Multi-Technique Characterization of Cartonnage and Linen Samples of an Egyptian Mummy from the Roman Period
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Cartonnage
3.2. Linen
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Baber, T.T. Ancient corpses as curiosities: Mummymania in the age of early travel. J. Anc. Egypt. Interconnect. 2016, 8, 60–93. [Google Scholar] [CrossRef]
- Bakos, M. Egiptomania-o Egito no Brasil; Paris Editorial: São Paulo, Brazil, 2004. [Google Scholar]
- Brancaglion, A., Jr.; Lima, T.A.; de Souza, S.M.M. The Egyptian collection of Museu Nacional, Rio de Janeiro, Brazil, and the conservation of mummies in a tropical environment. J. Biol. Res. Boll. Soc. Ital. Biol. Sper. 2005, 80. [Google Scholar] [CrossRef]
- Calza, C.; Anjos, M.; de Souza, S.M.; Brancaglion, A., Jr.; Lopes, R.T. X-ray microfluorescence with synchrotron radiation applied in the analysis of pigments from ancient Egypt. Appl. Phys. A 2008, 90, 75–79. [Google Scholar] [CrossRef]
- Aufderheide, A.C.; Cartmell, L.; Zlonis, M.; Sheldrick, P. Mummification practices at Kellis site in Egypt’s Dakhleh Oasis. J. Soc. Study Egypt. Antiq. 2004, 31, 63–77. [Google Scholar]
- Aufderheide, C.; Zlonis, M.; Cartmell, L.M.; Zimmerman, M.R.; Sheldrick, P.; Cook, M.; Molto, J.E. Human mummification practices at Ismant el-Kharab. J. Egypt. Archaeol. 1999, 85, 197–210. [Google Scholar] [CrossRef]
- Adriaens, A. Non-destructive analysis and testing of museum objects: An overview of 5 years of research. Spectrochim. Acta Part B At. Spectrosc. 2005, 60, 1503–1516. [Google Scholar] [CrossRef]
- Liritzis, I.; Laskaris, N.; Vafiadou, A.; Karapanagiotis, I.; Volonakis, P.; Bratitsi, M. Archaeometry: An overview. Sci. Cult. 2020, 6, 49–98. [Google Scholar]
- Spring, M.; Grout, R. The blackening of vermilion: An analytical study of the process in paintings. Natl. Gallery Tech. Bull. 2002, 23, 50–61. [Google Scholar]
- Daniels, V.; Stacey, R.; Middleton, A. The blackening of paint containing Egyptian blue. Stud. Conserv. 2004, 49, 217–230. [Google Scholar] [CrossRef]
- Ali, M.; Mansour, M.; Badr, N.; Salem, M. A study of biodeterioration and chromatic alterations of painted and gilded mummy cartonnage at the Saqqara Museum storeroom, Egypt. Archaeometry 2018, 60, 845–858. [Google Scholar] [CrossRef]
- Sandu, I.A.; Busani, T.; de Sá, M.H. The surface behavior of gilding layer imitations on polychrome artefacts of cultural heritage. Surf. Interface Anal. 2011, 43, 1171–1181. [Google Scholar] [CrossRef]
- Edwards, H.; Edwards, H.G.; Vandenabeele, P. Analytical Archaeometry: Selected Topics; Royal Society of Chemistry: London, UK, 2012. [Google Scholar]
- Osman, E. Spectrometry as a non-destructive technique in identifying cultural archaeological heritage. In Spectroscopic Techniques for Archaeological and Cultural Heritage Research; IOP Publishing: Bristol, UK, 2020; pp. 1–11. [Google Scholar]
- Čechák, T.; Musílek, L.; Trojek, T.; Kopecká, I. Application of X-ray fluorescence analysis in investigations of historical monuments. Acta Polytech. 2005, 45, 48–51. [Google Scholar] [CrossRef]
