Imbibition, Germination, and Early Seedling Growth Responses of Light Purple and Yellow Seeds of Red Clover to Distilled Water, Sodium Chloride, and Nutrient Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Imbibition Experiment
2.3. Germination Experiment
2.4. Seedling Growth Experiment
2.5. Data Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Characteristic | Parameters | Purple Morph | Yellow Morph |
---|---|---|---|
Seed mass (mg) | Range | 0.6–18.0 | 1.3–2.8 |
Mean ± SE | 2.1 ± 0.17 | 1.7 ± 0.03 | |
Median | 1.8 | 1.7 | |
Seed volume (mm3) | Range | 3.000–10.243 | 3.040–9.956 |
Linear dimensions (mm) | 3.22 × 2.17 × 0.82–4.27 × 3.85 × 1.19 | 2.87 × 2.38 × 0.85–4.90 × 2.94 × 1.32 | |
Mean ± SE | 6.793 ± 0.131 | 6.405 ± 0.138 | |
Median | 6.887 | 6.244 | |
Seed density | Range | 0.186–2.369 | 0.181–0.428 |
Mean ± SE | 0.302 ± 0.021 | 0.279 ± 0.004 | |
Median | 0.281 | 0.275 | |
Seed sphericity | Range | 0.081–0.114 | 0.069–0.116 |
Mean ± SE | 0.098 ± 0.001 | 0.096 ± 0.001 | |
Median | 0.098 | 0.097 |
References
- Riday, H. Progress made in improving red clover (Trifolium pratense L.) through breeding. Int. J. Plant Breed. 2010, 4, 22–29. [Google Scholar]
- Taylor, N.L.; Quesenberry, K.H. Red Clover Science; Springer Science+Business Media: Dordrecht, The Netherlands, 1996. [Google Scholar]
- Riday, H.; Casler, M.; Crooks, A.; Wood, T. Persistence of grazed red clover varieties. Grass Clipp. 2007, 2, 3–8. [Google Scholar]
- Brown, E.; Hillman, F.H. Seed of Red Clover and its Impurities; U.S. Department of Agriculture: Washington, DC, USA, 1906.
- Nijdam, F.E. Kruisingen met Trifolium Pratense L. Genetica 1932, 14, 161–279. [Google Scholar] [CrossRef]
- Bortnem, R.; Boe, A. Color index for red clover seed. Crop Sci. 2003, 43, 2279–2283. [Google Scholar] [CrossRef]
- Atis, I.; Atak, M.; Can, E.; Mavi, K. Seed coat color effects on seed quality and salt tolerance of red clover (Trifolium pratense). Int. J. Agric. Biol. 2011, 13, 363–368. [Google Scholar]
- Gernert, W.R. Seed color in red clover. Proc. Am. Soc. Agron. 1912, 4, 84–90. [Google Scholar] [CrossRef]
- Imbert, E. Ecological consequences and ontogeny of seed heteromorphism. Perspect. Plant Ecol. Evol. Syst. 2002, 5, 13–36. [Google Scholar] [CrossRef]
- Williams, J.T.; Harper, J.L. Seed polymorphism and germination. I. The influence of nitrates and low temperatures on the germination of Chenopodium album. Weed Res. 1965, 5, 141–150. [Google Scholar] [CrossRef]
- Matilla, A.; Gallardo, M.; Puga-Hermida, M.I. Structural, physiological and molecular aspects of heterogeneity in seeds: A review. Seed Sci. Res. 2005, 15, 63–76. [Google Scholar] [CrossRef]
- Kitajima, K.; Fenner, M. Ecology of seedling regeneration. In Seeds. The Ecology of Regeneration in Plant Communities, 2nd ed.; Fenner, M., Ed.; CABI Publishing: Wallingford, UK, 2000; pp. 331–359. [Google Scholar]
- Fenner, M.; Thompson, K. The Ecology of Seeds; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Bewley, J.D.; Black, M. Seeds. Physiology of Development and Germination, 2nd ed.; Plenum Press: New York, NY, USA, 1994. [Google Scholar]
- Pereira, I.P.; Dias, A.S.; Dias, L.S. Responses of germination and early growth of scorzonera (Scorzonera hispanica L.) to pH, mineral deficiencies and growth substrates. Bulgarian J. Agric. Sci. 2014, 20, 1195–1201. [Google Scholar]
