Virtual Angstrom-Beam Electron Diffraction Analysis for Zr80Pt20 Metallic Glasses
Abstract
:1. Introduction
2. Simulation
3. Results and Discussion
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Elliott, S.R. Physics of Amorphous Materials, 2nd ed.; Longman: London, UK, 1990. [Google Scholar]
- Zallen, R. The Physics of Amorphous Solids; Wiley: New York, NY, USA, 1983. [Google Scholar]
- Ma, E. Tuning Order in Disorder. Nat. Mater. 2015, 14, 547–552. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.Q.; Ma, E. Atomic-Level Structure and Structure-Property Relationship in Metallic Glasses. Prog. Mater. Sci. 2011, 56, 379–473. [Google Scholar] [CrossRef]
- Royall, C.P.; Williams, S.R. The Role of Local Structure in Dynamical Arrest. Phys. Rep. 2015, 560, 1–75. [Google Scholar] [CrossRef]
- Kohara, S.; Salmon, P.S. Recent Advances in Identifying the Structure of Liquid and Glassy Oxide and Chalcogenide Materials under Extreme Conditions: A Joint Approach Using Diffraction and Atomistic Simulation. Adv. Phys. X 2016, 1, 640–660. [Google Scholar] [CrossRef]
- Sheng, H.W.; Luo, W.K.; Alamgir, F.M.; Bai, J.M.; Ma, E. Atomic Packing and Short-to-Medium-Range Order in Metallic Glasses. Nature 2006, 439, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Bernal, J.D. A Geometrical Approach to the Structure of Liquids. Nature 1959, 17, 141–147. [Google Scholar] [CrossRef]
- Evans, D.L.; King, S.V. Random Network Model of Vitreous Silica. Nature 1966, 212, 1353–1354. [Google Scholar] [CrossRef]
- Miracle, D.B. A Structural Model for Metallic Glasses. Nat. Mater. 2004, 3, 697–702. [Google Scholar] [CrossRef] [PubMed]
- Miracle, D.B. The Efficient Cluster Packing Model—An Atomic Structural Model for Metallic Glasses. Acta Mater. 2006, 54, 4317–4336. [Google Scholar] [CrossRef]
- Borodin, V.A. Local Atomic Arrangements in Polytetrahedral Materials. Philos. Mag. A Phys. Condens. Matter Struct. Defects Mech. Prop. 1999, 79, 1887–1907. [Google Scholar] [CrossRef]
- Hirata, A.; Guan, P.; Fujita, T.; Hirotsu, Y.; Inoue, A.; Yavari, A.R.; Sakurai, T.; Chen, M. Direct Observation of Local Atomic Order in a Metallic Glass. Nat. Mater. 2011, 10, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Hirata, A.; Kohara, S.; Asada, T.; Arao, M.; Yogi, C.; Imai, H.; Tan, Y.; Fujita, T.; Chen, M. Atomic-Scale Disproportionation in Amorphous Silicon Monoxide. Nat. Commun. 2016, 7, 11591. [Google Scholar] [CrossRef] [PubMed]
- Hirata, A.; Ichitsubo, T.; Guan, P.F.; Fujita, T.; Chen, M.W. Distortion of Local Atomic Structures in Amorphous Ge-Sb-Te Phase Change Materials. Phys. Rev. Lett. 2018, 120, 205502. [Google Scholar] [CrossRef] [PubMed]
- Hirata, A.; Kang, L.; Fujita, T.; Klumov, B.; Matsue, K.; Kotani, M.; Yavari, A.R.; Chen, M. Geometric frustration of icosahedron in metallic glasses. Science 2013, 341, 376–379. [Google Scholar] [CrossRef] [PubMed]
- EAM Potentials. Available online: https://sites.google.com/site/eampotentials/ (accessed on 1 September 2022).
- Thompson, A.P.; Aktulga, H.M.; Berger, R.; Bolintineanu, D.S.; Brown, W.M.; Crozier, P.S.; in ’t Veld, P.J.; Kohlmeyer, A.; Moore, S.G.; Nguyen, T.D.; et al. LAMMPS—A Flexible Simulation Tool for Particle-Based Materials Modeling at the Atomic, Meso, and Continuum Scales. Comput. Phys. Commun. 2022, 271, 108171. [Google Scholar] [CrossRef]
- Kirkland, E.J. Advanced Computing in Electron Microscopy; Plenum: New York, NY, USA, 1998. [Google Scholar]
- Hui, X.; Fang, H.Z.; Chen, G.L.; Shang, S.L.; Wang, Y.; Qin, J.Y.; Liu, Z.K. Atomic Structure of Zr41.2Ti13.8Cu12.5Ni10Be22.5 Bulk Metallic Glass Alloy. Acta Mater. 2009, 57, 376–391. [Google Scholar] [CrossRef]
- Lee, M.; Lee, C.M.; Lee, K.R.; Ma, E.; Lee, J.C. Networked Interpenetrating Connections of Icosahedra: Effects on Shear Transformations in Metallic Glass. Acta Mater. 2011, 59, 159–170. [Google Scholar] [CrossRef]
- Soklaski, R.; Nussinov, Z.; Markow, Z.; Kelton, K.F.; Yang, L. Connectivity of Icosahedral Network and a Dramatically Growing Static Length Scale in Cu-Zr Binary Metallic Glasses. Phys. Rev. B 2013, 87, 184203. [Google Scholar] [CrossRef]
- Saida, J.; Itoh, K.; Sato, S.; Imafuku, M.; Sanada, T.; Inoue, A. Evaluation of the Local Environment for Nanoscale Quasicrystal Formation in Zr80Pt20 Glassy Alloy Using Voronoi Analysis. J. Phys. Condens. Matter 2009, 21, 375104. [Google Scholar] [CrossRef] [PubMed]
- Mauro, N.A.; Wessels, V.; Bendert, J.C.; Klein, S.; Gangopadhyay, A.K.; Kramer, M.J.; Hao, S.G.; Rustan, G.E.; Kreyssig, A.; Goldman, A.I.; et al. Short- and Medium-Range Order in Zr80Pt20 Liquids. Phys. Rev. B 2011, 83, 184109. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hirata, A. Virtual Angstrom-Beam Electron Diffraction Analysis for Zr80Pt20 Metallic Glasses. Quantum Beam Sci. 2022, 6, 28. https://doi.org/10.3390/qubs6040028
Hirata A. Virtual Angstrom-Beam Electron Diffraction Analysis for Zr80Pt20 Metallic Glasses. Quantum Beam Science. 2022; 6(4):28. https://doi.org/10.3390/qubs6040028
Chicago/Turabian StyleHirata, Akihiko. 2022. "Virtual Angstrom-Beam Electron Diffraction Analysis for Zr80Pt20 Metallic Glasses" Quantum Beam Science 6, no. 4: 28. https://doi.org/10.3390/qubs6040028
APA StyleHirata, A. (2022). Virtual Angstrom-Beam Electron Diffraction Analysis for Zr80Pt20 Metallic Glasses. Quantum Beam Science, 6(4), 28. https://doi.org/10.3390/qubs6040028