Chemical Composition in Kernels of Ten Grafted Pecan (Carya illinoensis) Varieties in Southeastern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Plant Materials
2.3. Proximate Composition
2.4. Fatty Acid Composition
2.5. Statistical Analysis
3. Results
3.1. Fruit Traits of Different Varieties
3.2. Content of Crude Fat, Protein, Soluble Sugar and Tannin of Different Varieties
3.3. Composition of Fatty Acid of Different Varieties
4. Discussion
4.1. Comparison and Screening among 10 Varieties
4.2. Fatty Acid Composition and Evaluation for Edible Oil
4.3. Potential Productivity of Pecan
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, R.Y. China’s grain and oil production and sales in 2020. China Oils Fats 2021, 46, 1–5. [Google Scholar] [CrossRef]
- Chen, Y.Z.; Deng, S.H.; Chen, L.S.; Ma, L.; He, H.; Wang, X.N.; Peng, S.F.; Liu, C.X.; Wang, R.; Xu, Y.M.; et al. A new view on the development of oil tea camellia industry. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2020, 44, 1–10. [Google Scholar]
- Wang, K.L.; Yao, X.H. A new Camellia oleifera cultivar ‘Yalin ZJ04’. Acta Hortic. Sin. 2020, 47, 3147. [Google Scholar]
- Han, C.M.; Sun, C.; Liang, Y.; Qiao, Y.H.; Wang, C.X. A walnut cultivar ‘Lumian 1’. Acta Hortic. Sin. 2020, 47, 2921. [Google Scholar]
- Shi, M.H.; Liu, X.; Liu, J. A new walnut cultivar ‘Jinli’. Acta Hortic. Sin. 2020, 47, 2919. [Google Scholar]
- Chang, J.; Yang, S.P.; Yao, X.H.; Wang, K.L. A comparative study on nut characteristics of pecan. For. Res. 2008, 21, 44–48. [Google Scholar]
- Li, C.; Yao, X.H.; Wang, K.L.; Fang, M.Y.; Gu, X.R.; Shao, W.Z. A comparative study on the fruit and nut characters of 12 pecan (Carya illinoemis) clones and their yield. J. Southwest Univ. (Nat. Sci. Ed.) 2011, 33, 40–44. [Google Scholar]
- Chen, F.; Yao, X.H.; Wang, K.L.; Ren, H.D.; Chang, J. Comparative studies on fruit and nut characters of 33 pecan (Carya illinoemis) clones and their yields. J. Cent. South Univ. For. Technol. 2016, 36, 40–45. [Google Scholar]
- Zhang, H.H.; Wu, C.E.; Li, Y.R.; Fan, G.J.; Li, T.T.; Wang, J.H.; Liang, Y.W.; Zhai, M. Comparison of nutritive compositions in different cultivars of pecans. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2014, 38, 55–58. [Google Scholar]
- Yu, M.; Xu, H.H.; Wang, Z.J.; Si, J.P.; Zhang, A.L. Analysis of morphology and main nutrient components of 6 pecan varieties. J. Chin. Cereals Oils Assoc. 2013, 28, 74–77. [Google Scholar]
- Jia, X.D.; Luo, H.T.; Zhai, M.; Qian, M.H.; Liu, Y.Z.; Li, Y.R.; Guo, Z.R.; Qiao, Y.S. Dynamic changes and correlation analysis of nutrient contents in ‘Pawnee’ pecan (Carya illinoinensis). J. Fruit Sci. 2016, 33, 1120–1130. [Google Scholar]
- Jia, X.D.; Luo, H.T.; Zhai, M.; Li, Y.R.; Guo, Z.R.; Qiao, Y.S. Dynamic analysis of pecan (Carya illinoensis ‘Pawnee’) nut development. J. Fruit Sci. 2015, 32, 247–253. [Google Scholar]
- Chang, J.; Ren, H.D.; Yao, X.H.; Yang, S.P.; Wang, K.L. Analysis of dynamic changes of oil and mineral nutritions in pecan at the late stage of fruit development. For. Res. 2019, 32, 122–129. [Google Scholar]
