In Situ Observation for Deformation-Induced Martensite Transformation during Tensile Deformation of SUS 304 Stainless Steel by Using Neutron Diffraction PART II: Transformation and Texture Formation Mechanisms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample and Experiment
2.2. Numerical Analysis of the Transformation Orientation Relationships
3. Results
3.1. Texture Development Observed by In Situ Neutron Diffraction
3.2. Microtextures Observed by EBSD
4. Discussion
4.1. γ→ε Transformation
4.2. γ→α’ or γ→ε→α’ Transformation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nishiyama, Z. Martensitic Transformation; Fine, M.E., Meshii, M., Wayman, C.M., Eds.; Academic Press Inc.: New York, NY, USA, 1978. [Google Scholar]
- Nohara, K.; Ono, Y.; Ohashi, N. Composition and Grain Size Dependencies of Strain-induced Martensitic Transformation in Metastable Austenitic Stainless Steels. Tetsu-to-Hagane 1977, 63, 772–782. [Google Scholar] [CrossRef] [Green Version]
- Miura, R.; Ohnishi, K.; Nakajima, H.; Shimamoto, S. Effects of Carbon and Nitrogen on the Tensile Deformation Behavior of SUS304 and 316 Stainless Steels at Cryogenic Temperatures. Tetsu-to-Hagane 1987, 73, 715–722. [Google Scholar] [CrossRef]
- Masumura, T.; Nakada, N.; Tsuchiyama, T.; Takaki, S.; Koyano, T.; Adachi, K. The difference in thermal and mechanical stabilities of austenite between carbon- and nitrogen-added metastable austenitic stainless steels. Acta Mater. 2015, 84, 330–338. [Google Scholar] [CrossRef]
- Tiamiyu, A.; Tari, V.; Szpunar, J.; Odeshi, A.; Khan, A. Effects of grain refinement on the quasi-static compressive behavior of AISI 321 austenitic stainless steel: EBSD, TEM, and XRD studies. Int. J. Plast. 2018, 107, 79–99. [Google Scholar] [CrossRef]
- Onuki, Y.; Sato, S. In Situ Observation for Deformation-Induced Martensite Transformation (DIMT) during Tensile Deformation of 304 Stainless Steel Using Neutron Diffraction. PART I: Mechanical Response. Quantum Beam Sci. 2020, 4, 31. [Google Scholar] [CrossRef]
- Wenk, H.; Lutterotti, L.; Vogel, S. Rietveld texture analysis from TOF neutron diffraction data. Powder Diffr. 2010, 25, 293–296. [Google Scholar] [CrossRef] [Green Version]
- Bachmann, F.; Hielscher, R.; Schaeben, H. Texture Analysis with MTEX—Free and Open Source Software Toolbox. Solid State Phenom. 2010, 160, 63–68. [Google Scholar] [CrossRef] [Green Version]
- Bunge, H.-J. Texture Analysis in Materials Science; Butterworth-Heinemann: Oxford, UK, 1982. [Google Scholar]
- Bowles, J.S.; Mackenzie, J.K. The crystallography of martensite transformations III. Face-centred cubic to body-centred tetragonal transformations. Acta Metall. 1954, 2, 224–234. [Google Scholar] [CrossRef]
- Onuki, Y.; Hoshikawa, A.; Sato, S.; Ishigaki, T. Rapid Measurement of Texture of Metals by Time-of-Flight Neutron Diffraction at iMATERIA and its Applications. Mater. Sci. Forum 2016, 879, 1426–1430. [Google Scholar] [CrossRef]
- Tomida, T.; Wakita, M.; Yasuyama, M.; Sugaya, S.; Tomota, Y.; Vogel, S.C. Memory effects of transformation textures in steel and its prediction by the double Kurdjumov–Sachs relation. Acta Mater. 2013, 61, 2828–2839. [Google Scholar] [CrossRef]
