Investigating Brazilian Paintings from the 19th Century by MA-XRF
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miliani, C.; Rosi, F.; Brunetti, B.G.; Sgamellotti, A. In Situ Noninvasive Study of Artworks: The MOLAB Multitechnique Approach. Acc. Chem. Res. 2010, 43, 728–738. [Google Scholar] [CrossRef]
- Brunetti, B.; Miliani, C.; Rosi, F.; Doherty, B.; Monico, L.; Romani, A.; Sgamellotti, A. Non-invasive investigations of paintings by portable instrumentation: The MOLAB experience. Top. Curr. Chem. 2016, 374, 10. [Google Scholar] [CrossRef] [Green Version]
- Ford, T.; Rizzo, A.; Hendriks, E.; Frøysaker, T.; Caruso, F. A non-invasive screening study of varnishes applied to three paintings by Edvard Munch using portable diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Herit. Sci. 2019, 7, 84. [Google Scholar] [CrossRef] [Green Version]
- Monico, L.; Cartechini, L.; Rosi, F.; Chieli, A.; Grazia, C.; De Meyer, S.; Nuyts, G.; Vanmeert, F.; Janssens, K.; Cotte, M.; et al. Probing the chemistry of CdS paints in The Scream by in situ noninvasive spectroscopies and synchrotron radiation x-ray techniques. Sci. Adv. 2020, 6, eaay3514. [Google Scholar] [CrossRef] [PubMed]
- Vagnini, M.; Malagodi, M.; Gabrieli, F.; Azzarelli, M.; Nucera, F.; Daveri, A. An Integrated and Analytical Approach to Study of Mural Paintings: The Case of “Lo Spagna” in Spoleto. Int. J. Conserv. Sci. 2018, 9, 401–412. [Google Scholar]
- Vagnini, M.; Gabrieli, F.; Daveri, A.; Sali, D. Handheld new technology Raman and portable FT-IR spectrometers as complementary tools for the in situ identification of organic materials in modern art. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 176, 174–182. [Google Scholar] [CrossRef]
- Freitas, R.P.; Coelho, F.A.; Felix, V.S.; Pereira, M.O.; de Souza, M.A.T.; Anjos, M.J. Analysis of 19th century ceramic fragments excavated from Pirenópolis (Goiás, Brazil) using FT-IR, Raman, XRF and SEM. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 193, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Sanches, F.A.C.R.d.A.; Nardes, R.C.; Filho, H.S.G.; dos Santos, R.S.; de Araújo, O.M.O.; Machado, A.S.; Calgam, T.; Bueno, R.; Canellas, C.; Gonçalves, E.A.S.; et al. Characterization of a sacred statuette replica of “Nossa Senhora da Conceição Aparecida” using X-ray spectrometry techniques. Radiat. Phys. Chem. 2020, 167, 108266. [Google Scholar] [CrossRef]
- Freitas, R.P.; Ribeiro, I.M.; Calza, C.; Oliveira, A.L.; Felix, V.S.; Ferreira, D.S.; Pimenta, A.R.; Pereira, R.V.; Pereira, M.O.; Lopes, R.T. Analysis of a Brazilian baroque sculpture using Raman spectroscopy and FT-IR. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016, 154, 67–71. [Google Scholar] [CrossRef]
- Freitas, R.P.; Calza, C.; Lima, T.A.; Rabello, A.; Lopes, R.T. EDXRF and multivariate statistical analysis of fragments from Marajoara ceramics. X-ray Spectrom. 2010, 39, 307–310. [Google Scholar] [CrossRef]
- Felix, V.S.; Mello, U.L.; Pereira, M.O.; Oliveira, A.L.; Ferreira, D.S.; Carvalho, C.S.; Silva, F.L.; Pimenta, A.R.; Diniz, M.G.; Freitas, R.P. Analysis of a European cupboard by XRF, Raman and FT-IR. Radiat. Phys. Chem. 2018, 151, 198–204. [Google Scholar] [CrossRef]