- Barbosa, P.; Faria, J.M.S.; Mendes, M.D.; Dias, L.S.; Tinoco, M.T.; Barroso, J.G.; Pedro, L.G.; Figueiredo, A.C.; Mota, M. Bioassays against pinewood nematode: Assessment of a suitable dilution agent and screening for bioactive essential oils. Molecules 2012, 14, 12312–12329. [Google Scholar] [CrossRef] [PubMed]
- Weibull, W. A statistical distribution function of wide applicability. J. Appl. Mech. 1951, 18, 293–297. [Google Scholar]
- Marquardt, D.W. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431–441. [Google Scholar] [CrossRef]
- Dubey, S.D. Normal and Weibull distributions. Naval Res. Logist. Quart. 1967, 14, 69–79. [Google Scholar] [CrossRef]
- Bonner, F.T.; Dell, T.R. The Weibull function: A new method of comparing seed vigor. J. Seed Technol. 1976, 1, 96–103. [Google Scholar]
- Brown, R.F.; Mayer, D.G. Representing cumulative germination. 2. The use of the Weibull function and other empirically derived curves. Ann. Bot. 1988, 61, 127–138. [Google Scholar] [CrossRef]
- Dias, L.S. Describing phytotoxic effects on cumulative germination. J. Chem. Ecol. 2001, 27, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R.A. Statistical Methods for Research Workers, 11th ed.; Oliver and Boyd: Edinburgh, UK, 1950. [Google Scholar]
- Hedges, L.V.; Olkin, I. Statistical Methods for Meta-Analysis; Academic Press: San Diego, CA, USA, 1985. [Google Scholar]
- Pinedo, G.J.V.; Ferraz, I.D.K. Hydropriming of Parkia pendula [Benth. ex Walp.]: Seeds with physical dormancy from Amazon tree. Revista Árvore 2008, 32, 39–49. [Google Scholar] [CrossRef]
- Loureiro, M.B.; Teles, C.A.S.; Virgens, I.O.; Araújo, B.R.N.; Fernandez, L.G.; Castro, R.D. Morphology, anatomy and physiological aspects of seeds and seedling of Amburana cearensis (Fr. All.) A.C. Smith (Leguminosae-Papilionoideae). Revista Árvore 2013, 37, 679–689. [Google Scholar] [CrossRef]
- Flores, A.V.; Borges, E.E.D.E.; Guimarães, V.M.; Ataíde, G.D.; Castro, R.V.O. Germination of Melanoxylon brauna schott seeds in different temperatures. Revista Árvore 2014, 38, 1147–1154. [Google Scholar] [CrossRef]
- Silva, R.C.; Vieira, E.S.N.; Panobianco, M. Techniques for overcoming dormancy in guanandi seeds. Pesq. Agropecu. Brasil. 2014, 49, 719–727. [Google Scholar] [CrossRef]
- Baskin, J.M.; Baskin, C.C. Greenhouse and laboratory studies on the ecological life cycle of Dalea foliosa (Fabaceae), a federal endangered species. Nat. Areas J. 1998, 18, 54–62. [Google Scholar]
- Iglesias-Fernández, R.; Matilla, A. After-ripening alters the gene expression pattern of oxidases involved in the ethylene and gibberellin pathways during early imbibition of Sisymbrium officinale L. seeds. J. Exp. Bot. 2009, 60, 1645–1661. [Google Scholar] [CrossRef] [PubMed]
- Davide, A.C.; Tonetti, O.A.O.; Silva, E.A.A. Improvement to the physical quality and imbibition pattern in seeds of candeia (Eremanthus incanus (Less.) Less.). Cerne 2011, 17, 321–326. [Google Scholar] [CrossRef]
- Toorop, P.E. Nitrate controls testa rupture and water content during release of physiological dormancy in seeds of Sisymbrium officinale (L.) Scop. Seed Sci. Res. 2015, 25, 138–146. [Google Scholar] [CrossRef]
- Limpert, E.; Stahel, W.A.; Abbt, M. Log-normal distributions across the sciences: Keys and clues. BioScience 2001, 51, 341–352. [Google Scholar] [CrossRef]
- Bewley, J.D. Seed germination and dormancy. Plant Cell 1997, 9, 1055–1066. [Google Scholar] [CrossRef] [PubMed]