- Cheng, H.; Li, J.; Yu, M.; Xu, H.H.; Zhang, A.L.; Si, J.P.; Wang, Z.J. Analysis of morphological characters of 29 pecan (Carya illinoinensis). Mol. Plant Breed. 2016, 14, 1031–1036. [Google Scholar]
- Liu, G.Q.; Zhu, H.J.; Zang, X.; Sheng, J.Y.; Zhou, B.B. Maoshan 1, a new pecan cultivar. J. Fruit Sci. 2011, 28, 1132–1133. [Google Scholar]
- Ranalli, N.; Andrés, S.C.; Califano, A.N. Dulce de leche-like product enriched with emulsified pecan oil: Assessment of physicochemical characteristics, quality attributes, and shelf-life. Eur. J. Lipid Ence Technol. 2017, 119, 1600377. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, J.J.; Li, Y.; Zhao, X.Y.; Wang, Y.C. Anti-Fatigue activity of pecan oil in mice. Adv. Mater. Res. 2013, 2527, 1524–1528. [Google Scholar] [CrossRef]
- Kramadibrata, M.A.M.; Nurjanah, S.; Muhaemin, M.; Mardawati, E.; Herwanto, T.; Handarto; Rosalinda, S.N.; Darajat, W.; Putri, F.E. Selecting Biofuel Obtained from Sunan Pecan Oil for Diesel Engine Fuel. Agric. Sci. Technol. A 2019, 9, 323–328. [Google Scholar]
- Jamieson, G.S.; Gertler, S.I. Pecan oil. Oil Fat Ind. 1929, 6, 23–24. [Google Scholar] [CrossRef]
- Toro-Vazquez, J.F.; Charó-Alonso, M.A.; Pérez-Briceo, F. Fatty acid composition and its relationship with physicochemical properties of pecan (Carya illinoensis) oil. J. Am. Oil Chem. Soc. 1999, 76, 957–965. [Google Scholar] [CrossRef]
- Su, M.H.; Ming, C.S.; Lin, K.H. Chemical composition of seed oils in native Taiwanese Camellia species. Food Chem. 2014, 156, 369–373. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Ren, H.D.; Yao, X.H.; Yang, S.P.; Zhang, X.D.; Zhang, C.C.; Wang, K.L. A comprehensive analysis of nutritional component and fatty acid composition of 41 pecan varieties. J. Southwest Univ. (Nat. Sci. Ed.) 2021, 43, 20–30. [Google Scholar]
- Soxhlet, F. Die gewichtsanalytische Bestimmung des Milchfettes. Dingier’s Polvtechnisches J. 1879, 232, 461–465. [Google Scholar]
- Kjeldahl, J. A new method for the determination of nitrogen in organic matter. Z. Anal. Chem. 1883, 22, 366–382. [Google Scholar] [CrossRef] [Green Version]
- You, L.L. Research on Determination of Soluble Sugar in Cereals and Legumes by Shaffer-Somogyi; East University of Heilongjiang: Heilongjiang, China, 2015. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substratesand antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Sahari, M.A.; Ataii, D.; Hamedi, M. Characteristics of tea seed oil in comparison with sunflower and olive oils and its effect as a natural antioxidant. J. Am. Oil Chem. Soc. 2004, 81, 585–588. [Google Scholar] [CrossRef]
- Zhang, G.F.; Xie, S.X.; Xue, H. Analysis and Determination of the Nutritive Composition in the Camellia oleifera Able. J. Gansu Sci. 2011, 23, 48–51. [Google Scholar]
- Shi, J.; Liu, X.Y. Study on Picking Period of Camellia Oleifera for Nutrition Change. Food Mach. 2014, 30, 71–74. [Google Scholar]
- Deng, J.L.; Liu, L.; Liu, Q.; Xiang, C.R.; Ding, C.B.; Li, T.; Yang, Z.S. Effect of Ripening Stages on the Main Compounds of Olive Fresh Fruit. J. Chin. Cereals Oils Assoc. 2016, 31, 73–77. [Google Scholar]