- Ribeiro, I.M.N.; Freitas, R.P.; Calza, C.; Oliveira, A.L.C.; Felix, V.S.; Ferreira, D.S.; Batista, R.T.; Gonçalves, E.A.S.; Pereira, M.O.; Brito, P.C.L.; et al. Analysis by raman spectroscopy and XRF of glass beads from excavations in the harbor area of rio de janeiro, Brazil. Vib. Spectrosc. 2016, 87, 111–115. [Google Scholar] [CrossRef]
- Vanhoof, C.; Bacon, J.R.; Ellis, A.T.; Fittschen, U.E.A.; Vincze, L. 2019 atomic spectrometry update—A review of advances in X-ray fluorescence spectrometry and its special applications. J. Anal. At. Spectrom. 2019, 34, 1750–1767. [Google Scholar] [CrossRef]
- Molari, R.; Appoloni, C.R. Pigment analysis in four paintings by Vincent van Gogh by portable X-ray fluorescence (pXRF). Radiat. Phys. Chem. 2021, 181, 109336. [Google Scholar] [CrossRef]
- de Queiroz Baddini, A.L.; de Paula Santos, J.L.V.; Tavares, R.R.; de Paula, L.S.; da Costa Araújo Filho, H.; Freitas, R.P. PLS-DA and data fusion of visible Reflectance, XRF and FTIR spectroscopy in the classification of mixed historical pigments. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 265, 120384. [Google Scholar] [CrossRef]
- Scialla, E.; Improda, P.; Brocchieri, J.; Cardinali, M.; Cerasuolo, A.; Rullo, A.; Zezza, A.; Sabbarese, C. Study of ‘Cona degli Ordini’ by Colantonio with IR and XRF Analyses. Heritage 2023, 6, 1785–1803. [Google Scholar] [CrossRef]
- Klisińska-Kopacz, A.; Frączek, P.; Obarzanowski, M.; Czop, J. Non-Invasive Study of Pigment Palette Used by Olga Boznańska Investigated with Analytical Imaging, XRF, and FTIR Spectroscopy. Heritage 2023, 6, 1429–1443. [Google Scholar] [CrossRef]
- Andrade, R.; Silva, S.H.G.; Benedet, L.; de Araújo, E.F.; Carneiro, M.A.C.; Curi, N. A Proximal Sensor-Based Approach for Clean, Fast, and Accurate Assessment of the Eucalyptus spp. Nutritional Status and Differentiation of Clones. Plants 2023, 12, 561. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, J.; Wang, W.; Liao, S. Evaluation of Portable X-ray Fluorescence Analysis and Its Applicability As a Tool in Geochemical Exploration. Minerals 2023, 13, 166. [Google Scholar] [CrossRef]
- Yatsuk, O.; Ferretti, M.; Gorghinian, A.; Fiocco, G.; Malagodi, M.; Agostino, A.; Gulmini, M. Data from Multiple Portable XRF Units and Their Significance for Ancient Glass Studies. Molecules 2022, 27, 6068. [Google Scholar] [CrossRef]
- Janssens, K.H.A.; Adams, F.; Rindby, A. Microscopic X-ray Fluorescence Analysis; Wiley Chichester: Chichester, UK, 2000. [Google Scholar]
- Arai, T.; Langhoff, N.; Simionovici, A.; Arkadiev, V.; Knüpfer, W.; Cechák, T.; Leonhardt, J.; Chavanne, J.; Erko, A.; Bjeoumikhov, A.; et al. Handbook of Practical X-ray Fluorescence Analysis; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar] [CrossRef]
- Campos, P.H.O.V.; Kajiya, E.A.M.; Rizzutto, M.A.; Neiva, A.C.; Pinto, H.P.F.; Almeida, P.A.D. X-ray fluorescence and imaging analyses of paintings by the Brazilian artist Oscar Pereira Da Silva. Radiat. Phys. Chem. 2014, 95, 362–367. [Google Scholar] [CrossRef]