- Onuki, Y.; Masumura, T.; Tsuchiyama, T.; Sato, S.; Tomida, T.; Takaki, S. Mutual Verification of Phase Fraction Analysis Techniques for Steels Comprising Deformation Induced Martensite Phases: Neutron-Diffraction-Based Rietveld Texture Analysis and Saturation Magnetization Measurement. Tetsu-to-Hagane 2020, 106, 457–464. [Google Scholar] [CrossRef]
- Burgers, W. On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium. Physica 1934, 1, 561–586. [Google Scholar] [CrossRef]
- Yamashita, T.; Koga, N.; Umezawa, O. Influence of Deformability of Retained Austenite on Martensitic Transformation in Tension for Low Alloy Steel at Low Temperatures. ISIJ Int. 2018, 58, 1155–1161. [Google Scholar] [CrossRef] [Green Version]
- Kwon, E.; Fujieda, S.; Shinoda, K.; Suzuki, S. Texture evolution and fcc/hcp transformation in Fe–Mn–Si–Cr alloys by tensile deformation. Mater. Sci. Eng. A 2010, 527, 6524–6532. [Google Scholar] [CrossRef]
- Matsumura, O.; Furusako, S.; Furukawa, T.; Otsuka, H. Formation of Surface Texture and Anisotropy of Shape Memory Effect in an Fe-Mn-Si Alloy. ISIJ Int. 1996, 36, 1103–1108. [Google Scholar] [CrossRef] [Green Version]
- Takayama, N.; Miyamoto, G.; Furuhara, T. Effects of transformation temperature on variant pairing of bainitic ferrite in low carbon steel. Acta Mater. 2012, 60, 2387–2396. [Google Scholar] [CrossRef]
Phase | Orientation Name | Euler Angles | Approximate (hkl)[uvw] |
---|---|---|---|
γ austenite | Rotated Brass (RB) | (55°, 45°, 0°) | |
Goss (G) | (0°, 45°, 0°) | ||
Near cube (NC) | (0°, 12.5°, 0°) | ||
ε martensite | Main (M) | (32.5°, 42.5°, 5°) | |
Sub 1 (S1) | (15°, 90°, 30°) | ||
Sub 2 (S2) | (90°, 90, 30°) | ||
α’ martensite | 30°-rotated cube (30RC) | (30°, 0°, 0°) | |
Quench 1 (Q1) | (90°, 62.5, 45°) | ||
Quench 2 (Q2) | (40°, 47.5, 45°) |
No. | Directional Correspondence * | φ1 | Φ | φ2 |
---|---|---|---|---|
1 | 72.0° | 73.7° | 37.4° | |
2 | 107.9° | 33.9° | 67.6° | |
3 | 208.2° | 2.5° | 4.1° | |
4 | 326.9° | 46.9° | 29.5 | |
5 | 352.7° | 73.5° | 52.3° | |
6 | 39.7° | 87.1° | 6.9° |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onuki, Y.; Sato, S. In Situ Observation for Deformation-Induced Martensite Transformation during Tensile Deformation of SUS 304 Stainless Steel by Using Neutron Diffraction PART II: Transformation and Texture Formation Mechanisms. Quantum Beam Sci. 2021, 5, 6. https://doi.org/10.3390/qubs5010006
Onuki Y, Sato S. In Situ Observation for Deformation-Induced Martensite Transformation during Tensile Deformation of SUS 304 Stainless Steel by Using Neutron Diffraction PART II: Transformation and Texture Formation Mechanisms. Quantum Beam Science. 2021; 5(1):6. https://doi.org/10.3390/qubs5010006
Chicago/Turabian StyleOnuki, Yusuke, and Shigeo Sato. 2021. "In Situ Observation for Deformation-Induced Martensite Transformation during Tensile Deformation of SUS 304 Stainless Steel by Using Neutron Diffraction PART II: Transformation and Texture Formation Mechanisms" Quantum Beam Science 5, no. 1: 6. https://doi.org/10.3390/qubs5010006
APA StyleOnuki, Y., & Sato, S. (2021). In Situ Observation for Deformation-Induced Martensite Transformation during Tensile Deformation of SUS 304 Stainless Steel by Using Neutron Diffraction PART II: Transformation and Texture Formation Mechanisms. Quantum Beam Science, 5(1), 6. https://doi.org/10.3390/qubs5010006