- Li, M.; Liu, Y.; Sun, C.; Meng, Y.N.; Yang, K.Q.; Hou, L.Q.; Wang, J.Y. Research advance about nutrients and medicinal value of walnut. J. Chin. Cereals Oils Assoc. 2009, 24, 166–170. [Google Scholar]
- Xu, Y.M.; Gan, X.M.; Cao, Y.L.; Gu, S.Y.; Liu, F.S. Studies on combining ability of major nutritional quality characters and agronomic characters in peanut. Sci. Agric. Sin. 1995, 28, 15–23. [Google Scholar]
- Zhang, W.L. Supply and demand situation and prospect since the 13th Five-Year Plan of China’s oilseeds and edible vegetable oil. Agric. Outlook 2018, 14, 4–8, 19. [Google Scholar]
- Liu, Y.; Liu, X.Q.; Liang, Y.H.; Feng, W.H.; Yang, L.X.; Li, C.; Wang, Z.M. Comparison of fatty acid compositions and antioxidant activities of eleven vegetable oils. China Oils Fats 2020, 45, 52–56, 61. [Google Scholar]
- Zheng, Y.W.; Wu, S.T.; Shen, D.Y.; Mo, R.H.; Tang, F.B.; Liu, Y.H. Comparison of the quality of ten walnut oils. China Oils Fats 2020, 45, 47–51. [Google Scholar]
- Wang, J.; Li, X.; Gao, L. Study on extraction process of tannins from Semen Cuscutae and their anti-papilloma activity. Afr. J. Tradit. Complementary Altern. Med. 2013, 10, 469–474. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; Zhou, Y.Z. Influences of feeding teaseed oil, corn oil and fifish oil on immune status in mice. Acta Nutr. Sin. 1996, 4, 412–417. [Google Scholar]
- Lee, J.Y.; Sohn, K.H.; Rhee, S.H.; Hwang, D. Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Toll-like receptor 4. J. Biol. Chem. 2001, 276, 16683–16689. [Google Scholar] [CrossRef] [Green Version]
- Vafeiadou, K.; Weech, M.; Altowaijri, H.; Todd, S.; Yaqoob, P.; Jackson, K.G.; Lovegrove, J.A. Replacement of saturated with unsaturated fats had no impact on vascular function but beneficial effects on lipid biomarkers, E-selectin, and blood pressure: Results from the randomized, controlled Dietary Intervention and VAScular function (DIVAS) study. Am. J. Clin. Nutr. 2015, 102, 40–48. [Google Scholar] [CrossRef]
- Wu, X.H.; Huang, Y.F.; Xie, Z.F. Health functions and prospective of Camellia oil. Food Sci. Technol. 2015, 8, 94–96. [Google Scholar]
- Bassaganya-Riera, J.; Hontecillas, R.; Beitz, D.C. Colonic anti-inflammatory mechanisms of conjugated linoleic acid. Clin. Nutr. 2002, 21, 451–459. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Banu, J.; Rahman, M.; Causey, J.; Fernandes, G. Biological effects of conjugated linoleic acids in health and disease. J. Nutr. Biochem. 2006, 17, 789–810. [Google Scholar] [CrossRef] [PubMed]
- Hofmanová, J.; Ciganek, M.; Slavík, J.; Kozubík, A.; Stixová, L.; Vaculová, A.; Dusek, L.; Machala, M. Lipid alterations in human colon epithelial cells induced to differentiation and/or apoptosis by butyrate and polyunsaturated fatty acids. J. Nutr. Biochem. 2012, 23, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Composition Based on Etyl Ester of Linoleic Acid and Triethyl Ester of Citric Acid for Topical Use in the Treatment of Seborrhea and Acne. Available online: https://www.freepatentsonline.com/y2003/0118623.html. (accessed on 1 October 2021).
