Multi-Technique Characterization of Cartonnage and Linen Samples of an Egyptian Mummy from the Roman Period
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Cartonnage
3.2. Linen
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Baber, T.T. Ancient corpses as curiosities: Mummymania in the age of early travel. J. Anc. Egypt. Interconnect. 2016, 8, 60–93. [Google Scholar] [CrossRef]
- Bakos, M. Egiptomania-o Egito no Brasil; Paris Editorial: São Paulo, Brazil, 2004. [Google Scholar]
- Brancaglion, A., Jr.; Lima, T.A.; de Souza, S.M.M. The Egyptian collection of Museu Nacional, Rio de Janeiro, Brazil, and the conservation of mummies in a tropical environment. J. Biol. Res. Boll. Soc. Ital. Biol. Sper. 2005, 80. [Google Scholar] [CrossRef]
- Calza, C.; Anjos, M.; de Souza, S.M.; Brancaglion, A., Jr.; Lopes, R.T. X-ray microfluorescence with synchrotron radiation applied in the analysis of pigments from ancient Egypt. Appl. Phys. A 2008, 90, 75–79. [Google Scholar] [CrossRef]
- Aufderheide, A.C.; Cartmell, L.; Zlonis, M.; Sheldrick, P. Mummification practices at Kellis site in Egypt’s Dakhleh Oasis. J. Soc. Study Egypt. Antiq. 2004, 31, 63–77. [Google Scholar]
- Aufderheide, C.; Zlonis, M.; Cartmell, L.M.; Zimmerman, M.R.; Sheldrick, P.; Cook, M.; Molto, J.E. Human mummification practices at Ismant el-Kharab. J. Egypt. Archaeol. 1999, 85, 197–210. [Google Scholar] [CrossRef]
- Adriaens, A. Non-destructive analysis and testing of museum objects: An overview of 5 years of research. Spectrochim. Acta Part B At. Spectrosc. 2005, 60, 1503–1516. [Google Scholar] [CrossRef]
- Liritzis, I.; Laskaris, N.; Vafiadou, A.; Karapanagiotis, I.; Volonakis, P.; Bratitsi, M. Archaeometry: An overview. Sci. Cult. 2020, 6, 49–98. [Google Scholar]
- Spring, M.; Grout, R. The blackening of vermilion: An analytical study of the process in paintings. Natl. Gallery Tech. Bull. 2002, 23, 50–61. [Google Scholar]
- Daniels, V.; Stacey, R.; Middleton, A. The blackening of paint containing Egyptian blue. Stud. Conserv. 2004, 49, 217–230. [Google Scholar] [CrossRef]
- Ali, M.; Mansour, M.; Badr, N.; Salem, M. A study of biodeterioration and chromatic alterations of painted and gilded mummy cartonnage at the Saqqara Museum storeroom, Egypt. Archaeometry 2018, 60, 845–858. [Google Scholar] [CrossRef]
- Sandu, I.A.; Busani, T.; de Sá, M.H. The surface behavior of gilding layer imitations on polychrome artefacts of cultural heritage. Surf. Interface Anal. 2011, 43, 1171–1181. [Google Scholar] [CrossRef]
- Edwards, H.; Edwards, H.G.; Vandenabeele, P. Analytical Archaeometry: Selected Topics; Royal Society of Chemistry: London, UK, 2012. [Google Scholar]
- Osman, E. Spectrometry as a non-destructive technique in identifying cultural archaeological heritage. In Spectroscopic Techniques for Archaeological and Cultural Heritage Research; IOP Publishing: Bristol, UK, 2020; pp. 1–11. [Google Scholar]
- Čechák, T.; Musílek, L.; Trojek, T.; Kopecká, I. Application of X-ray fluorescence analysis in investigations of historical monuments. Acta Polytech. 2005, 45, 48–51. [Google Scholar] [CrossRef]