- Appoloni, C.R.; Blonski, M.S.; Parreira, P.S.; Souza, L.A.C. Study of the pigments elementary chemical composition of a painting in process of attribution to Gainsborough employing a portable X-rays fluorescence system. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2007, 580, 710–713. [Google Scholar] [CrossRef]
- Neiva, A.C.; Marcondes, M.A.; Pinto, H.P.F.; Almeida, P.A.D. Analysis of photographs and photo-paintings by energy-dispersive X-ray fluorescence spectroscopy. Radiat. Phys. Chem. 2014, 95, 378–380. [Google Scholar] [CrossRef]
- Colomban, P.; Simsek Franci, G.; Burlot, J.; Gallet, X.; Zhao, B.; Clais, J.-B. Non-Invasive On-Site pXRF Analysis of Coloring Agents, Marks and Enamels of Qing Imperial and Non-Imperial Porcelain. Ceramics 2023, 6, 447–474. [Google Scholar] [CrossRef]
- Burlot, J.; Gallet, X.; Simsek Franci, G.; Bellot-Gurlet, L.; Colomban, P. Non-Invasive On-Site pXRF Analysis of Coloring Agents of Under- and Over-Glazes: Variability and Representativity of Measurements on Porcelain. Colorants 2023, 2, 42–57. [Google Scholar] [CrossRef]
- Trojek, T.; Trojková, D. Uncertainty of Quantitative X-ray Fluorescence Micro-Analysis of Metallic Artifacts Caused by Their Curved Shapes. Materials 2023, 16, 1133. [Google Scholar] [CrossRef]
- Mathoho, E.N.; Nyamushosho, R.T.; Chirikure, S. Archaeometallurgical Explorations of Bloomery Iron Smelting at Mutoti 2, an Early Iron Age Site in Venda, Northern South Africa. Metals 2023, 13, 269. [Google Scholar] [CrossRef]
- Felix, V.S.; Pereira, M.O.; Freitas, R.P.; Aranha, P.J.M.; Heringer, P.C.S.; Anjos, M.J.; Lopes, R.T. Analysis of silver coins from colonial Brazil by hand held XRF and micro-XRF. Appl. Radiat. Isot. 2020, 166, 109409. [Google Scholar] [CrossRef]
- Cesareo, R.; Franco Jordan, R.; Fernandez, A.; Bustamante, A.; Fabian, J.; del Pilar Zambrano, S.; Azeredo, S.; Lopes, R.T.; Ingo, G.M.; Riccucci, C.; et al. Analysis of the spectacular gold and silver from the Moche tomb “Señora de Cao”. X-ray Spectrom. 2016, 45, 138–154. [Google Scholar] [CrossRef]
- Kulkova, M.A.; Kashuba, M.T.; Kulkov, A.M.; Vetrova, M.N. Pottery of Early Iron Age from the Glinjeni II-La Șanț (North-Western Pontic Sea Region): Composition, Technology and Raw Material Sources. Heritage 2021, 4, 2853–2875. [Google Scholar] [CrossRef]
- Zhushchikhovskaya, I.S.; Buravlev, I.Y. Ancient Ceramic Casting Molds from the Southern Russian Far East: Identification of Alloy Traces via Application of Nondestructive SEM-EDS and pXRF Methods. Heritage 2021, 4, 2643–2667. [Google Scholar] [CrossRef]
- Demirsar Arli, B.; Simsek Franci, G.; Kaya, S.; Arli, H.; Colomban, P. Portable X-ray Fluorescence (p-XRF) Uncertainty Estimation for Glazed Ceramic Analysis: Case of Iznik Tiles. Heritage 2020, 3, 1302–1329. [Google Scholar] [CrossRef]
