Effect of 1.5 MeV Proton Irradiation on Superconductivity in FeSe0.5Te0.5 Thin Films
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Magnetic Measurements
3.2. Transport Measurement
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Putti, M.; Pallecchi, I.; Bellingeri, E.; Cimberle, M.R.; Tropeano, M.; Ferdeghini, C.; Palenzona, A.; Tarantini, C.; Yamamoto, A.; Jiang, J.; et al. New Fe-based superconductors: Properties relevant for applications. Supercond. Sci. Technol. 2010, 23, 034003. [Google Scholar] [CrossRef]
- Gurevich, A. Iron-based superconductors at high magnetic fields. Rep. Prog. Phys. 2011, 74, 124501. [Google Scholar] [CrossRef]
- Katase, T.; Ishimaru, Y.; Tsukamoto, A.; Hiramatsu, H.; Kamiya, T.; Tanabe, K.; Hosono, H. Advantageous grain boundaries in iron pnictide superconductors. Nat. Commun. 2011, 2, 409. [Google Scholar] [CrossRef] [PubMed]
- Si, W.; Zhang, C.; Shi, X.; Ozaki, T.; Jaroszynski, J.; Li, Q. Grain boundary junctions of FeSe0.5Te0.5 thin films on SrTiO3 bi-crystal substrates. Appl. Phys. Lett. 2015, 106, 032602. [Google Scholar] [CrossRef]
- Iida, K.; Hänisch, J.; Yamamoto, A. Grain boundary characteristics of Fe-based superconductors. Supercond. Sci. Technol. 2020, 33, 043001. [Google Scholar] [CrossRef] [Green Version]
- Larbalestier, D.; Gurevich, A.; Feldmann, D.M.; Polyanskii, A. High-Tc superconducting materials for electric power applications. Nature 2001, 414, 368. [Google Scholar] [CrossRef] [PubMed]
- Foltyn, S.R.; Civale, L.; MacManus-Driscoll, J.L.; Jia, Q.X.; Maiorov, B.; Wang, H.; Maley, M. Materials science challenges for high-temperature superconducting wire. Nat. Mater. 2007, 6, 631. [Google Scholar] [CrossRef] [PubMed]
- Kirk, M.A. Structure and flux pinning properties of irradiation defects in YBa2Cu3O7−x. Cryogenics 1993, 33, 235. [Google Scholar] [CrossRef]
- Matsui, H.; Ogiso, H.; Yamasaki, H.; Kumagai, T.; Sohma, M.; Yamaguchi, I.; Manabe, T. 4-fold enhancement in the critical current density of YBa2Cu3O7 films by practical ion irradiation. Appl. Phys. Lett. 2012, 101, 232601. [Google Scholar] [CrossRef]
- Jia, Y.; LeRoux, M.; Miller, D.J.; Wen, J.G.; Kwok, W.K.; Welp, U.; Rupich, M.W.; Li, X.; Sathyamurthy, S.; Fleshler, S.; et al. Doubling the critical current density of high temperature superconducting coated conductors through proton irradiation. Appl. Phys. Lett. 2013, 103, 122601. [Google Scholar] [CrossRef] [Green Version]
- Ozaki, T.; Wu, L.; Zhang, C.; Si, W.; Jie, Q.; Li, Q. Enhanced critical current in superconducting FeSe0.5Te0.5 films at all magnetic field orientations by scalable gold ion irradiation. Supercond. Sci. Technol. 2018, 31, 024002. [Google Scholar]
- Zhang, Y.; Rupich, M.W.; Solovyov, V.; Li, Q.; Goyal, A. Dynamic behavior of reversible oxygen migration in irradiated-annealed high temperature superconducting wires. Sci. Rep. 2020, 10, 14848. [Google Scholar] [CrossRef]
- Sueyoshi, T.; Kotaki, T.; Furuki, Y.; Fujiyoshi, T.; Semboshi, S.; Ozaki, T.; Sakane, H.; Kudo, M.; Yasuda, K.; Ishikawa, N. Strong flux pinning by columnar defects with directionally dependent morphologies in GdBCO-coated conductors irradiated with 80 MeV Xe ions. Jpn. J. Appl. Phys. 2020, 59, 023001. [Google Scholar] [CrossRef]