- Dias, A.S.; Pereira, I.P.; Dias, L.S. Investigating and modeling the combined effects of pH and osmotic pressure on seed germination for use in phytoactivity and allelopathic research. Plant Biosyst. 2017, 151, 657–664. [Google Scholar] [CrossRef]
- Parsons, R.F. Incidence and ecology of very fast germination. Seed Sci. Res. 2012, 22, 161–167. [Google Scholar] [CrossRef]
- Parsons, R.F.; Vandelook, F.; Janssens, S.B. Very fast germination: Additional records and relationship to embryo size and phylogeny. Seed Sci. Res. 2014, 24, 159–163. [Google Scholar] [CrossRef]
- Martin, A.C. The comparative internal morphology of seeds. Am. Midl. Nat. 1946, 36, 513–660. [Google Scholar] [CrossRef]
- Eastman, J.F. A study of red clover seed with relation to its color. Proc. Am. Soc. Agron. 1912, 4, 91–102. [Google Scholar] [CrossRef]
- Dymond, J.R. Colour characteristics of red clover seed. Proc. Assoc. Off. Seed Anal. N. Am. 1921, 12/13, 30–32. [Google Scholar]
- Velijević, N.; Štrbanović, R.; Poštić, D.; Stanisavljević, R.; Ðukanović, L. Effects of seed coat colour on the seed quality and initial seedling growth of red clover cultivars (Trifolium pratense). J. Process. Energy Agric. 2017, 21, 174–177. [Google Scholar] [CrossRef]
- Casco, H.; Dias, L.S. Estimating seed mass and volume from linear dimensions of seeds. Seed Sci. Technol. 2008, 36, 230–236. [Google Scholar] [CrossRef]
- Bakker, J.P.; Poschlod, P.; Strykstra, R.J.; Bekker, R.M.; Thompson, K. Seed banks and seed dispersal: Important topics in restoration ecology. Acta Bot. Neerl. 1996, 45, 461–490. [Google Scholar] [CrossRef]
(A) Lag of Imbibition (h) | (B) Time for Maximum Imbibition (h) | (C) Duration of Phase I (h) | |||||||
Treatment | Purple morph | P | Yellow morph | Purple morph | P | Yellow morph | Purple morph | P | Yellow morph |
Control | 1.0 ± 0.04 | [0.496] | 2.0 ± 0.96 | 16.8 ± 1.7 | [0.740] | 16.0 ± 1.0 | 15.7 ± 1.8 | [0.502] | 14.0 ± 0.1 |
Salt solution | 1.0 ± 0.03 (0.840) | [0.748] | 1.0 ± 0.04 (0.487) | 15.5 ± 0.5 (0.560) | [0.539] | 17.2 ± 2.2 (0.674) | 14.5 ± 0.5 (0.502) | [0.542] | 16.2 ± 2.2 (0.507) |
Nutrient solution | 1.0 ± 0.03 (0.196) | [0.476] | 1.0 ± 0.01 (0.474) | 18.8 ± 0.7 (0.390) | [0.877] | 18.6 ± 0.6 (0.163) | 17.9 ± 0.8 (0.382) | [0.861] | 17.7 ± 0.6 (0.027) |
(D) Maximum Imbibition (mg·mg−1) | (E) Shape of Phase I | (F) Duration of Phase II (h) | |||||||
Treatment | Purple morph | P | Yellow morph | Purple morph | P | Yellow morph | Purple morph | P | Yellow morph |
Control | 1.2 ± 0.07 | [0.878] | 1.2 ± 0.02 | 2.3 ± 0.04 | [0.063] | 2.5 ± 0.01 | 3.2 ± 1.7 | [0.740] | 4.0 ± 1.0 |
Salt solution | 1.1 ± 0.02 (0.626) | [0.673] | 1.1 ± 0.00 (0.073) | 2.4 ± 0.03 (0.355) | [0.221] | 2.5 ± 0.05 (0.646) | 4.5 ± 0.5 (0.560) | [0.539] | 2.8 ± 2.2 (0.674) |
Nutrient solution | 1.1 ± 0.05 (0.898) | [0.273] | 1.0 ± 0.05 (0.131) | 2.4 ± 0.11 (0.485) | [0.718] | 2.5 ± 0.05 (0.901) | 1.2 ± 0.7 (0.390) | [0.877] | 1.4 ± 0.6 (0.163) |
(G) Lag of Germination (days) | (H) Time for Final Germination (days) | (I) Duration of Germination (days) | |||||||
Treatment | Purple morph | P | Yellow morph | Purple morph | P | Yellow morph | Purple morph | P | Yellow morph |
Control | 0.7 ± 0.01 | [0.056] | 0.6 ± 0.03 | 4.3 ± 1.01 | [0.085] | 1.8 ± 0.14 | 3.6 ± 1.01 | [0.093] | 1.2 ± 0.11 |