- Dao, E.; Zeller, M.P.; Wainman, B.C.; Farquharson, M.J. Feasibility of the use of a handheld XRF analyzer to measure skin iron to monitor iron levels in critical organs. J. Trace Elem. Med. Biol. 2018, 50, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Jyothsna, S.; Manjula, G.; Chandar Rao, P.; Mahesh Kumar, A.; Sammaiah, D.; Nageswara Rao, A.S. Computational screening of trace elemental concentrations in Hemidesmus indicus L. A potential herbal plant used against skin diseases by ED-XRF-Technique. Mater. Today Proc. 2021, 46, 2221–2225. [Google Scholar] [CrossRef]
- Mera, M.F.; Rubio, M.; Pérez, C.A.; Cazón, S.; Merlo, M.; Muñoz, S.E. SR induced micro-XRF for studying the spatial distribution of Pb in plants used for soil phytoremediation. Radiat. Phys. Chem. 2019, 154, 69–73. [Google Scholar] [CrossRef]
- Santos, H.C.; Caliri, C.; Pappalardo, L.; Catalano, R.; Orlando, A.; Rizzo, F.; Romano, F.P. Identification of forgeries in historical enamels by combining the non-destructive scanning XRF imaging and alpha-PIXE portable techniques. Microchem. J. 2016, 124, 241–246. [Google Scholar] [CrossRef]
- Romano, F.P.; Caliri, C.; Nicotra, P.; Di Martino, S.; Pappalardo, L.; Rizzo, F.; Santos, H.C. Real-time elemental imaging of large dimension paintings with a novel mobile macro X-ray fluorescence (MA-XRF) scanning technique. J. Anal. At. Spectrom. 2017, 32, 773–781. [Google Scholar] [CrossRef]
- Alfeld, M.; Pedroso, J.V.; van Eikema Hommes, M.; Van der Snickt, G.; Tauber, G.; Blaas, J.; Haschke, M.; Erler, K.; Dik, J.; Janssens, K. A mobile instrument for in situ scanning macro-XRF investigation of historical paintings. J. Anal. At. Spectrom. 2013, 28, 760–767. [Google Scholar] [CrossRef]
- Alfeld, M.; de Viguerie, L. Recent developments in spectroscopic imaging techniques for historical paintings—A review. Spectrochim. Acta Part B At. Spectrosc. 2017, 136, 81–105. [Google Scholar] [CrossRef]
- Van der Snickt, G.; Legrand, S.; Slama, I.; Van Zuien, E.; Gruber, G.; Van der Stighelen, K.; Klaassen, L.; Oberthaler, E.; Janssens, K. In situ macro X-ray fluorescence (MA-XRF) scanning as a non-invasive tool to probe for subsurface modifications in paintings by P.P. Rubens. Microchem. J. 2018, 138, 238–245. [Google Scholar] [CrossRef]
- Legrand, S.; Vanmeert, F.; Van der Snickt, G.; Alfeld, M.; De Nolf, W.; Dik, J.; Janssens, K. Examination of historical paintings by state-of-the-art hyperspectral imaging methods: From scanning infra-red spectroscopy to computed X-ray laminography. Herit. Sci. 2014, 2, 13. [Google Scholar] [CrossRef] [Green Version]
- Van der Snickt, G.; Legrand, S.; Caen, J.; Vanmeert, F.; Alfeld, M.; Janssens, K. Chemical imaging of stained-glass windows by means of macro X-ray fluorescence (MA-XRF) scanning. Microchem. J. 2016, 124, 615–622. [Google Scholar] [CrossRef]
- Janssens, K.; Alfeld, M.; der Snickt, G.; De Nolf, W.; Vanmeert, F.; Radepont, M.; Monico, L.; Dik, J.; Cotte, M.; Falkenberg, G.; et al. The Use of Synchrotron Radiation for the Characterization of Artists’ Pigments and Paintings. Annu. Rev. Anal. Chem. 2013, 6, 399–425. [Google Scholar] [CrossRef]
- Pereira, M.O.; Felix, V.S.; Oliveira, A.L.; Ferreira, D.S.; Pimenta, A.R.; Carvalho, C.S.; Silva, F.L.; Perez, C.A.; Galante, D.; Freitas, R.P. Investigating counterfeiting of an artwork by XRF, SEM-EDS, FTIR and synchrotron radiation induced MA-XRF at LNLS-BRAZIL. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 246, 118925. [Google Scholar] [CrossRef] [PubMed]
