Correlation between Microstructural Change and Irradiation Hardening Behavior of He-Irradiated V–Cr–Ti Alloys with Low Ti Addition
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. TEM Observation
3.2. APT Observation
3.3. Nano-Indentation Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Matsui, H.; Fukumoto, K.; Smith, D.; Chung, H.M.; van Witzenburg, W.; Votinov, S. Status of vanadium alloys for fusion reactors. J. Nucl. Mater. 1996, 233-237, 92–99. [Google Scholar] [CrossRef] [Green Version]
- Kurtz, R.J.; Abe, K.; Chernov, V.M. Vanadium alloys for fusion blanket applications. J. Nucl. Mater. 2004, 329–333, 47–55. [Google Scholar] [CrossRef]
- Muroga, T.; Chen, J.M.; Chernov, V.; Kurtz, R.J.; Le Flem, M. Present status of vanadium alloys for fusion applications. J. Nucl. Mater. 2014, 455, 263–268. [Google Scholar] [CrossRef]
- Smith, D.L.; Chung, H.M.; Loomis, B.A.; Tsai, H.-C. Reference vanadium alloy V-4Cr-4Ti for fusion application. J. Nucl. Mater. 1996, 233–237, 356–363. [Google Scholar] [CrossRef] [Green Version]
- Chung, H.M.; Loomis, B.A.; Smith, D.L. Properties of V-4Cr-4Ti for application as fusion reactor structural components. Fusion Eng. Des. 1994, 29, 455–464. [Google Scholar] [CrossRef] [Green Version]
- Zinkle, S.J.; Matsui, H.; Smith, D.; Rowcliffe, A.; van Osch, E.; Abe, K.; Kazakov, V. Research and development on vanadium alloys for fusion applications. J. Nucl. Mater. 1998, 258–263, 205–214. [Google Scholar] [CrossRef]
- Nagasaka, T.; Muroga, T.; Imamura, M.; Tomiyama, S.; Sakata, M. Fabrication of High-Purity V-4CR-4TI Low Activation Alloy Products. Fusion Technol. 2001, 39, 659–663. [Google Scholar] [CrossRef]
- Muroga, T.; Nagasaka, T.; Abe, K.; Chernov, V.M.; Matsui, H.; Smith, D.; Xu, Z.-Y.; Zinkle, S.J. Vanadium alloys—Overview and recent results. J. Nucl. Mater. 2002, 307–311, 547–554. [Google Scholar] [CrossRef]
- Nagasaka, T.; Muroga, T.; Wu, Y.; Xu, Z.; Imamura, M. Low activation characteristics of several heats of V-4Cr-4Ti ingots. J. Plasma Fusion Res. 2002, 5, 545–550. [Google Scholar]
- Muroga, T. Vanadium Alloys for Fusion Blanket Applications. Mater. Trans. 2005, 46, 405–411. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, T.; Nagasaka, T.; Muroga, T.; Yamazaki, M.; Toyama, T. Activation analysis for the reference low-activation vanadium alloy NIFS-HEAT-2. Nucl. Mater. Energy 2020, 25, 100782. [Google Scholar] [CrossRef]
- Nagasaka, T. Grant-in-Aid for Scientific Research (A) 20H00144. Unpublished work. 2020. [Google Scholar]
- Fukumoto, K.; Tone, K.; Onitsuka, T.; Ishigami, T. Effect of Ti addition on microstructural evolution of V–Cr–Ti alloys to balance irradiation hardening with swelling suppression. Nucl. Mater. Energy 2018, 15, 122–127. [Google Scholar] [CrossRef]
- Fukumoto, K.-I.; Kitamura, Y.; Miura, S.; Fujita, K.; Ishigami, R.; Nagasaka, T. Irradiation Hardening Behavior of He-Irradiated V–Cr–Ti Alloys with Low Ti Addition. Quantum Beam Sci. 2021, 5, 1. [Google Scholar] [CrossRef]