- Rodrigues, H.G.; Vinolo, M.A.R.; Magdalon, J.; Vitzel, K.; Nachbar, R.T.; Pessoa, A.F.M.; Dos Santos, M.F.; Hatanaka, E.; Calder, P.C.; Curi, R. Oral Administration of Oleic or Linoleic Acid Accelerates the Inflammatory Phase of Wound Healing. J. Investig. Dermatol. 2012, 132, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Zou, W.L.; Fan, Z.Y.; Zhang, Y.; Xi, X.L. Cultivation and Selection of Pecan ‘Cardo’. China Fruits 2018, 2, 54–56, 109. [Google Scholar]
- Garg, P.; Pejaver, R.K.; Sukhija, M.; Ahuja, A. Role of DHA, ARA, & phospholipids in brain development: An Indian perspective. Clin. Epidemiol. Glob. Health 2017, 5, 155–162. [Google Scholar]
- Wu, J.H.Y.; Renata, M.; Fumiaki, I.; Pan, A.; Biggs, M.L.; Owais, A.; Luc, D.; Frank, B.H.; Dariush, M. Omega-3 fatty acids and incident type 2 diabetes: A systematic review and meta-analysis. Br. J. Nutr. 2021, 107, S214–S227. [Google Scholar] [CrossRef]
- Wang, X.Y.; Li, J.S. The clinical study of ω-3 polyunsaturaed fatty acids on different diseases. Parenter. Enter. Nutr. 2007, 3, 177–182. [Google Scholar]
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef]
- Sakayori, N.; Katakura, M.; Hamazaki, K.; Higuchi, O.; Fujii, K.; Fukabori, R.; Iguchi, Y.; Setogawa, S.; Takao, K.; Miyazawa, T.; et al. Maternal dietary imbalance between omega-6 and omega-3 fatty acids triggers the offspring’s overeating in mice. Commun. Biol. 2020, 3, 473. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The Importance of the Omega-6/Omega-3 Fatty Acid Ratio in Cardiovascular Disease and Other Chronic Diseases. Exp. Biol. Med. 2008, 233, 674–688. [Google Scholar] [CrossRef]
- De Sousa, T.M.; Dos Santos, L.C. Dietary fatty acids, omega-6/omega-3 ratio and cholesterol intake associated with depressive symptoms in low-risk pregnancy. Nutr. Neuroence 2022, 25, 642–647. [Google Scholar] [CrossRef] [PubMed]
- Dorota, D.; Pawel, Z. Total Dietary Fats, Fatty Acids, and Omega-3/Omega-6 Ratio as Risk Factors of Breast Cancer in the Polish Population—A Case-Control Study. In Vivo 2020, 34, 423–431. [Google Scholar]
- Zhao, S.L.; Zhao, Y.P.; Wang, H.X. Physical/Chemieal characteristics and fatty acid composition of walnut oil. J. Chin. Cereals Oils Assoc. 2008, 23, 85–88. [Google Scholar]
- Wu, X. Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. J. Agric. Food Chem. 2004, 52, 4026–4037. [Google Scholar] [CrossRef]