- Alberti, R.; Frizzi, T.; Bombelli, L.; Gironda, M.; Aresi, N.; Rosi, F.; Miliani, C.; Tranquilli, G.; Talarico, F.; Cartechini, L. CRONO: A fast and reconfigurable macro X-ray fluorescence scanner for in-situ investigations of polychrome surfaces. X-ray Spectrom. 2017, 46, 297–302. [Google Scholar] [CrossRef] [Green Version]
- Freitas, R.P.; Felix, V.S.; Pereira, M.O.; Santos, R.S.; Oliveira, A.L.; Gonçalves, E.A.S.; Ferreira, D.S.; Pimenta, A.R.; Pereira, L.O.; Anjos, M.J. Micro-XRF analysis of a Brazilian polychrome sculpture. Microchem. J. 2019, 149, 104020. [Google Scholar] [CrossRef]
- Alfeld, M.; Wahabzada, M.; Bauckhage, C.; Kersting, K.; van der Snickt, G.; Noble, P.; Janssens, K.; Wellenreuther, G.; Falkenberg, G. Simplex Volume Maximization (SiVM): A matrix factorization algorithm with non-negative constrains and low computing demands for the interpretation of full spectral X-ray fluorescence imaging data. Microchem. J. 2017, 132, 179–184. [Google Scholar] [CrossRef]
- Lins, S.A.B.; Manso, M.; Lins, P.A.B.; Brunetti, A.; Sodo, A.; Gigante, G.E.; Fabbri, A.; Branchini, P.; Tortora, L.; Ridolfi, S. Modular MA-XRF Scanner Development in the Multi-Analytical Characterisation of a 17th Century Azulejo from Portugal. Sensors 2021, 21, 1913. [Google Scholar] [CrossRef]
- Alfeld, M.; Laurenze-Landsberg, C.; Denker, A.; Janssens, K.; Noble, P. Neutron activation autoradiography and scanning macro-XRF of Rembrandt van Rijn’s Susanna and the Elders (Gemäldegalerie Berlin): A comparison of two methods for imaging of historical paintings with elemental contrast. Appl. Phys. A 2015, 119, 795–805. [Google Scholar] [CrossRef]
- Calza, C.; Oliveira, D.F.; de Souza Rocha, H.; Pedreira, A.; Lopes, R.T. Analysis of the painting “Gioventú” (Eliseu Visconti) using EDXRF and computed radiography. Appl. Radiat. Isot. 2010, 68, 861–865. [Google Scholar] [CrossRef]
- De Campos, P.H.O.V. Caracterização de Pinturas da Artista Anita Malfatti Por Meio de Técnicas não Destrutivas. Ph.D. Thesis, Universidade de São Paulo, São Paulo, Brazil, 2015. [Google Scholar] [CrossRef] [Green Version]
- Calza, C.; Pereira, M.O.; Pedreira, A.; Lopes, R.T. Characterization of Brazilian artists’ palette from the XIX century using EDXRF portable system. Appl. Radiat. Isot. 2010, 68, 866–870. [Google Scholar] [CrossRef]
- Solé, V.A.; Papillon, E.; Cotte, M.; Walter, P.; Susini, J. A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim. Acta Part B At. Spectrosc. 2007, 62, 63–68. [Google Scholar] [CrossRef]
- Alfeld, M.; Janssens, K. Strategies for processing mega-pixel X-ray fluorescence hyperspectral data: A case study on a version of Caravaggio’s painting Supper at Emmaus. J. Anal. At. Spectrom. 2015, 30, 777–789. [Google Scholar] [CrossRef]
- Gonzalez, V.; Calligaro, T.; Wallez, G.; Eveno, M.; Toussaint, K.; Menu, M. Composition and microstructure of the lead white pigment in Masters paintings using HR Synchrotron XRD. Microchem. J. 2016, 125, 43–49. [Google Scholar] [CrossRef]