Salt solution | 0.5 ± 0.00 (0.538) | [0.163] | 0.4 ± 0.03 (0.426) | 3.2 ± 0.69 (0.642) | [0.036] | 1.6 ± 0.49 (0.144) | 2.7 ± 0.69 (0.643) | [0.038] | 1.2 ± 0.49 (0.399) |
Nutrient solution | 1.0 ± 0.09 (0.060) | [0.949] | 1.0 ± 0.09 (0.009) | 4.6 ± 0.60 (0.814) | [0.169] | 3.4 ± 0.50 (0.019) | 3.6 ± 0.54 (0.991) | [0.146] | 2.4 ± 0.49 (0.055) |
(J) Final Germination (%) | (K) Shape of Germination | ||||||||
Treatment | Purple morph | P | Yellow morph | Purple morph | P | Yellow morph | |||
Control | 92.0 ± 1.6 | [0.494] | 95.0 ± 3.8 | 1.5 ± 0.39 | [0.030] | 2.8 ± 0.23 | |||
Salt solution | 92.0 ± 3.7 (1) | [0.718] | 94.0 ± 3.8 (0.859) | 1.0 ± 0.17 (0.967) | [0.079] | 1.8 ± 0.38 (0.399) | |||
Nutrient solution | 75.0 ± 3.0 (0.003) | [0.017] | 90.0 ± 3.5 (0.367) | 1.7 ± 0.17 (0.779) | [0.285] | 2.0 ± 0.25 (0.055) | |||
(L) Root Growth (mm·day−1) | (M) Hypocotyl Growth (mm·day−1) | (N) Root+hypocotyl growth (mm·day−1) | |||||||
Treatment | Purple morph | P | Yellow morph | Purple morph | P | Yellow morph | Purple morph | P | Yellow morph |
Control | 5.4 ± 0.4 | [0.929] | 5.3 ± 0.4 | 1.6 ± 0.1 | [0.660] | 1.6 ± 0.1 | 7.0 ± 0.4 | [0.855] | 6.9 ± 0.4 |
Salt solution | 1.5 ± 0.1 (5.6 × 10−11) | [0.175] | 1.7 ± 0.1 (1.5 × 10−8) | 3.7 ± 0.3 (1.4 × 10−8) | [0.128] | 3.2 ± 0.2 (2.9 × 10−8) | 5.2 ± 0.3 (2.5 × 10−4) | [0.363] | 4.9 ± 0.2 (1.1 × 10−4) |
Nutrient solution | 2.1 ± 0.1 (2.8 × 10−9) | [0.005] | 1.6 ± 0.1 (9.2 × 10−9) | 4.3 ± 0.2 (5.6 × 10−12) | [0.004] | 3.3 ± 0.2 (1.8 × 10−7) | 6.4 ± 0.2 (0.185) | [1.0 × 10−4] | 4.9 ± 0.3 (1.1 × 10−4) |
Combinations of Probabilities of Comparisons between Morphs | X2 | Degrees of Freedom | P |
---|---|---|---|
All comparisons | 139.2 | 84 | 1.4 × 10−4 |
Distilled water | 34.9 | 28 | 0.172 |
Salt solution | 40.3 | 28 | 0.062 |
Nutrient solution | 64.0 | 28 | 1.2 × 10−4 |
Imbibition experiment | 23.4 | 36 | 0.947 |
Distilled water | 9.8 | 12 | 0.634 |
Salt solution | 8.1 | 12 | 0.778 |
Nutrient solution | 5.6 | 12 | 0.936 |
Germination experiment | 64.6 | 30 | 2.5 × 10−4 |
Distilled water | 23.9 | 10 | 0.008 |
Salt solution | 22.6 | 10 | 0.012 |
Nutrient solution | 18.1 | 10 | 0.053 |
Growth experiment | 51.2 | 18 | 1.2 × 10−4 |
Distilled water | 1.3 | 6 | 0.972 |
Salt solution | 9.6 | 6 | 0.142 |
Nutrient solution | 40.3 | 6 | 4.0 × 10−7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, A.S.; Dias, L.S.; Dias, A.S. Imbibition, Germination, and Early Seedling Growth Responses of Light Purple and Yellow Seeds of Red Clover to Distilled Water, Sodium Chloride, and Nutrient Solution. Sci 2019, 1, 51. https://doi.org/10.3390/sci1020051
Costa AS, Dias LS, Dias AS. Imbibition, Germination, and Early Seedling Growth Responses of Light Purple and Yellow Seeds of Red Clover to Distilled Water, Sodium Chloride, and Nutrient Solution. Sci. 2019; 1(2):51. https://doi.org/10.3390/sci1020051
Chicago/Turabian StyleCosta, Ana Sofia, Luís Silva Dias, and Alexandra Soveral Dias. 2019. "Imbibition, Germination, and Early Seedling Growth Responses of Light Purple and Yellow Seeds of Red Clover to Distilled Water, Sodium Chloride, and Nutrient Solution" Sci 1, no. 2: 51. https://doi.org/10.3390/sci1020051
APA StyleCosta, A. S., Dias, L. S., & Dias, A. S. (2019). Imbibition, Germination, and Early Seedling Growth Responses of Light Purple and Yellow Seeds of Red Clover to Distilled Water, Sodium Chloride, and Nutrient Solution. Sci, 1(2), 51. https://doi.org/10.3390/sci1020051