- Schemer-Kohrn, A.; Toloczko, M.B.; Zhu, Y.; Wang, J.; Edwards, D.J. Removal of FIB Damage using Flash Electropolishing for Artifact-free TEM Foils. Microsc. Microanal. 2019, 25, 1606–1607. [Google Scholar] [CrossRef] [Green Version]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM—The Stopping and Range of Ions in Matter (2010). Nucl. Instrum. Meth. Phys. Res. B 2010, 268, 1818–1823. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, M. Convergent-beam electron diffraction. Bull. Jpn. Inst. Met. 1989, 28, 220–226. [Google Scholar] [CrossRef] [Green Version]
- Fujii, K.; Fukuya, K. Irradiation-induced microchemical changes in highly irradiated 316 stainless steel. J. Nucl. Mater. 2016, 469, 82–88. [Google Scholar] [CrossRef]
- Chung, H.M.; Loomis, B.A.; Smith, D.L. Creep properties of vanadium-base alloys. J. Nucl. Mater. 1994, 212–215, 772–777. [Google Scholar] [CrossRef] [Green Version]
- Rice, P.M.; Zinkle, S.J. Temperature dependence of the radiation damage microstructure in V–4Cr–4Ti neutron irradiated to low dose. J. Nucl. Mater. 1998, 258–263, 1414–1418. [Google Scholar] [CrossRef]
- Fukumoto, K.; Matsui, H.; Chandra, Y.; Takahashi, K.; Sasanuma, H.; Nagata, S.; Takahiro, K. Radiation-induced precipitation in V–(Cr, Fe)–Ti alloys irradiated at low temperature with low dose during neutron or ion irradiation. J. Nucl. Mater. 2000, 283–287, 535–540. [Google Scholar] [CrossRef]
- Watanabe, H.; Muroga, T.; Nagasaka, T. Effects of Irradiation Environment on V-4Cr-4Ti Alloys. Plasma Fusion Res. 2017, 12, 2405011. [Google Scholar] [CrossRef] [Green Version]
- Impagnatiello, A.; Shubeita, S.M.; Wady, P.; Ipatova, I.; Dawson, H.; Barcellini, C.; Jimenez-Melero, E. Monolayer-thick TiO precipitation in V-4Cr-4Ti alloy induced by proton irradiation. Scr. Mater. 2017, 130, 174–177. [Google Scholar] [CrossRef] [Green Version]
- Impagnatiello, A.; Toyama, T.; Jimenez-Melero, E. Ti-rich precipitate evolution in vanadium-based alloys during annealing above 400 °C. J. Nucl. Mater. 2017, 485, 122–128. [Google Scholar] [CrossRef]
- Fukumoto, K.; Iwasaki, M. A replica technique for extracting precipitates from neutron-irradiated or thermal-aged vanadium alloys for TEM analysis. J. Nucl. Mater. 2014, 449, 315–319. [Google Scholar] [CrossRef]
- Nita, N.; Anma, Y.; Matsui, H.; Ohkubo, T.; Hono, K. Irradiation induced precipitates in vanadium alloys studied by atom probe microanalysis. J. Nucl. Mater. 2007, 367-370, 858–863. [Google Scholar] [CrossRef]
- Lucas, G.E. The evolution of mechanical property change in irradiated austenitic stainless steels. J. Nucl. Mater. 1993, 206, 287–305. [Google Scholar] [CrossRef]