- Cesareo, R.; Bustamante, A.; Fabian, J.; Calza, C.; Anjos, M.D.; Lopes, R.T.; Alva, W.; Chero, L.; Gutierrez, F.; Espinoza, M.D.C.; et al. Pre-Columbian alloys from the royal tombs of Sipán and from the Museum of Sicán. Non-destructive XRF analysis with a portable equipment. ArcheoSciences Rev. D’archeom. 2009, 33, 281–287. [Google Scholar] [CrossRef]
- Artioli, G. Science for the cultural heritage: The contribution of X-ray diffraction. Rend. Lincei 2013, 24, 55–62. [Google Scholar] [CrossRef]
- Gonzalez, V.; Cotte, M.; Vanmeert, F.; de Nolf, W.; Janssens, K. X-ray diffraction mapping for cultural heritage science: A review of experimental configurations and applications. Chem. Eur. J. 2020, 26, 1703–1719. [Google Scholar] [CrossRef]
- Freitas, R.P.; Ribeiro, I.M.; Calza, C.; Oliveira, A.L.; Felix, V.S.; Ferreira, D.S.; Pimenta, A.R.; Pereira, R.V.; Pereira, M.O.; Lopes, R.T. Analysis of a Brazilian baroque sculpture using Raman spectroscopy and FT-IR. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016, 154, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Ropret, P.; Madariaga, J.M. Applications of Raman spectroscopy in art and archaeology. J. Raman Spectrosc. 2014, 50, 137–142. [Google Scholar] [CrossRef]
- Prati, S.; Sciutto, G.; Bonacini, I.; Mazzeo, R. New Frontiers in Application of FTIR Microscopy for Characterization of Cultural Heritage Materials. In Analytical Chemistry for Cultural Heritage; Mazzeo, R., Ed.; Springer: Cham, Switzerland, 2017; pp. 129–160. [Google Scholar] [CrossRef]
- Bonizzoni, L.; Bruni, S.; Gargano, M.; Guglielmi, V.; Zaffino, C.; Pezzotta, A.; Pilato, A.; Auricchio, T.; Delvaux, L.; Ludwig, N. Use of integrated non-invasive analyses for pigment characterization and indirect dating of old restorations on one Egyptian coffin of the XXI dynasty. Microchem. J. 2018, 138, 122–131. [Google Scholar] [CrossRef]
- De Witte, Y.; Cnudde, V.; Pieters, K.; Dierick, M.; Vlassenbroeck, J.; Van Hoorebeke, L.; Jacobs, P. X-ray microCT applied to natural building materials and art objects. X-Ray Spectrom. Int. J. 2008, 37, 383–387. [Google Scholar]
- Machado, A.; Oliveira, D.; Filho, H.G.; Latini, R.; Bellido, A.; Assis, J.; Anjos, M.; Lopes, R. Archeological ceramic artifacts characterization through computed microtomography and x-ray fluorescence. X-Ray Spectrom. 2017, 46, 427–434. [Google Scholar] [CrossRef]
- Oliveira, R.; de Paula, A.; Goncalves, F.; Sanches, F.; Nardes, R.; Santos, R.; Azeredo, S.; Araújo, O.; Machado, A.; Anjos, M.; et al. Analysis of a wooden statue by non-destructive x-ray techniques. X-Ray Spectrom. 2023, 52, 312–322. [Google Scholar] [CrossRef]
- Magdy, M. X-ray techniques dedicated to materials characterization in cultural heritage. Chem. Sel. 2023, 8, e202301306. [Google Scholar] [CrossRef]
- Trentelman, K. Analyzing the heterogeneous hierarchy of cultural heritage materials: Analytical imaging. Annu. Rev. Anal. Chem. 2017, 10, 247–270. [Google Scholar] [CrossRef]
- Marguí, E.; Queralt, I.; de Almeida, E. X-ray fluorescence spectrometry for environmental analysis: Basic principles, instrumentation, applications and recent trends. Chemosphere 2022, 303, 135006. [Google Scholar] [CrossRef] [PubMed]
- Lutterotti, L.; Dell’Amore, F.; Angelucci, D.E.; Carrer, F.; Gialanella, S. Combined x-ray diffraction and fluorescence analysis in the cultural heritage field. Microchem. J. 2016, 126, 423–430. [Google Scholar] [CrossRef]