- Sadoudi, R.; Ammouche, A.; Ali, A.D. Thermal oxidative alteration of sunflower oil. Afr. J. Food Sci. 2014, 8, 116–121. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Alvarez, O.; Hernández-Rodríguez, A.O.; Jacobo-Cuellar, J.L.; Ávila-Quezada, G.; Morales-Maldonado, E.; Parra-Quezada, R.Á.; Robles-Hernandez, L.; Ojeda-Barrios, D.L. Nitrogen fertilization in pecan and its effect on leaf nutrient concentration, yield and nut quality. Rev. Chapingo Ser. Hortic. 2020, 26, 163–173. [Google Scholar] [CrossRef]
- Yu, C.L.; Wang, Z.J.; Xia, G.H.; Huang, J.Q.; Liu, L. Fat content and fatty acid composition of ten Carya illinoensis cultivars. J. Zhejiang A F Univ. 2013, 30, 714–718. [Google Scholar]
- Mi, P.; Xu, B.; Pan, X.J. Chemical properties of plantation wood in Carya illinoensis. J. Northeast. For. Univ. 2014, 42, 79–82. [Google Scholar]
Trait | Green-Fruit Weight (g) | Nut Weight (g) | Kernel Weight (g) | Nut Percentage (%) | Kernel Percentage (%) | Oil Percentage (%) |
---|---|---|---|---|---|---|
104 | 36.55 ± 0.11 A | 12.64 ± 0.23 A | 6.94 ± 0.19 A | 34.80 ± 0.53 AB | 54.33 ± 0.59 AB | 38.99 ± 0.78 AB |
11 | 23.96 ± 1.31 CD | 7.86 ± 0.33 B | 3.68 ± 0.14 E | 33.03 ± 0.59 BC | 46.81 ± 1.17 CD | 31.57 ± 1.06 D |
1 | 29.16 ± 0.88 BCD | 11.93 ± 0.32 A | 6.31 ± 0.33 AB | 41.16 ± 2.19 A | 52.86 ± 1.43 ABC | 36.93 ± 1.22 ABC |
20 | 25.54 ± 0.74 BCD | 8.44 ± 0.21 B | 3.84 ± 0.14 E | 33.23 ± 1.32 BC | 45.40 ± 0.57 D | 31.90 ± 0.23 CD |
21 | 23.74 ± 2.93 D | 8.03 ± 1.02 B | 3.81 ± 0.41 E | 33.96 ± 1.18 AB | 47.58 ± 1.46 BCD | 32.48 ± 1.24 BCD |
28 | 31.21 ± 5.98 AB | 12.80 ± 1.77 A | 7.08 ± 0.71 A | 41.53 ± 2.37 A | 55.33 ± 2.21 A | 40.32 ± 0.69 A |
29 | 26.10 ± 4.36 BCD | 10.64 ± 1.12 A | 5.48 ± 0.66 BCD | 41.67 ± 3.39 A | 51.62 ± 0.79 ABCD | 35.79 ± 1.44 ABCD |
32 | 29.11 ± 3.36 BCD | 12.08 ± 1.43 A | 5.73 ± 0.17 BC | 41.67 ± 0.13 A | 47.98 ± 5.81 BCD | 35.02 ± 1.06 BCD |
34 | 30.76 ± 2.42 ABC | 8.15 ± 0.44 B | 4.52 ± 0.26 DE | 26.78 ± 0.73 C | 55.59 ± 0.29 A | 38.59 ± 0.48 AB |
35 | 28.79 ± 0.16 BCD | 10.72 ± 0.37 A | 5.09 ± 0.61 CD | 37.35 ± 1.25 AB | 47.47 ± 4.16 BCD | 32.20 ± 3.24 BCD |
Average | 28.49 | 10.33 | 5.25 | 36.52 | 50.5 | 35.38 |
CV(%) | 13.64 | 19.63 | 24.37 | 13.79 | 7.65 | 9.21 |
F-valued | 6.73 ** | 14.63 ** | 22.91 ** | 10.23 ** | 6.16 ** | 6.31 ** |
Composition | Crude Fat (%) | Protein (mg·g−1) | Soluble Sugar (mg·g−1) | Tannin (mg·g−1) |
---|---|---|---|---|
104 | 71.77 ± 2.02 A | 54.30 ± 0. 60 B | 10.7 ± 1.30 B | 9.23 ± 0.75 A |
11 | 67.44 ± 3.05 A | 80.03 ± 5.67 A | 11.8 ± 0.05 B | 5.51 ± 0.09 C |