- Was, G.S. Fundamentals of Radiation Materials Science; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Nagasaka, T.; Muroga, T.; Watanabe, H.; Yamasaki, K.; Heo, N.-J.; Shinozaki, K.; Narui, M. Recovery of Hardness, Impact Properties and Microstructure of Neutron-Irradiated Weld Joint of a Fusion Candidate Vanadium Alloy. Mater. Trans. 2005, 46, 498–502. [Google Scholar] [CrossRef] [Green Version]
- Fukumoto, K.; Mabuchi, T.; Yabuuchi, K.; Fujii, K. Irradiation hardening of SUS steel model alloys after Fe ion irradiation and post irradiation annealing treatment. J. Nucl. Mater 2021. to be submitted. [Google Scholar]
- Chuto, M.; Satou, M.; Abe, K. Defect microstructure and deformation behavior of V–Ti–Cr–Si–Al–Y alloy irradiated in ATR. J. Nucl. Mater. 2000, 283-287, 503–507. [Google Scholar] [CrossRef]
- Heo, N.-J.; Nagasaka, T.; Muroga, T. Recrystallization and precipitation behavior of low-activation V–Cr–Ti alloys after cold rolling. J. Nucl. Mater. 2004, 325, 53–60. [Google Scholar] [CrossRef]
Composition (wt.%) | Cr | Ti | C | N | O | Mo | Al | Si |
---|---|---|---|---|---|---|---|---|
V-4Cr | 3.80 | 0.002 | 0.004 | 0.005 | 0.036 | <0.001 | 0.005 | 0.02 |
V-4Cr-0.1Ti(h) | 3.90 | 0.09 | 0.007 | 0.003 | 0.017 | <0.001 | 0.011 | 0.02 |
V-4Cr-1Ti | 3.86 | 0.96 | 0.005 | 0.006 | 0.035 | <0.001 | 0.006 | 0.016 |
V-4Cr-1Ti(h) | 4.02 | 0.96 | 0.008 | 0.004 | 0.016 | <0.001 | 0.009 | 0.02 |
V-4Cr-2Ti | 3.94 | 1.93 | 0.005 | 0.005 | 0.037 | <0.001 | 0.005 | 0.02 |
V-4Cr-2Ti(h) | 3.89 | 1.92 | 0.008 | 0.003 | 0.015 | <0.001 | 0.006 | 0.02 |
V-4Cr-3Ti | 3.81 | 2.99 | 0.004 | 0.004 | 0.037 | <0.001 | 0.007 | 0.02 |
V-4Cr-3Ti(h) | 3.92 | 2.99 | 0.009 | 0.003 | 0.016 | <0.001 | 0.007 | 0.02 |
V-4Cr-4Ti(h) | 4.11 | 3.89 | 0.008 | 0.003 | 0.018 | <0.001 | 0.018 | 0.02 |
V-8Cr-2Ti(h) | 7.83 | 1.97 | 0.009 | 0.003 | 0.014 | <0.001 | 0.013 | 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fukumoto, K.-i.; Miura, S.; Kitamura, Y.; Ishigami, R.; Nagasaka, T. Correlation between Microstructural Change and Irradiation Hardening Behavior of He-Irradiated V–Cr–Ti Alloys with Low Ti Addition. Quantum Beam Sci. 2021, 5, 26. https://doi.org/10.3390/qubs5030026
Fukumoto K-i, Miura S, Kitamura Y, Ishigami R, Nagasaka T. Correlation between Microstructural Change and Irradiation Hardening Behavior of He-Irradiated V–Cr–Ti Alloys with Low Ti Addition. Quantum Beam Science. 2021; 5(3):26. https://doi.org/10.3390/qubs5030026
Chicago/Turabian StyleFukumoto, Ken-ichi, Shuichiro Miura, Yoshiki Kitamura, Ryoya Ishigami, and Takuya Nagasaka. 2021. "Correlation between Microstructural Change and Irradiation Hardening Behavior of He-Irradiated V–Cr–Ti Alloys with Low Ti Addition" Quantum Beam Science 5, no. 3: 26. https://doi.org/10.3390/qubs5030026
APA StyleFukumoto, K. -i., Miura, S., Kitamura, Y., Ishigami, R., & Nagasaka, T. (2021). Correlation between Microstructural Change and Irradiation Hardening Behavior of He-Irradiated V–Cr–Ti Alloys with Low Ti Addition. Quantum Beam Science, 5(3), 26. https://doi.org/10.3390/qubs5030026