- Hess, C. New advances in using Raman spectroscopy for the characterization of catalysts and catalytic reactions. Chem. Soc. Rev. 2021, 50, 3519–3564. [Google Scholar] [CrossRef]
- Crupi, V.; Allodi, V.; Bottari, C.; D’Amico, F.; Galli, G.; Gessini, A.; La Russa, M.F.; Longo, F.; Majolino, D.; Mariotto, G.; et al. Spectroscopic investigation of roman decorated plasters by combining FT-IR, micro-Raman and UV-Raman analyses. Vib. Spectrosc. 2016, 83, 78–84. [Google Scholar] [CrossRef]
- Cid, H.; Carrasco-Nuñez, G.; Manea, V. Improved method for effective rock microporosity estimation using x-ray microtomography. Micron 2017, 97, 11–21. [Google Scholar] [CrossRef]
- Vigorelli, L.; Re, A.; Guidorzi, L.; Cavaleri, T.; Buscaglia, P.; Nervo, M.; Facchetti, F.; Borla, M.; Grassini, S.; Giudice, A.L. X-ray imaging investigation on the gilding technique of an ancient Egyptian taweret wooden statuette. J. Imaging 2021, 7, 229. [Google Scholar] [CrossRef]
- Brunello, V.; Canevali, C.; Corti, C.; De Kock, T.; Rampazzi, L.; Recchia, S.; Sansonetti, A.; Tedeschi, C.; Cnudde, V. Understanding the microstructure of mortars for cultural heritage using x-ray CT and MIP. Materials 2021, 14, 5939. [Google Scholar] [CrossRef] [PubMed]
- Scott, D.A.; Dennis, M.; Khandekar, N.; Keeney, J.; Carson, D.; Dodd, L.S. An Egyptian cartonnage of the Graeco-Roman period. Stud. Conserv. 2003, 48, 41–56. [Google Scholar] [CrossRef]
- Petersen, S.; Nielsen, O.F.; Christensen, D.H.; Edwards, H.G.; Farwell, D.W.; David, R.; Lambert, P.; Gniadecka, M.; Wulf, H.C. Near-infrared Fourier transform Raman spectroscopy of skin samples from the ‘tomb of the two brothers’, Khnum-Nakht and Nekht-Ankh, XIIth dynasty Egyptian mummies (ca 2000 BC). J. Raman Spectrosc. 2003, 34, 375–379. [Google Scholar] [CrossRef]
- Uda, M. Characterization of pigments used in ancient Egypt. In X-rays for Archaeology; Springer: Dordrecht, The Netherlands, 2005; pp. 3–26. [Google Scholar] [CrossRef]
- El Aal, S.A. Characterization and examination of pigments, grounds and media from ancient Egyptian cartonnage. Egypt. J. Archaeol. Restor. Stud. 2014, 4, 35–46. [Google Scholar]
- Ali, M.F.; Darwish, S.S.; El Sheikha, A.M. Multispectral analysis and investigation of overlapping layer cartonnage fragments from Egyptian Museum, Cairo. Sci. Cult. 2020, 6, 25–36. [Google Scholar]
- Lombardi, C.A.; Comite, V.; Fermo, P.; Bergomi, A.; Trombino, L.; Guglielmi, V. A multi-analytical approach for the characterisation of pigments from an Egyptian sarcophagus cover of the late dynastic period: A case study. Sustainability 2023, 15, 2002. [Google Scholar] [CrossRef]
- El-Tawab, N.A.; Badr, I.; Mahran, A. Analytical investigation of cartonnage fragment from late period. Egypt. J. Archaeol. Restor. Stud. 2012, 2, 69–78. [Google Scholar]
- Magdy, M.; Ismail, M.; Issa, Y.; Abdel-Maksoud, G.; Ibrahim, M. An analytical study for understanding the degradation process of a late period mummy. Adv. Res. Conserv. Sci. 2020, 1, 13–30. [Google Scholar] [CrossRef]
- Caggiani, M.C.; Cosentino, A.; Mangone, A. Pigments checker version 3.0, a handy set for conservation scientists: A free online Raman spectra database. Microchem. J. 2016, 129, 123–132. [Google Scholar] [CrossRef]