1 | 69.87 ± 1.17 A | 54.80 ± 6.20 B | 5.6 ± 0.05 C | 5.33 ± 0.30 C |
20 | 70.27 ± 1.56 A | 84.33 ± 6.33 A | 10.7 ± 0.17 B | 5.01 ± 0.52 CD |
21 | 68.27 ± 3.75 A | 83.70 ± 13.52 A | 9.7 ± 0.08 BC | 4.69 ± 0.40 CD |
28 | 72.88 ± 1.41 A | 56.40 ± 1.51 B | 5.9 ± 0.13 C | 7.92 ± 0.79 B |
29 | 69.33 ± 6.40 A | 53.33 ± 3.17 B | 6.0 ± 0.05 C | 3.81 ± 0.52 D |
32 | 72.99 ± 0.91 A | 60.13 ± 13.09 B | 9.2 ± 0.29 BC | 7.45 ± 0.51 B |
34 | 69.42 ± 0.50 A | 79.95 ± 1.05 A | 9.6 ± 0.21 BC | 5.04 ± 0.12 CD |
35 | 67.83 ± 4.94 A | 68.00 ± 3.80 AB | 27.4 ± 0.41 A | 6.70 ± 0.16 B |
Average | 70.01 | 67.5 | 10.7 | 6.07 |
CV(%) | 2.84 | 19.58 | 59.16 | 27.86 |
F-valued | 1.14 | 10.80 ** | 36.12 ** | 33.72 ** |
Camellia oleifera1 | 53.71 | 64.5 | 4.2 | - |
Olive 2 | Oil percentage: 14.25% | 2.25 | - | - |
Walnut 3 | 68.83 | 155 | 22.9 | - |
Peanut 4 | 55.4 | 242 | 29.3 | - |
Soybean 5 | 21.5 | 449 | 50.6 | - |
Composition (%) | PA (C16:0) | SA (C18:0) | AA (C20:0) | OA (C18:1) | LA (C18:2) | LNA (C18:3) | Cis-11-Eicosenoic Acid (C20:1) | MFA | PFA | UFA | SFA |
---|---|---|---|---|---|---|---|---|---|---|---|
104 | 5.85 ± 0.15 AB | 2.25 ± 0.35 BC | - | 66.85 ± 1.65 D | 23.65 ± 1.75 A | 1.10 ± 0.10 AB | 0.25 ± 0.05 A | 67.10 ± 1.60 C | 24.75 ± 1.85 A | 91.85 ± 0.25 AB | 8.10 ± 0.20 AB |
11 | 5.87 ± 0.23 AB | 2.40 ± 0.20 ABC | 0.10 ± 0.00 A | 66.97 ± 0.38 D | 23.23 ± 0.21 A | 1.17 ± 0.06 A | 0.20 ± 0.00 A | 67.17 ± 0.38 C | 24.40 ± 0.20 A | 91.57 ± 0.25 B | 8.37 ± 0.31 A |
1 | 5.60 ± 0.20 ABC | 2.43 ± 0.15 ABC | 0.07 ± 0.06 AB | 76.33 ± 0.55 A | 14.57 ± 0.51 C | 0.77 ± 0.06 D | 0.30 ± 0.00 A | 76.63 ± 0.55 A | 15.33 ± 0.47 C | 91.97 ± 0.38 AB | 8.10 ± 0.35 AB |
20 | 5.93 ± 0.06 AB | 2.43 ± 0.06 ABC | 0.10 ± 0.00 A | 68.40 ± 2.92 CD | 21.73 ± 2.84 AB | 1.10 ± 0.17 AB | 0.27 ± 0.06 A | 68.67 ± 2.87 BC | 22.83 ± 2.97 AB | 91.50 ± 0.10 B | 8.47 ± 0.06 A |
21 | 5.60 ± 0.20 ABC | 2.27 ± 0.15 BC | 0.10 ± 0.00 A | 69.77 ± 1.25 BCD | 20.87 ± 1.27 AB | 1.10 ± 0.10 AB | 0.20 ± 0.00 A | 69.97 ± 1.25 BC | 21.97 ± 1.23 AB | 91.94 ± 0.32 AB | 7.97 ± 0.32 AB |
28 | 5.77 ± 0.23 AB | 2.60 ± 0.17 AB | 0.07 ± 0.06 AB | 73.27 ± 3.65 ABC | 17.27 ± 3.37 BC | 0.80 ± 0.10 D | 0.23 ± 0.06 A | 73.50 ± 3.67 AB | 18.07 ± 3.46 BC | 91.57 ± 0.25 B | 8.43 ± 0.23 A |
29 | 6.07 ± 0.15 A | 2.50 ± 0.17 ABC | - | 72.27 ± 0.91 ABC | 18.07 ± 0.84 BC | 0.87 ± 0.06 CD | 0.30 ± 0.00 A | 72.57 ± 0.91 AB | 18.93 ± 0.81 BC | 91.50 ± 0.17 B | 8.57 ± 0.21 A |