- Cesareo, R.; Bustamante, A.; Fabian, J.; Calza, C.; Anjos, M.D.; Lopes, R.T.; Alva, W.; Chero, L.; Gutierrez, F.; Espinoza, M.D.C.; et al. Pre-Columbian alloys from the royal tombs of Sipán and from the Museum of Sicán. Non-destructive XRF analysis with a portable equipment. ArcheoSciences Rev. D’archeom. 2009, 33, 281–287. [Google Scholar] [CrossRef]
- Artioli, G. Science for the cultural heritage: The contribution of X-ray diffraction. Rend. Lincei 2013, 24, 55–62. [Google Scholar] [CrossRef]
- Gonzalez, V.; Cotte, M.; Vanmeert, F.; de Nolf, W.; Janssens, K. X-ray diffraction mapping for cultural heritage science: A review of experimental configurations and applications. Chem. Eur. J. 2020, 26, 1703–1719. [Google Scholar] [CrossRef]
- Freitas, R.P.; Ribeiro, I.M.; Calza, C.; Oliveira, A.L.; Felix, V.S.; Ferreira, D.S.; Pimenta, A.R.; Pereira, R.V.; Pereira, M.O.; Lopes, R.T. Analysis of a Brazilian baroque sculpture using Raman spectroscopy and FT-IR. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016, 154, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Ropret, P.; Madariaga, J.M. Applications of Raman spectroscopy in art and archaeology. J. Raman Spectrosc. 2014, 50, 137–142. [Google Scholar] [CrossRef]
- Prati, S.; Sciutto, G.; Bonacini, I.; Mazzeo, R. New Frontiers in Application of FTIR Microscopy for Characterization of Cultural Heritage Materials. In Analytical Chemistry for Cultural Heritage; Mazzeo, R., Ed.; Springer: Cham, Switzerland, 2017; pp. 129–160. [Google Scholar] [CrossRef]
- Bonizzoni, L.; Bruni, S.; Gargano, M.; Guglielmi, V.; Zaffino, C.; Pezzotta, A.; Pilato, A.; Auricchio, T.; Delvaux, L.; Ludwig, N. Use of integrated non-invasive analyses for pigment characterization and indirect dating of old restorations on one Egyptian coffin of the XXI dynasty. Microchem. J. 2018, 138, 122–131. [Google Scholar] [CrossRef]
- De Witte, Y.; Cnudde, V.; Pieters, K.; Dierick, M.; Vlassenbroeck, J.; Van Hoorebeke, L.; Jacobs, P. X-ray microCT applied to natural building materials and art objects. X-Ray Spectrom. Int. J. 2008, 37, 383–387. [Google Scholar]
- Machado, A.; Oliveira, D.; Filho, H.G.; Latini, R.; Bellido, A.; Assis, J.; Anjos, M.; Lopes, R. Archeological ceramic artifacts characterization through computed microtomography and x-ray fluorescence. X-Ray Spectrom. 2017, 46, 427–434. [Google Scholar] [CrossRef]
- Oliveira, R.; de Paula, A.; Goncalves, F.; Sanches, F.; Nardes, R.; Santos, R.; Azeredo, S.; Araújo, O.; Machado, A.; Anjos, M.; et al. Analysis of a wooden statue by non-destructive x-ray techniques. X-Ray Spectrom. 2023, 52, 312–322. [Google Scholar] [CrossRef]
- Magdy, M. X-ray techniques dedicated to materials characterization in cultural heritage. Chem. Sel. 2023, 8, e202301306. [Google Scholar] [CrossRef]
- Trentelman, K. Analyzing the heterogeneous hierarchy of cultural heritage materials: Analytical imaging. Annu. Rev. Anal. Chem. 2017, 10, 247–270. [Google Scholar] [CrossRef]
- Marguí, E.; Queralt, I.; de Almeida, E. X-ray fluorescence spectrometry for environmental analysis: Basic principles, instrumentation, applications and recent trends. Chemosphere 2022, 303, 135006. [Google Scholar] [CrossRef] [PubMed]
- Lutterotti, L.; Dell’Amore, F.; Angelucci, D.E.; Carrer, F.; Gialanella, S. Combined x-ray diffraction and fluorescence analysis in the cultural heritage field. Microchem. J. 2016, 126, 423–430. [Google Scholar] [CrossRef]