- Freitas, R.P.; Coelho, F.A.; Felix, V.S.; Pereira, M.O.; de Souza, M.A.T.; Anjos, M.J. Analysis of 19th century ceramic fragments excavated from Pirenópolis (Goiás, Brazil) using FT-IR, Raman, XRF and SEM. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 193, 432–439. [Google Scholar] [CrossRef]
- Scott, D.A.; Warmlander, S.; Mazurek, J.; Quirke, S. Examination of some pigments, grounds, and media from Egyptian cartonnage fragments in the Petrie Museum, University College London. J. Archaeol. Sci. 2009, 36, 923–932. [Google Scholar] [CrossRef]
- Uhlir, K.; Griesser, M.; Buzanich, G.; Wobrauschek, P.; Streli, C.; Wegrzynek, D.; Markowicz, A.; Chinea-Cano, E. Applications of a new portable (micro) XRF instrument having low-z elements determination capability in the field of works of art. X-Ray Spectrom. Int. J. 2008, 37, 450–457. [Google Scholar] [CrossRef]
- Klisińska-Kopacz, A.; Fraczek, P.; Obarzanowski, M.; Czop, J. Non-invasive study of pigment palette used by Olga Boznańska investigated with analytical imaging, XRF, and FTIR spectroscopy. Heritage 2023, 6, 1429–1443. [Google Scholar] [CrossRef]
- Dyer, J.; Sotiropoulou, S. A technical step forward in the integration of visible induced luminescence imaging methods for the study of ancient polychromy. Herit. Sci. 2017, 5, 24. [Google Scholar] [CrossRef]
- Clementi, C.; Doherty, B.; Gentili, P.L.; Miliani, C.; Romani, A.; Brunetti, B.G.; Sgamellotti, A. Vibrational and electronic properties of painting lakes. Appl. Phys. A 2008, 92, 25–33. [Google Scholar] [CrossRef]
- Daniels, V.; Deviese, T.; Hacke, M.; Higgitt, C. Technological insights into madder pigment production in antiquity. Br. Mus. Tech. Res. Bull. 2014, 8, 13–28. [Google Scholar]
- Frost, R.; Martens, W.; Kloprogge, J. Raman spectroscopic study of cinnabar (HgS), realgar (As4S4) and orpiment (As2S3) at 298 and 77k. Neues Jahrb. Mineral. Monatshefte 2002, 10, 469–480. [Google Scholar] [CrossRef]
- Cheng, H.; Zhou, Y.; Frost, R.L. Structure comparison of orpiment and realgar by raman spectroscopy. Spectrosc. Lett. 2017, 50, 23–29. [Google Scholar] [CrossRef]
- Di Stefano, L.M.; Fuchs, R. Characterization of the pigments in a Ptolemaic Egyptian book of the dead papyrus. Archaeol. Anthropol. Sci. 2011, 3, 229–244. [Google Scholar] [CrossRef]
- Calza, C.; Anjos, M.J.; de Souza, S.M.M.; Brancaglion, A., Jr.; Lopes, R.T. Pigments analysis in cartonnages of an Egyptian mummy of the roman period using x-ray fluorescence spectrometry. J. Biol. Res.-Boll. Soc. Ital. Biol. Sper. 2005, 80, 136–138. [Google Scholar]
- Yu, J.; Warren, W.S.; Fischer, M.C. Visualization of vermilion degradation using pump-probe microscopy. Sci. Adv. 2019, 5, eaaw3136. [Google Scholar] [CrossRef]
- Buti, D.; Rosi, F.; Brunetti, B.G.; Miliani, C. In-situ identification of copper-based green pigments on paintings and manuscripts by reflection ftir. Anal. Bioanal. Chem. 2013, 405, 2699–2711. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.E.; Silva, L.P.; Edwards, H.G.; de Oliveira, L.F.C. Diffuse reflection FTIR spectral database of dyes and pigments. Anal. Bioanal. Chem. 2006, 386, 2183–2191. [Google Scholar] [CrossRef] [PubMed]