- Lins, S.A.B.; Gigante, G.E.; Cesareo, R.; Ridolfi, S.; Brunetti, A. Testing the accuracy of the calculation of gold leaf thickness by mc simulations and MA-XRF scanning. Appl. Sci. 2020, 10, 3582. [Google Scholar] [CrossRef]
- Cesareo, R.; de Assis, J.T.; Roldán, C.; Bustamante, A.D.; Brunetti, A.; Schiavon, N. Multilayered samples reconstructed by measuring Kα/Kβ or Lα/Lβ X-ray intensity ratios by EDXRF. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2013, 312, 15–22. [Google Scholar] [CrossRef]
- Cesareo, R.; Brunetti, A.; Ridolfi, S. Pigment layers and precious metal sheets by energy-dispersive x-ray fluorescence analysis. X-ray Spectrom. 2008, 37, 309–316. [Google Scholar] [CrossRef]
- Pessanha, S.; Queralt, I.; Carvalho, M.L.; Sampaio, J.M. Determination of gold leaf thickness using X-ray fluorescence spectrometry: Accuracy comparison using analytical methodology and Monte Carlo simulations. Appl. Radiat. Isot. 2019, 152, 6–10. [Google Scholar] [CrossRef]
- Lopes, F.; Melquiades, F.L.; Appoloni, C.R.; Cesareo, R.; Rizzutto, M.; Silva, T.F. Thickness determination of gold layer on pre-Columbian objects and a gilding frame, combining pXRF and PLS regression. X-ray Spectrom. 2016, 45, 344–351. [Google Scholar] [CrossRef]
- Cesareo, R.; Ridolfi, S.; Brunetti, A.; Lopes, R.T.; Gigante, G.E. First results on the use of a EDXRF scanner for 3D imaging of paintings. Acta IMEKO 2018, 7, 8. [Google Scholar] [CrossRef]
- Dik, J.; Janssens, K.; Van Der Snickt, G.; van der Loeff, L.; Rickers, K.; Cotte, M. Visualization of a Lost Painting by Vincent van Gogh Using Synchrotron Radiation Based X-ray Fluorescence Elemental Mapping. Anal. Chem. 2008, 80, 6436–6442. [Google Scholar] [CrossRef]
- Alfeld, M.; Snickt, G.; Vanmeert, F.; Janssens, K.; Dik, J.; Appel, K.; Loeff, L.; Chavannes, M.; Meedendorp, T.; Hendriks, E. Scanning XRF investigation of a Flower Still Life and its underlying composition from the collection of the Kröller–Müller Museum. Appl. Phys. A 2013, 111, 165–175. [Google Scholar] [CrossRef]
- Bell, I.M.; Clark, R.J.H.; Gibbs, P.J. Raman spectroscopic library of natural and synthetic pigments (pre- ≈ 1850 AD). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1997, 53, 2159–2179. [Google Scholar] [CrossRef]
- Barnett, J.R.; Miller, S.; Pearce, E. Colour and art: A brief history of pigments. Opt. Laser Technol. 2006, 38, 445–453. [Google Scholar] [CrossRef]
- Perez-Rodriguez, J.L.; de Haro, M.d.C.J.; Siguenza, B.; Martinez-Blanes, J.M. Green pigments of Roman mural paintings from Seville Alcazar. Appl. Clay Sci. 2015, 116–117, 211–219. [Google Scholar] [CrossRef]
- Jorge-Villar, S.E.; Edwards, H.G.M. Green and blue pigments in Roman wall paintings: A challenge for Raman spectroscopy. J. Raman Spectrosc. 2021, 52, 2190–2203. [Google Scholar] [CrossRef]
- Cucci, C.; Picollo, M.; Chiarantini, L.; Uda, G.; Fiori, L.; De Nigris, B.; Osanna, M. Remote-sensing hyperspectral imaging for applications in archaeological areas: Non-invasive investigations on wall paintings and on mural inscriptions in the Pompeii site. Microchem. J. 2020, 158, 105082. [Google Scholar] [CrossRef]