- Civale, L. Vortex pinning and creep in high-temperature superconductors with columnar defects. Supercond. Sci. Technol. 1997, 10, A11. [Google Scholar] [CrossRef]
- Kirk, M.A.; Yan, Y. Structure and properties of irradiation defects in YBa2Cu3O7−x. Micron 1999, 30, 507. [Google Scholar] [CrossRef]
- Ozaki, T.; Wu, L.; Zhang, C.; Jaroszynski, J.; Si, W.; Zhou, J.; Zhu, Y.; Li, Q. A route for a strong increase of critical current in nanostrained iron-based superconductors. Nat. Commun. 2016, 7, 13036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozaki, T.; Wu, L.; Gu, G.; Li, Q. Ion irradiation of iron chalcogenide superconducting films. Supercond. Sci. Technol. 2020, 33, 094008. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Biersack, J.P.; Littmark, U. The Stopping and Range of Ions in Solids; Pergamon: Oxford, UK, 1985. [Google Scholar]
- Eisterer, M. Radiation effects on iron-based superconductors. Supercond. Sci. Technol. 2018, 31, 013001. [Google Scholar] [CrossRef]
- Teknowijoyo, S.; Cho, K.; Tanatar, M.A.; Gonzales, J.; Böhmer, A.E.; Cavani, O.; Mishra, V.; Hirschfeld, P.J.; Bud’ko, S.L.; Canfield, P.C.; et al. Enhancement of superconducting transition temperature by pointlike disorder and anisotropic energy gap in FeSe single crystals. Phys. Rev. B 2016, 94, 064521. [Google Scholar] [CrossRef] [Green Version]
- Mizukami, Y.; Konczykowski, M.; Matsuura, K.; Watashige, T.; Kasahara, S.; Matsuda, Y.; Shibauchi, T. Impact of Disorder on the Superconducting Phase Diagram in BaFe2(As1−xPx)2. J. Phys. Soc. Jpn. 2017, 86, 083706. [Google Scholar] [CrossRef]
- Sylva, G.; Bellingeri, E.; Ferdeghini, C.; Martinelli, A.; Pallecchi, I.; Pellegrino, L.; Putti, M.; Ghigo, G.; Gozzelino, L.; Torsello, D.; et al. Effects of high-energy proton irradiation on the superconducting properties of Fe(Se, Te) thin films. Supercond. Sci. Technol. 2018, 31, 054001. [Google Scholar] [CrossRef] [Green Version]
- Leo, A.; Sylva, G.; Braccini, V.; Bellingeri, E.; Martinelli, A.; Pallecchi, I.; Ferdeghini, C.; Pellegrino, L.; Putti, M.; Ghigo, G.; et al. Anisotropic Effect of Proton Irradiation on Pinning Properties of Fe(Se, Te) Thin Films. IEEE Trans. Appl. Supercond. 2019, 21, 6601904. [Google Scholar] [CrossRef]
- Leo, A.; Grimaldi, G.; Nigro, A.; Ghigo, G.; Gozzelino, L.; Torsello, D.; Braccini, V.; Sylva, G.; Ferdeghini, C.; Putti, M. Critical current anisotropy in Fe(Se, Te) films irradiated by 3.5 MeV protons. J. Phys. Conf. Ser. 2020, 1559, 012042. [Google Scholar] [CrossRef]
- Bean, C.P. Magnetization of Hard Superconductors. Phys. Rev. Lett. 1962, 8, 250. [Google Scholar] [CrossRef]
- Bean, C.P. Magnetization of High-Field Superconductors. Rev. Mod. Phys. 1964, 36, 31. [Google Scholar] [CrossRef]
- Haberkorn, N.; Maiorov, B.; Usov, I.O.; Weigand, M.; Hirata, W.; Miyasaka, S.; Tajima, S.; Chikumoto, N.; Tanabe, K.; Civale, L. Influence of random point defects introduced by proton irradiation on critical current density and vortex dynamics of Ba(Fe0.925Co0.075)2As2 single crystals. Phys. Rev. B 2012, 82, 180520. [Google Scholar]