- Derrick, M.R.; Stulik, D.; Landry, J.M. Infrared Spectroscopy in Conservation Science; Getty Publications: Los Angeles, CA, USA, 2000. [Google Scholar]
- Valadas, S.; Candeias, A.; Dias, C.; Schiavon, N.; Cotovio, M.; Pestana, J.; Gil, M.; Mirão, J. A multi-analytical study of the fifteenth century mural paintings of the Batalha Monastery (Portugal) in view of their conservation. Appl. Phys. A 2013, 113, 989–998. [Google Scholar] [CrossRef]
- Lluveras-Tenorio, A.; Spepi, A.; Pieraccioni, M.; Legnaioli, S.; Lorenzetti, G.; Palleschi, V.; Vendrell, M.; Colombini, M.P.; Tinè, M.R.; Duce, C.; et al. A multi-analytical characterization of artists’ carbon-based black pigments. J. Therm. Anal. Calorim. 2019, 138, 3287–3299. [Google Scholar] [CrossRef]
- Coccato, A.; Jehlicka, J.; Moens, L.; Vandenabeele, P. Raman spectroscopy for the investigation of carbon-based black pigments. J. Raman Spectrosc. 2015, 46, 1003–1015. [Google Scholar] [CrossRef]
- Singer, G.G. Color in ancient Egypt. Erişim Tarihi 2016, 20, 1–16. [Google Scholar]
- Creagh, D.; Lee, A.; Otieno-Alego, V.; Kubik, M. Recent and future developments in the use of radiation for the study of objects of cultural heritage significance. Radiat. Phys. Chem. 2009, 78, 367–374. [Google Scholar] [CrossRef]
- Abo-Taleb, T.; Orabi, E. Degradation of vermilion red color in oil and mural paintings: A comparative applied study. Egypt. J. Archaeol. Restor. Stud. 2019, 9, 197–206. [Google Scholar]
- Eissa, S.; Lampakis, D.; Karapanagiotis, I.; Panayiotou, C.; Afifi, H.A.; Hady, M.A.-E. Investigation of painted stucco in historic buildings of delta, Egypt. Archaeol. Anthropol. Sci. 2017, 9, 727–736. [Google Scholar] [CrossRef]
- Masic, A.; Nicola, M. Nir luminescence and composition of Egyptian blue as markers in archaeometric evaluations. Microsc. Microanal. 2021, 27, 3004–3006. [Google Scholar] [CrossRef]
- Nardes, R.C. Analysis of the pigments in two modern Egyptian papyri using XRF technique. Braz. J. Radiat. Sci. 2021, 9, 1–16. [Google Scholar] [CrossRef]
- Franquelo, M.; Duran, A.; Castaing, J.; Arquillo, D.; Rodriguez, J.P. XRF, µ-XRD and µ-spectroscopic techniques for revealing the composition and structure of paint layers on polychrome sculptures after multiple restorations. Talanta 2012, 89, 462–469. [Google Scholar] [CrossRef]
- Pages-Camagna, S.; Laval, E.; Vigears, D.; Duran, A. non-destructive and in situ analysis of Egyptian wall paintings by x-ray diffraction and x-ray fluorescence portable systems. Appl. Phys. A 2010, 100, 671–681. [Google Scholar] [CrossRef]
- Daveri, A.; Malagodi, M.; Vagnini, M. The bone black pigment identification by non-invasive, in situ infrared reflection spectroscopy. J. Anal. Methods Chem. 2018, 2018, 6595643. [Google Scholar] [CrossRef]
Points | Layer | Color |
---|---|---|
1 | Pigment | Red/Pink |
2 | Pigment | Black |
3 | Pigment | Greenish |
4 | Pigment | Yellow |
5 | Ground | White |
Points | Layer | Color |
---|---|---|
1 | Pigment | Red/Pink |
2 | Pigment | Black |
6 | Pigment | Brown |
µXRF Setup | ||
---|---|---|
Elements with low Z | Voltage | 20 kV |
Current | 400 µA | |
Time per pixel | 100 ms | |
Cycles | 3 | |
Filter | Not used | |