- Hess, C. New advances in using Raman spectroscopy for the characterization of catalysts and catalytic reactions. Chem. Soc. Rev. 2021, 50, 3519–3564. [Google Scholar] [CrossRef]
- Crupi, V.; Allodi, V.; Bottari, C.; D’Amico, F.; Galli, G.; Gessini, A.; La Russa, M.F.; Longo, F.; Majolino, D.; Mariotto, G.; et al. Spectroscopic investigation of roman decorated plasters by combining FT-IR, micro-Raman and UV-Raman analyses. Vib. Spectrosc. 2016, 83, 78–84. [Google Scholar] [CrossRef]
- Cid, H.; Carrasco-Nuñez, G.; Manea, V. Improved method for effective rock microporosity estimation using x-ray microtomography. Micron 2017, 97, 11–21. [Google Scholar] [CrossRef]
- Vigorelli, L.; Re, A.; Guidorzi, L.; Cavaleri, T.; Buscaglia, P.; Nervo, M.; Facchetti, F.; Borla, M.; Grassini, S.; Giudice, A.L. X-ray imaging investigation on the gilding technique of an ancient Egyptian taweret wooden statuette. J. Imaging 2021, 7, 229. [Google Scholar] [CrossRef]
- Brunello, V.; Canevali, C.; Corti, C.; De Kock, T.; Rampazzi, L.; Recchia, S.; Sansonetti, A.; Tedeschi, C.; Cnudde, V. Understanding the microstructure of mortars for cultural heritage using x-ray CT and MIP. Materials 2021, 14, 5939. [Google Scholar] [CrossRef] [PubMed]
- Scott, D.A.; Dennis, M.; Khandekar, N.; Keeney, J.; Carson, D.; Dodd, L.S. An Egyptian cartonnage of the Graeco-Roman period. Stud. Conserv. 2003, 48, 41–56. [Google Scholar] [CrossRef]
- Petersen, S.; Nielsen, O.F.; Christensen, D.H.; Edwards, H.G.; Farwell, D.W.; David, R.; Lambert, P.; Gniadecka, M.; Wulf, H.C. Near-infrared Fourier transform Raman spectroscopy of skin samples from the ‘tomb of the two brothers’, Khnum-Nakht and Nekht-Ankh, XIIth dynasty Egyptian mummies (ca 2000 BC). J. Raman Spectrosc. 2003, 34, 375–379. [Google Scholar] [CrossRef]
- Uda, M. Characterization of pigments used in ancient Egypt. In X-rays for Archaeology; Springer: Dordrecht, The Netherlands, 2005; pp. 3–26. [Google Scholar] [CrossRef]
- El Aal, S.A. Characterization and examination of pigments, grounds and media from ancient Egyptian cartonnage. Egypt. J. Archaeol. Restor. Stud. 2014, 4, 35–46. [Google Scholar]
- Ali, M.F.; Darwish, S.S.; El Sheikha, A.M. Multispectral analysis and investigation of overlapping layer cartonnage fragments from Egyptian Museum, Cairo. Sci. Cult. 2020, 6, 25–36. [Google Scholar]
- Lombardi, C.A.; Comite, V.; Fermo, P.; Bergomi, A.; Trombino, L.; Guglielmi, V. A multi-analytical approach for the characterisation of pigments from an Egyptian sarcophagus cover of the late dynastic period: A case study. Sustainability 2023, 15, 2002. [Google Scholar] [CrossRef]
- El-Tawab, N.A.; Badr, I.; Mahran, A. Analytical investigation of cartonnage fragment from late period. Egypt. J. Archaeol. Restor. Stud. 2012, 2, 69–78. [Google Scholar]
- Magdy, M.; Ismail, M.; Issa, Y.; Abdel-Maksoud, G.; Ibrahim, M. An analytical study for understanding the degradation process of a late period mummy. Adv. Res. Conserv. Sci. 2020, 1, 13–30. [Google Scholar] [CrossRef]
- Caggiani, M.C.; Cosentino, A.; Mangone, A. Pigments checker version 3.0, a handy set for conservation scientists: A free online Raman spectra database. Microchem. J. 2016, 129, 123–132. [Google Scholar] [CrossRef]