- Civale, L.; Maiorov, B.; Serquis, A.; Willis, J.O.; Coulter, J.Y.; Wang, H.; Jia, Q.X.; Arendt, P.N.; MacManus-Driscoll, J.L.; Maley, M.P.; et al. Angular-dependent vortex pinning mechanisms in YBa2Cu3O7 coated conductors and thin films. Appl. Phys. Lett. 2004, 84, 2121. [Google Scholar] [CrossRef] [Green Version]
- Iida, K.; Hänisch, J.; Schulze, M.; Aswartham, S.; Wurmehl, S.; Bűchner, B.; Schultz, L.; Holzapfel, B. Generic Fe buffer layers for Fe-based superconductors: Epitaxial FeSe1-xTex thin films. Appl. Phys. Lett. 2011, 99, 202503. [Google Scholar] [CrossRef] [Green Version]
- Yuan, P.; Xu, Z.; Ma, Y.; Sun, Y.; Tamegai, T. Angular-dependent vortex pinning mechanism and magneto-optical characterizations of FeSe0.5Te0.5 thin films grown on CaF2 substrates. Supercond. Sci. Technol. 2016, 29, 035013. [Google Scholar] [CrossRef]
- Braccini, V.; Kawale, S.; Reich, E.; Bellingeri, E.; Pellegrino, L.; Sala, A.; Putti, M.; Higashikawa, K.; Kiss, T.; Holzapfel, B.; et al. Highly effective and isotropic pinning in epitaxial Fe(Se, Te) thin films grown on CaF2 substrates. Appl. Phys. Lett. 2013, 103, 172601. [Google Scholar] [CrossRef] [Green Version]
- Spechta, E.D.; Goyal, A.; Li, J.; Martin, P.M.; Li, X.; Rupich, M.W. Stacking faults in YBa2Cu3O7-x: Measurement using x-ray diffraction and effects on critical current. Appl. Phys. Lett. 2006, 89, 162510. [Google Scholar] [CrossRef]
- Civale, L.; Maiorov, B.; MacManus-Driscoll, J.L.; Wang, H.; Holesinger, T.G.; Foltyn, S.R.; Serquis, A.; Arendt, P.N. Identification of Intrinsic ab-Plane Pinning in YBa2Cu3O7 Thin Films and Coated Conductors. IEEE Trans. Appl. Supercond. 2005, 15, 2808. [Google Scholar] [CrossRef]
- Iida, K.; Hänisch, J.; Reich, E.; Kurth, F.; Hühne, R.; Schultz, L.; Holzapfel, B. Intrinsic pinning and the critical current scaling of clean epitaxial Fe(Se, Te) thin films. Phys. Rev. B 2013, 87, 104510. [Google Scholar] [CrossRef] [Green Version]
- Grimaldi, G.; Leo, A.; Nigro, A.; Pace, S.; Braccini, V.; Bellingeri, E.; Ferdeghini, C. Angular dependence of vortex instability in a layered superconductor: The case study of Fe(Se, Te) material. Sci. Rep. 2018, 8, 4150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozaki, T.; Kashihara, T.; Kakeya, I.; Ishigami, R. Effect of 1.5 MeV Proton Irradiation on Superconductivity in FeSe0.5Te0.5 Thin Films. Quantum Beam Sci. 2021, 5, 18. https://doi.org/10.3390/qubs5020018
Ozaki T, Kashihara T, Kakeya I, Ishigami R. Effect of 1.5 MeV Proton Irradiation on Superconductivity in FeSe0.5Te0.5 Thin Films. Quantum Beam Science. 2021; 5(2):18. https://doi.org/10.3390/qubs5020018
Chicago/Turabian StyleOzaki, Toshinori, Takuya Kashihara, Itsuhiro Kakeya, and Ryoya Ishigami. 2021. "Effect of 1.5 MeV Proton Irradiation on Superconductivity in FeSe0.5Te0.5 Thin Films" Quantum Beam Science 5, no. 2: 18. https://doi.org/10.3390/qubs5020018
APA StyleOzaki, T., Kashihara, T., Kakeya, I., & Ishigami, R. (2021). Effect of 1.5 MeV Proton Irradiation on Superconductivity in FeSe0.5Te0.5 Thin Films. Quantum Beam Science, 5(2), 18. https://doi.org/10.3390/qubs5020018