- Eremin, K.; Stenger, J.; Huang, J.-F.; Aspuru-Guzik, A.; Betley, T.; Vogt, L.; Kassal, I.; Speakman, S.; Khandekar, N. Examination of pigments on Thai manuscripts: The first identification of copper citrate. J. Raman Spectrosc. 2008, 39, 1057–1065. [Google Scholar] [CrossRef]
- Franquelo, M.L.; Perez-Rodriguez, J.L. A new approach to the determination of the synthetic or natural origin of red pigments through spectroscopic analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016, 166, 103–111. [Google Scholar] [CrossRef]
- Yu, J.; Warren, W.S.; Fischer, M.C. Visualization of vermilion degradation using pump-probe microscopy. Sci. Adv. 2019, 5, eaaw3136. [Google Scholar] [CrossRef] [Green Version]
- Miliani, C.; Monico, L.; Melo, M.J.; Fantacci, S.; Angelin, E.M.; Romani, A.; Janssens, K. Recent insights into the photochemistry of artists’ pigments and dyes: Towards better understanding and prevention of colour change in works of art. Angew. Chem. 2018, 130, 7447–7457. [Google Scholar] [CrossRef]
- Freitas, R.P.; Ribeiro, I.M.; Calza, C.; Oliveira, A.L.; Silva, M.L.; Felix, V.S.; Ferreira, D.S.; Coelho, F.A.; Gaspar, M.D.; Pimenta, A.R.; et al. Analysis of clay smoking pipes from archeological sites in the region of the Guanabara Bay (Rio de Janeiro, Brazil) by FT-IR. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016, 163, 140–144. [Google Scholar] [CrossRef] [PubMed]
- Vermeulen, M.; McGeachy, A.; Xu, B.; Chopp, H.; Katsaggelos, A.; Meyers, R.; Alfeld, M.; Walton, M. XRFast a new software package for processing of MA-XRF datasets using machine learning. J. Anal. At. Spectrom. 2022, 37, 2130–2143. [Google Scholar] [CrossRef]
- Silva, T.F.; Trindade, G.F.; Rizzutto, M.A. Multivariate analysis applied to particle-induced X-ray emission mapping. X-ray Spectrom. 2018, 47, 372–381. [Google Scholar] [CrossRef]
- Ferreira, E.S.B.; Gros, D.; Wyss, K.; Scherrer, N.C.; Zumbühl, S.; Marone, F. Faded shine…. The degradation of brass powder in two nineteenth century paintings. Herit. Sci. 2015, 3, 24. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pimenta, A.; Felix, V.; Oliveira, M.; Andrade, M.; Oliveira, M.; Freitas, R. Investigating Brazilian Paintings from the 19th Century by MA-XRF. Quantum Beam Sci. 2023, 7, 9. https://doi.org/10.3390/qubs7010009
Pimenta A, Felix V, Oliveira M, Andrade M, Oliveira M, Freitas R. Investigating Brazilian Paintings from the 19th Century by MA-XRF. Quantum Beam Science. 2023; 7(1):9. https://doi.org/10.3390/qubs7010009
Chicago/Turabian StylePimenta, André, Valter Felix, Matheus Oliveira, Miguel Andrade, Marcelo Oliveira, and Renato Freitas. 2023. "Investigating Brazilian Paintings from the 19th Century by MA-XRF" Quantum Beam Science 7, no. 1: 9. https://doi.org/10.3390/qubs7010009
APA StylePimenta, A., Felix, V., Oliveira, M., Andrade, M., Oliveira, M., & Freitas, R. (2023). Investigating Brazilian Paintings from the 19th Century by MA-XRF. Quantum Beam Science, 7(1), 9. https://doi.org/10.3390/qubs7010009