- Freitas, R.P.; Coelho, F.A.; Felix, V.S.; Pereira, M.O.; de Souza, M.A.T.; Anjos, M.J. Analysis of 19th century ceramic fragments excavated from Pirenópolis (Goiás, Brazil) using FT-IR, Raman, XRF and SEM. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 193, 432–439. [Google Scholar] [CrossRef]
- Scott, D.A.; Warmlander, S.; Mazurek, J.; Quirke, S. Examination of some pigments, grounds, and media from Egyptian cartonnage fragments in the Petrie Museum, University College London. J. Archaeol. Sci. 2009, 36, 923–932. [Google Scholar] [CrossRef]
- Uhlir, K.; Griesser, M.; Buzanich, G.; Wobrauschek, P.; Streli, C.; Wegrzynek, D.; Markowicz, A.; Chinea-Cano, E. Applications of a new portable (micro) XRF instrument having low-z elements determination capability in the field of works of art. X-Ray Spectrom. Int. J. 2008, 37, 450–457. [Google Scholar] [CrossRef]
- Klisińska-Kopacz, A.; Fraczek, P.; Obarzanowski, M.; Czop, J. Non-invasive study of pigment palette used by Olga Boznańska investigated with analytical imaging, XRF, and FTIR spectroscopy. Heritage 2023, 6, 1429–1443. [Google Scholar] [CrossRef]
- Dyer, J.; Sotiropoulou, S. A technical step forward in the integration of visible induced luminescence imaging methods for the study of ancient polychromy. Herit. Sci. 2017, 5, 24. [Google Scholar] [CrossRef]
- Clementi, C.; Doherty, B.; Gentili, P.L.; Miliani, C.; Romani, A.; Brunetti, B.G.; Sgamellotti, A. Vibrational and electronic properties of painting lakes. Appl. Phys. A 2008, 92, 25–33. [Google Scholar] [CrossRef]
- Daniels, V.; Deviese, T.; Hacke, M.; Higgitt, C. Technological insights into madder pigment production in antiquity. Br. Mus. Tech. Res. Bull. 2014, 8, 13–28. [Google Scholar]
- Frost, R.; Martens, W.; Kloprogge, J. Raman spectroscopic study of cinnabar (HgS), realgar (As4S4) and orpiment (As2S3) at 298 and 77k. Neues Jahrb. Mineral. Monatshefte 2002, 10, 469–480. [Google Scholar] [CrossRef]
- Cheng, H.; Zhou, Y.; Frost, R.L. Structure comparison of orpiment and realgar by raman spectroscopy. Spectrosc. Lett. 2017, 50, 23–29. [Google Scholar] [CrossRef]
- Di Stefano, L.M.; Fuchs, R. Characterization of the pigments in a Ptolemaic Egyptian book of the dead papyrus. Archaeol. Anthropol. Sci. 2011, 3, 229–244. [Google Scholar] [CrossRef]
- Calza, C.; Anjos, M.J.; de Souza, S.M.M.; Brancaglion, A., Jr.; Lopes, R.T. Pigments analysis in cartonnages of an Egyptian mummy of the roman period using x-ray fluorescence spectrometry. J. Biol. Res.-Boll. Soc. Ital. Biol. Sper. 2005, 80, 136–138. [Google Scholar]
- Yu, J.; Warren, W.S.; Fischer, M.C. Visualization of vermilion degradation using pump-probe microscopy. Sci. Adv. 2019, 5, eaaw3136. [Google Scholar] [CrossRef]
- Buti, D.; Rosi, F.; Brunetti, B.G.; Miliani, C. In-situ identification of copper-based green pigments on paintings and manuscripts by reflection ftir. Anal. Bioanal. Chem. 2013, 405, 2699–2711. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.E.; Silva, L.P.; Edwards, H.G.; de Oliveira, L.F.C. Diffuse reflection FTIR spectral database of dyes and pigments. Anal. Bioanal. Chem. 2006, 386, 2183–2191. [Google Scholar] [CrossRef] [PubMed]
