Effect of Irradiation on Corrosion Behavior of 316L Steel in Lead-Bismuth Eutectic with Different Oxygen Concentrations
Abstract
:1. Introduction
2. Experiments
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tsujimoto, K.; Oigawa, H.; Kikuchi, K.; Kurata, Y.; Mizumoto, M.; Sasa, T.; Saito, S.; Nishihara, K.; Umeno, M.; Takei, H. Feasibility of lead-bismuth-cooled accelerator-driven system for minor-actinide transmutation. Nucl. Tech. 2008, 161, 315–328. [Google Scholar] [CrossRef]
- Tsujimoto, K.; Nishihara, K.; Takei, H.; Sugawara, T.; Kurata, Y.; Saito, S.; Obayashi, H.; Sasa, T.; Kikuchi, K.; Tezuka, M.; et al. Feasibility study for transmutation system using lead-bismuth cooled accelerator-driven system. JAEA-Research 2010 , 2010–2012. [Google Scholar]
- Müller, G.; Heinzel, A.; Schumacher, G.; Weisenburger, A. Control of oxygen concentration in liquid lead and lead–bismuth. J. Nucl. Mater. 2003, 321, 256–262. [Google Scholar] [CrossRef]
- Müller, G.; Schumacher, G.; Zimmermann, F. Investigation on oxygen controlled liquid lead corrosion of surface treated steels. J. Nucl. Mater. 2000, 278, 85–95. [Google Scholar] [CrossRef]
- Tsisar, V.; Schroer, C.; Wedemeyer, O.; Skrypnik, A.; Konys, J. Characterization of corrosion phenomena and kinetics on T91 ferritic/martensitic steel exposed at 450 and 550 °C to flowing Pb-Bi eutectic with 10−7 mass% dissolved oxygen. J. Nucl. Mater. 2017, 494, 422–438. [Google Scholar] [CrossRef]
- Schroer, C.; Wedemeyer, O.; Skrypnik, A.; Novotny, J.; Konys, J. Corrosion kinetics of Steel T91 in flowing oxygen-containing lead–bismuth eutectic at 450 °C. J. Nucl. Mater. 2012, 431, 105–112. [Google Scholar] [CrossRef]
- Stergar, E.; Eremin, S.G.; Gavrilov, S.; Lambrecht, M.; Makarov, O.; Iakovlev, V. Influence of LBE long term exposure and simultaneous fast neutron irradiation on the mechanical properties of T91 and 316L. J. Nucl. Mater. 2016, 473, 28–34. [Google Scholar] [CrossRef]
- Magielsen, A.J.; Jong, M.; Bakker, T.; Luzginova, N.V.; Mutnuru, R.K.; Ketema, D.J.; Fedorov, A.V. Irradiation of structural materials in contact with lead bismuth eutectic in the high flux reactor. J. Nucl. Mater. 2011, 415, 311–315. [Google Scholar] [CrossRef]
- Deloffre, P.; Terlain, A.; Barbier, F. Corrosion and deposition of ferrous alloys in molten lead–bismuth. J. Nucl. Mater. 2002, 301, 35–39. [Google Scholar] [CrossRef]
- Kurata, Y. Corrosion behavior of cold-worked austenitic stainless steels in liquid lead–bis muth eutectic. J. Nucl. Mater. 2014, 448, 239–249. [Google Scholar] [CrossRef]
- Heinzel, A.; Weisenburger, A.; Müller, G. Corrosion behavior of austenitic steels in liquid leadbismuth containing 10-6 wt% and 10-8 wt% oxygen at 400–500 °C. J. Nucl. Mater. 2014, 448, 163–171. [Google Scholar] [CrossRef]
- Okubo, N.; Fujimura, Y. Irradiation Influence on Swelling and Corrosion Behavior of ADS Beam Window Materials, T91 Steels, in Lead Bismuth. In Proceedings of the 14th International Workshop on Spallation Materials Technology, JPS Conference Proceedings, Fukushima, Japan, 11–16 November 2018. [Google Scholar] [CrossRef] [Green Version]
- Jublot-Leclerca, S.; Li, X.; Legras, L.; Lescoat, M.-L.; Fortuna, F.; Gentilsa, A. Microstructure of Au-ion irradiated 316L and FeNiCr austenitic stainless steels. J. Nucl. Mater. 2016, 480, 436–446. [Google Scholar] [CrossRef]
- Ziegler, J.F. SRIM-2003. Nucl. Instr. Meth. B 2004, 219–220, 1027–1036. [Google Scholar] [CrossRef] [Green Version]
- Sugawara, T.; Yamaguchi, K. Measurement Experiment of Oxygen Concentration in Liquid Lead-Bismuth Eutectic; Fabrication of Oxygen Sensor and Measurement under Static Condition. 2015. Available online: https://inis.iaea.org/search/search.aspx?orig_q=RN:47070968 (accessed on 6 April 2021).
- LBE Handbook; NEA No. 7268; OECD/NEA: Boulogne-Billancourt, France, 2015.
- Watanabe, Y.; Morishita, K.; Nakasuji, T.; Ando, M.; Tanigawa, H. Helium effects on microstructural change in RAFM steel under irradiation: Reaction rate theory modeling. Nucl. Instr. Meth. Phys. Res. B 2015, 352, 115–120. [Google Scholar] [CrossRef]
Fe | Cr | Ni | Mo | Mn | Si | P | C | S |
---|---|---|---|---|---|---|---|---|
Bal. | 17.46 | 12.11 | 2.19 | 0.82 | 0.51 | 0.027 | 0.017 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okubo, N.; Fujimura, Y.; Tomobe, M. Effect of Irradiation on Corrosion Behavior of 316L Steel in Lead-Bismuth Eutectic with Different Oxygen Concentrations. Quantum Beam Sci. 2021, 5, 27. https://doi.org/10.3390/qubs5030027
Okubo N, Fujimura Y, Tomobe M. Effect of Irradiation on Corrosion Behavior of 316L Steel in Lead-Bismuth Eutectic with Different Oxygen Concentrations. Quantum Beam Science. 2021; 5(3):27. https://doi.org/10.3390/qubs5030027
Chicago/Turabian StyleOkubo, Nariaki, Yuki Fujimura, and Masakatsu Tomobe. 2021. "Effect of Irradiation on Corrosion Behavior of 316L Steel in Lead-Bismuth Eutectic with Different Oxygen Concentrations" Quantum Beam Science 5, no. 3: 27. https://doi.org/10.3390/qubs5030027
APA StyleOkubo, N., Fujimura, Y., & Tomobe, M. (2021). Effect of Irradiation on Corrosion Behavior of 316L Steel in Lead-Bismuth Eutectic with Different Oxygen Concentrations. Quantum Beam Science, 5(3), 27. https://doi.org/10.3390/qubs5030027