Pixel size | 200 µm | |
Vacuum | Yes | |
Elements with high Z | Voltage | 50 kV |
Current | 600 µA | |
Time per pixel | 100 ms | |
Cycles | 3 | |
Filter | Not used | |
Pixel size | 200 µm | |
Vacuum | No |
Micro-CT Experimental Setups | |
---|---|
Voltage | 60 kV |
Current | 310 µA |
Voxel size | 20 µm |
Acquisition time | 250 ms/step |
Step | 0.20° |
Ground Layers | ||
---|---|---|
Technique | First/Lower Layer | Second/Upper Layer |
µ-XRF (elements) | Mg, Al, Si, S, Cl, K, Ca, Ti, Mn, Fe, As | Si, S, Cl, K, Ca, Fe |
Raman (bands in cm−1) | 163, 284, 1085 | 1010, 1120 |
Pigment | XRF (Elements) | FTIR (Bands in cm−1) | Raman (Bands in cm−1) |
---|---|---|---|
Yellow | Al, Si, S, Cl, K, Ca, Ti, Mn, Fe, As, Sr | - | 133, 149, 199, 288, 306, 352, 379 |
Red/Pink | Al, Si, S, Cl, K, Ca, Ti, Mn, Fe, As, Sr | 667 | - |
Greenish | Al, Si, S, Cl, K, Ca, Ti, Mn, Fe, Cu, Hg, As, Sr | 878, 1402 | - |
Black | - | - | 1346, 1535 |
Pigment | Elements | Compounds |
---|---|---|
Fiber | Si, P S, Cl, K, Ca, Ti, Mn, Fe, Cu, Zn, As, Sr | gypsum, bassanite, and anhydrite |
Pink | Al, Si, S, Cl, K, Ca, Fe, Cu, As | - |
Brown | Si, S, Cl, K, Ca, Ti, Mn, Fe, Cu, Zn e As | - |
Black | C | hydroxyapatite |
Sample | Layer/Pigment | Techniques Employed | Suggested Pigments |
---|---|---|---|
Cartonnages | Internal Ground Layer | µXRF, Raman, FTIR, microCT | Calcite |
External Ground Layer | µXRF, Raman, FTIR | Plaster | |
Yellow | µXRF, Raman, FTIR | Realgar/Orpiment | |
Red/Pink | µXRF, FTIR | Madder Lake | |
Greenish | µXRF, FTIR | Vermilion and Egyptian Blue/Green or Malachite | |
Black | µXRF, Raman | Carbon Black | |
Linen | Base Layer/Fiber | µXRF, XRD | Plaster and Calcite |
Red/Pink | µXRF | Madder Lake and Orpiment | |
Black | µXRF, XRD | Carbon Black | |
Brown | µXRF | Malachite |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanches, F.; Franzi, I.; Cavalcante, J.; Borges, R.; de Paula, A.; Machado, A.; Nardes, R.; Santos, R.; Gama Filho, H.; Freitas, R.; et al. Multi-Technique Characterization of Cartonnage and Linen Samples of an Egyptian Mummy from the Roman Period. Quantum Beam Sci. 2024, 8, 22. https://doi.org/10.3390/qubs8030022
Sanches F, Franzi I, Cavalcante J, Borges R, de Paula A, Machado A, Nardes R, Santos R, Gama Filho H, Freitas R, et al. Multi-Technique Characterization of Cartonnage and Linen Samples of an Egyptian Mummy from the Roman Period. Quantum Beam Science. 2024; 8(3):22. https://doi.org/10.3390/qubs8030022
Chicago/Turabian StyleSanches, Francis, Isis Franzi, Josiane Cavalcante, Roberta Borges, Anderson de Paula, Alessandra Machado, Raysa Nardes, Ramon Santos, Hamilton Gama Filho, Renato Freitas, and et al. 2024. "Multi-Technique Characterization of Cartonnage and Linen Samples of an Egyptian Mummy from the Roman Period" Quantum Beam Science 8, no. 3: 22. https://doi.org/10.3390/qubs8030022
APA StyleSanches, F., Franzi, I., Cavalcante, J., Borges, R., de Paula, A., Machado, A., Nardes, R., Santos, R., Gama Filho, H., Freitas, R., Assis, J., Anjos, M., Lopes, R., & Oliveira, D. (2024). Multi-Technique Characterization of Cartonnage and Linen Samples of an Egyptian Mummy from the Roman Period. Quantum Beam Science, 8(3), 22. https://doi.org/10.3390/qubs8030022