- Derrick, M.R.; Stulik, D.; Landry, J.M. Infrared Spectroscopy in Conservation Science; Getty Publications: Los Angeles, CA, USA, 2000. [Google Scholar]
- Valadas, S.; Candeias, A.; Dias, C.; Schiavon, N.; Cotovio, M.; Pestana, J.; Gil, M.; Mirão, J. A multi-analytical study of the fifteenth century mural paintings of the Batalha Monastery (Portugal) in view of their conservation. Appl. Phys. A 2013, 113, 989–998. [Google Scholar] [CrossRef]
- Lluveras-Tenorio, A.; Spepi, A.; Pieraccioni, M.; Legnaioli, S.; Lorenzetti, G.; Palleschi, V.; Vendrell, M.; Colombini, M.P.; Tinè, M.R.; Duce, C.; et al. A multi-analytical characterization of artists’ carbon-based black pigments. J. Therm. Anal. Calorim. 2019, 138, 3287–3299. [Google Scholar] [CrossRef]
- Coccato, A.; Jehlicka, J.; Moens, L.; Vandenabeele, P. Raman spectroscopy for the investigation of carbon-based black pigments. J. Raman Spectrosc. 2015, 46, 1003–1015. [Google Scholar] [CrossRef]
- Singer, G.G. Color in ancient Egypt. Erişim Tarihi 2016, 20, 1–16. [Google Scholar]
- Creagh, D.; Lee, A.; Otieno-Alego, V.; Kubik, M. Recent and future developments in the use of radiation for the study of objects of cultural heritage significance. Radiat. Phys. Chem. 2009, 78, 367–374. [Google Scholar] [CrossRef]
- Abo-Taleb, T.; Orabi, E. Degradation of vermilion red color in oil and mural paintings: A comparative applied study. Egypt. J. Archaeol. Restor. Stud. 2019, 9, 197–206. [Google Scholar]
- Eissa, S.; Lampakis, D.; Karapanagiotis, I.; Panayiotou, C.; Afifi, H.A.; Hady, M.A.-E. Investigation of painted stucco in historic buildings of delta, Egypt. Archaeol. Anthropol. Sci. 2017, 9, 727–736. [Google Scholar] [CrossRef]
- Masic, A.; Nicola, M. Nir luminescence and composition of Egyptian blue as markers in archaeometric evaluations. Microsc. Microanal. 2021, 27, 3004–3006. [Google Scholar] [CrossRef]
- Nardes, R.C. Analysis of the pigments in two modern Egyptian papyri using XRF technique. Braz. J. Radiat. Sci. 2021, 9, 1–16. [Google Scholar] [CrossRef]
- Franquelo, M.; Duran, A.; Castaing, J.; Arquillo, D.; Rodriguez, J.P. XRF, µ-XRD and µ-spectroscopic techniques for revealing the composition and structure of paint layers on polychrome sculptures after multiple restorations. Talanta 2012, 89, 462–469. [Google Scholar] [CrossRef]
- Pages-Camagna, S.; Laval, E.; Vigears, D.; Duran, A. non-destructive and in situ analysis of Egyptian wall paintings by x-ray diffraction and x-ray fluorescence portable systems. Appl. Phys. A 2010, 100, 671–681. [Google Scholar] [CrossRef]
- Daveri, A.; Malagodi, M.; Vagnini, M. The bone black pigment identification by non-invasive, in situ infrared reflection spectroscopy. J. Anal. Methods Chem. 2018, 2018, 6595643. [Google Scholar] [CrossRef]
Points | Layer | Color |
---|---|---|
1 | Pigment | Red/Pink |
2 | Pigment | Black |
3 | Pigment | Greenish |
4 | Pigment | Yellow |
5 | Ground | White |
Points | Layer | Color |
---|---|---|
1 | Pigment | Red/Pink |
2 | Pigment | Black |
6 | Pigment | Brown |
µXRF Setup | ||
---|---|---|
Elements with low Z | Voltage | 20 kV |
Current | 400 µA | |
Time per pixel | 100 ms | |
Cycles | 3 | |
Filter | Not used | |
