, S.; Puccinelli, C.; Ciadamidaro, S.; Della Bella, V.; Carere, M.; Blasi, M.F.; Mancini, L. Risks of Water-Borne Disease Outbreaks after Extreme Events. Toxicol. Environ. Chem. 2010, 92, 593–599. [Google Scholar] [CrossRef]
- Mas-Coma, S.; Artigas, P.; Cuervo, P.F.; De Elías-Escribano, A.; Fantozzi, M.C.; Colangeli, G.; Córdoba, A.; Marquez-Guzman, D.J.; Mas-Bargues, C.; Borrás, C.; et al. Infectious Disease Risk after the October 2024 Flash Flood in Valencia, Spain: Disaster Evolution, Strategic Scenario Analysis, and Extrapolative Baseline for a One Health Assessment. One Health 2025, 21, 101093. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Drinking Water. Available online: https://environment.ec.europa.eu/topics/water/drinking-water_en (accessed on 15 July 2025).
- LeChevallier, M.W. Occurrence of culturable Legionella pneumophila in drinking water distribution systems. AWWA Water Sci. 2019, 1, e1139. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control (ECDC). Communicable Disease Threats Report, 3–9 August 2024, Week 32; ECDC: Stockholm, Sweden, 2024; Available online: https://www.ecdc.europa.eu/sites/default/files/documents/communicable-disease-threats-report-week-32-2024.pdf (accessed on 15 July 2025).
- European Centre for Disease Prevention and Control (ECDC). Surveillance Atlas of Infectious Diseases. Legionnaires’ Disease. Available online: https://atlas.ecdc.europa.eu/public/index.aspx?Dataset=27&HealthTopic=30 (accessed on 15 July 2025).
- European Centre for Disease Prevention and Control (ECDC). Rapid Risk Assessment. Increased Cryptosporidium Infections in the Netherland, United Kingdom and Germany in 2012; ECDC: Stockholm, Sweden, 14 November 2012; Available online: https://www.ecdc.europa.eu/sites/default/files/media/en/publications/Publications/cryptosporidium-infectionss-netherlands-united-kingdom-germany-risk-assessment.pdf (accessed on 16 July 2025).
- European Centre for Disease Prevention and Control (ECDC). Surveillance Atlas of Infectious Diseases. Cryptosporidiosis Disease. Available online: https://atlas.ecdc.europa.eu/?Dataset=27&HealthTopic=15&Indicator=891995&GeoResolution=2&TimeResolution=Year&StartTime=2007&EndTime=2023&CurrentTime=2023&Distribution=892005&DistributionRepresentation=B&TimeSeries=region&TimeSeriesRepresentation=T (accessed on 16 July 2025).
- European Centre for Disease Prevention and Control (ECDC). Cholera Worldwide Overview. Available online: https://www.ecdc.europa.eu/en/all-topics-z/cholera/surveillance-and-disease-data/cholera-monthly (accessed on 17 July 2025).
- European Centre for Disease Prevention and Control (ECDC). Surveillance Atlas of Infectious Diseases. Cholera Disease. Available online: https://atlas.ecdc.europa.eu/ (accessed on 17 July 2025).
- European Centre for Disease Prevention and Control (ECDC). Surveillance Atlas of Infectious Diseases. Hepatitis A Disease. Available online: https://atlas.ecdc.europa.eu/ (accessed on 17 July 2025).
Microorganism | Source | Route of Exposure | Diseases | References |
---|---|---|---|---|
Escherichia coli (O157, Shiga toxin) | Faecal contamination from humans or animals | Ingestion | Gastroenteritis, haemolytic uremic syndrome, urinary tract infections, meningitis, septicaemia | [11,16,80,81] |
Salmonella | Faecal contamination from humans or animals | Ingestion | Diarrhoea, abdominal cramps, fever, nausea, vomiting, and severe dehydration | [11,80,82,83] |
Shigella | Faecal contamination from humans | Ingestion | Intestinal diseases, including bacillary dysentery | [11,80,84] |
Vibrio cholerae | Faecal contamination from humans or animals | Ingestion | Cholera (diarrhoea, leg cramps, vomiting, dehydration) | [11,16,79,80,83] |
Legionella pneumophila | Member of natural flora of many freshwater environments. Survives in biofilms. | Inhalation aerosol | Pneumonic illness (Legionnaires’ disease, Pontiac fever) | [11,73,85,86] |
Campylobacter | Wild and domestic animal are reservoirs | Ingestion, dermal exposure | Diarrhoea, abdominal pain, fever, vomiting. Reactive arthritis, meningitis, and Guillain–Barré syndrome. | [11,81] |
Giardia | Animals and humans excrete cysts into the environment | Ingestion, dermal exposure | Diarrhoea, abdominal cramps, bloating, tiredness trouble absorbing nutrients | [11,75,80,83] |
Cryptosporidium | Animals and humans excrete oocysts into the environment | Ingestion, dermal exposure | Self-limiting diarrhoea, nausea, vomiting | [11,82,83,87,88] |
Helminths | Faecal contamination from humans or animals | Ingestion, dermal exposure | Abdominal swelling and pain, nausea, vomiting, diarrhoea, a dry cough, and skin rashes | [11,82,87] |
Hepatitis A | Faecal contamination from infected humans | Ingestion | Hepatitis A (severe damage to liver cells) | [11,80] |
Adenovirus | Faecal contamination | Ingestion | Pharyngitis, conjunctivitis | [11] |
Hepatitis E | Human waste and infected humans | Ingestion | Hepatitis (severe in pregnant women) | [11,80] |
Cyanotoxin | HABs-cyanobacteria | Ingestion, dermal exposure | Skin irritation, gastrointestinal illness | [47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Gimeno, A.; Almendro-Candel, M.B.; Lucas, I.G.; Rodríguez-Espinosa, T.; Sala-Sala, V.; Jordán, M.M.; Zorpas, A.A.; Navarro-Pedreño, J. A Review of the Impact of Climate Change on the Presence of Microorganisms in Drinking Water. Sci 2025, 7, 132. https://doi.org/10.3390/sci7030132
Pérez-Gimeno A, Almendro-Candel MB, Lucas IG, Rodríguez-Espinosa T, Sala-Sala V, Jordán MM, Zorpas AA, Navarro-Pedreño J. A Review of the Impact of Climate Change on the Presence of Microorganisms in Drinking Water. Sci. 2025; 7(3):132. https://doi.org/10.3390/sci7030132
Chicago/Turabian StylePérez-Gimeno, Ana, María Belén Almendro-Candel, Ignacio Gómez Lucas, Teresa Rodríguez-Espinosa, Víctor Sala-Sala, Manuel M. Jordán, Antonis A. Zorpas, and Jose Navarro-Pedreño. 2025. "A Review of the Impact of Climate Change on the Presence of Microorganisms in Drinking Water" Sci 7, no. 3: 132. https://doi.org/10.3390/sci7030132
APA StylePérez-Gimeno, A., Almendro-Candel, M. B., Lucas, I. G., Rodríguez-Espinosa, T., Sala-Sala, V., Jordán, M. M., Zorpas, A. A., & Navarro-Pedreño, J. (2025). A Review of the Impact of Climate Change on the Presence of Microorganisms in Drinking Water. Sci, 7(3), 132. https://doi.org/10.3390/sci7030132