32 | 6.00 ± 0.35 AB | 2.10 ± 0.00 BC | - | 69.37 ± 1.96 CD | 21.40 ± 2.00 AB | 0.93 ± 0.06 BC D | 0.27 ± 0.06 A | 69.63 ± 2.00 BC | 22.33 ± 2.04 AB | 91.96 ± 0.29 AB | 8.10 ± 0.35 AB |
34 | 5.45 ± 0.25 BC | 2.00 ± 0.10 C | - | 72.30 ± 0.20 ABC | 19.00 ± 0.50 ABC | 1.05 ± 0.05 ABC | 0.23 ± 0.06 A | 72.53 ± 0.15 AB | 20.05 ± 0.55 ABC | 92.58 ± 0.40 A | 7.45 ± 0.35 B |
35 | 5.15 ± 0.15 C | 2.85 ± 0.35 A | 0.10 ± 0.00 A | 74.65 ± 2.25 AB | 16.05 ± 1.65 C | 0.85 ± 0.05 CD | 0.20 ± 0.00 A | 74.85 ± 2.25 A | 16.90 ± 1.70 C | 91.75 ± 0.55 AB | 8.10 ± 0.50 AB |
Average | 5.73 | 2.38 | 0.05 | 70.02 | 19.58 | 0.97 | 0.25 | 71.26 | 20.56 | 91.82 | 8.17 |
CV(%) | 4.91 | 10.3 | 89.36 | 4.57 | 15.7 | 15.02 | 15.73 | 4.56 | 15.6 | 0.36 | 3.94 |
F-valued | 5.23 ** | 4.89 ** | 9.68 ** | 8.24 ** | 8.35 ** | 8.74 ** | 2.95 * | 8.27 ** | 8.55 ** | 2.98 ** | 3.10 * |
Camellia oleifera1 | 11.92 | 2.95 | - | 83.19 | 0.08 | 0.45 | - | 84.43 | 0.53 | 84.96 | 15.04 |
Olive 1 | 13.5 | 4.46 | - | 72.71 | 6.07 | 0.72 | - | 74.54 | 6.79 | 81.33 | 18.66 |
Walnut 2 | 6.23 | 2.57 | - | 23.39 | 51.34 | 9.89 | - | 23.65 | 65.58 | 89.95 | 10.05 |
Peanut 1 | 12.6 | 5.14 | - | 42.24 | 31.37 | 0.11 | - | 43.42 | 31.48 | 74.9 | 25.09 |
Soybean 1 | 12.45 | 4.91 | - | 26.38 | 47.4 | 6.95 | - | 26.82 | 54.35 | 81.17 | 18.82 |
Canola 1 | 4.82 | 2.1 | - | 48.68 | 17.92 | 8.67 | - | 64.82 | 26.78 | 91.6 | 8.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Chang, J.; Yao, X.; Wang, J.; Zhang, J.; Yang, Y.; Yang, S.; Wang, K.; Ren, H. Chemical Composition in Kernels of Ten Grafted Pecan (Carya illinoensis) Varieties in Southeastern China. Sci 2022, 4, 25. https://doi.org/10.3390/sci4020025
Zhang X, Chang J, Yao X, Wang J, Zhang J, Yang Y, Yang S, Wang K, Ren H. Chemical Composition in Kernels of Ten Grafted Pecan (Carya illinoensis) Varieties in Southeastern China. Sci. 2022; 4(2):25. https://doi.org/10.3390/sci4020025
Chicago/Turabian StyleZhang, Xiaodan, Jun Chang, Xiaohua Yao, Jingru Wang, Jiatian Zhang, Yang Yang, Shuiping Yang, Kailiang Wang, and Huadong Ren. 2022. "Chemical Composition in Kernels of Ten Grafted Pecan (Carya illinoensis) Varieties in Southeastern China" Sci 4, no. 2: 25. https://doi.org/10.3390/sci4020025
APA StyleZhang, X., Chang, J., Yao, X., Wang, J., Zhang, J., Yang, Y., Yang, S., Wang, K., & Ren, H. (2022). Chemical Composition in Kernels of Ten Grafted Pecan (Carya illinoensis) Varieties in Southeastern China. Sci, 4(2), 25. https://doi.org/10.3390/sci4020025