Pixel size | 200 µm | |
Vacuum | Yes | |
Elements with high Z | Voltage | 50 kV |
Current | 600 µA | |
Time per pixel | 100 ms | |
Cycles | 3 | |
Filter | Not used | |
Pixel size | 200 µm | |
Vacuum | No |
Micro-CT Experimental Setups | |
---|---|
Voltage | 60 kV |
Current | 310 µA |
Voxel size | 20 µm |
Acquisition time | 250 ms/step |
Step | 0.20° |
Ground Layers | ||
---|---|---|
Technique | First/Lower Layer | Second/Upper Layer |
µ-XRF (elements) | Mg, Al, Si, S, Cl, K, Ca, Ti, Mn, Fe, As | Si, S, Cl, K, Ca, Fe |
Raman (bands in cm−1) | 163, 284, 1085 | 1010, 1120 |
Pigment | XRF (Elements) | FTIR (Bands in cm−1) | Raman (Bands in cm−1) |
---|---|---|---|
Yellow | Al, Si, S, Cl, K, Ca, Ti, Mn, Fe, As, Sr | - | 133, 149, 199, 288, 306, 352, 379 |
Red/Pink | Al, Si, S, Cl, K, Ca, Ti, Mn, Fe, As, Sr | 667 | - |
Greenish | Al, Si, S, Cl, K, Ca, Ti, Mn, Fe, Cu, Hg, As, Sr | 878, 1402 | - |
Black | - | - | 1346, 1535 |
Pigment | Elements | Compounds |
---|---|---|
Fiber | Si, P S, Cl, K, Ca, Ti, Mn, Fe, Cu, Zn, As, Sr | gypsum, bassanite, and anhydrite |
Pink | Al, Si, S, Cl, K, Ca, Fe, Cu, As | - |
Brown | Si, S, Cl, K, Ca, Ti, Mn, Fe, Cu, Zn e As | - |
Black | C | hydroxyapatite |
Sample | Layer/Pigment | Techniques Employed | Suggested Pigments |
---|---|---|---|
Cartonnages | Internal Ground Layer | µXRF, Raman, FTIR, microCT | Calcite |
External Ground Layer | µXRF, Raman, FTIR | Plaster | |
Yellow | µXRF, Raman, FTIR | Realgar/Orpiment | |
Red/Pink | µXRF, FTIR | Madder Lake | |
Greenish | µXRF, FTIR | Vermilion and Egyptian Blue/Green or Malachite | |
Black | µXRF, Raman | Carbon Black | |
Linen | Base Layer/Fiber | µXRF, XRD | Plaster and Calcite |
Red/Pink | µXRF | Madder Lake and Orpiment | |
Black | µXRF, XRD | Carbon Black | |
Brown | µXRF | Malachite |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanches, F.; Franzi, I.; Cavalcante, J.; Borges, R.; de Paula, A.; Machado, A.; Nardes, R.; Santos, R.; Gama Filho, H.; Freitas, R.; et al. Multi-Technique Characterization of Cartonnage and Linen Samples of an Egyptian Mummy from the Roman Period. Quantum Beam Sci. 2024, 8, 22. https://doi.org/10.3390/qubs8030022
Sanches F, Franzi I, Cavalcante J, Borges R, de Paula A, Machado A, Nardes R, Santos R, Gama Filho H, Freitas R, et al. Multi-Technique Characterization of Cartonnage and Linen Samples of an Egyptian Mummy from the Roman Period. Quantum Beam Science. 2024; 8(3):22. https://doi.org/10.3390/qubs8030022
Chicago/Turabian StyleSanches, Francis, Isis Franzi, Josiane Cavalcante, Roberta Borges, Anderson de Paula, Alessandra Machado, Raysa Nardes, Ramon Santos, Hamilton Gama Filho, Renato Freitas, and et al. 2024. "Multi-Technique Characterization of Cartonnage and Linen Samples of an Egyptian Mummy from the Roman Period" Quantum Beam Science 8, no. 3: 22. https://doi.org/10.3390/qubs8030022
APA StyleSanches, F., Franzi, I., Cavalcante, J., Borges, R., de Paula, A., Machado, A., Nardes, R., Santos, R., Gama Filho, H., Freitas, R., Assis, J., Anjos, M., Lopes, R., & Oliveira, D. (2024). Multi-Technique Characterization of Cartonnage and Linen Samples of an Egyptian Mummy from the Roman Period. Quantum Beam Science, 8(3), 22. https://doi.org/10.3390/qubs8030022