Operational Modal Analysis on Bridges: A Comprehensive Review
Abstract
:1. Introduction
2. Instrumentation
2.1. Accelerometers
2.2. Data Acquisition (DAQ)
3. Preprocessing of the Data
4. Dynamic Analysis of the Bridge
4.1. Modal Identification Methods
4.2. Frequency Domain Analysis
4.2.1. Peak Picking (PP)
4.2.2. Frequency Domain Decomposition (FDD)
4.2.3. Enhanced Frequency Domain Decomposition (EFDD)
4.3. Time Domain Analysis
4.3.1. Random Decrement (RD)
4.3.2. Ibrahim Time Domain (ITD)
4.3.3. Eigensystem Realization Algorithm (ERA)
4.3.4. Autoregressive Moving Average (ARMA)
4.3.5. Time Domain Decomposition (TDD)
4.3.6. Stochastic Subspace Identification (SSI)
4.3.7. Natural Excitation Technique (NExT)
5. Damage Detection Using Modal Parameters
5.1. Changes to the Natural Frequencies
5.2. Changes to the Mode Shapes
5.3. Modal Curvature Method (MCM)
5.4. Modal Strain Energy (MSE)
5.5. Modal Flexibility Method (MFM)
5.6. DSFs Application
5.7. Shortcomings of the Preceding Methods and the Solution
6. Regression Models
7. Pattern Recognition (PR)
8. Machine Learning (ML)
- They can effectively describe physically complex correlations;
- Automatic detection and compensation of sensor faults are achievable;
- Trained models can be transferred to other structures/problems with similar boundary conditions;
- The separation of factors affecting specific structural behaviors is facilitated;
- Future structural behavior can be estimated based on previously predicted values.
8.1. Artificial Neural Network (ANN)
8.2. Support Vector Machines (SVMs)
8.3. Random Forest (RF)
8.4. Gaussian Processes (GPs)
8.5. Convolutional Neural Network (CNN)
8.6. Long Short-Term Memory (LSTM) Networks
9. Conclusions
- Instrumentation plays a foundational role in OMA. The selection of the sensing system must align precisely with the specific requirements, and the placement and installation of the sensors on the bridge should be performed with attention to the expected results. Achieving accurate modal identification outcomes requires the careful handling of instrumentation.
- When considering wireless networking as the data acquisition system while employing multiple sensors on the bridge, it is crucial to ensure the precise synchronization of data recorded. Even a minor discrepancy in data synchronization can lead to errors in the identified modal parameters, particularly mode shapes. In such cases, the accuracy of bridge damage detection can be compromised.
- In terms of achieving optimal reliability, efficiency, precision, and applicability in various modal identification techniques within the time or frequency domain, the SSI method stands out as the preferred approach among researchers in the time domain, whereas EFDD excels in the frequency domain.
- The effects of environmental and operational factors on the application of DSFs for bridge damage detection are challenging and inevitable. To increase the accuracy and reliability of the damage detection process, the dominant effects of these variables should be mitigated as much as possible.
- To ensure the precision of the results, two key considerations emerge. First, it is advisable to implement multiple distinct DSF approaches simultaneously, enabling the localization and assessment of damage severity. Second, employing regression and pattern recognition techniques can mitigate the influence of environmental and operational factors on the data.
- Utilizing advanced methods such as machine learning proves precision in achieving OMA results for BSHM. However, when constructing the mathematical models for these methods, it is crucial to incorporate a diverse dataset. This ensures that the resulting model remains applicable across various bridges, accommodating variations in their geometric and material characteristics.
Funding
Conflicts of Interest
References
- Pizarro, A.; Manfreda, S.; Tubaldi, E. The Science behind Scour at Bridge Foundations: A Review. Water 2020, 12, 374. [Google Scholar] [CrossRef]
- Malekjafarian, A.; McGetrick, P.J.; OBrien, E.J. A Review of Indirect Bridge Monitoring Using Passing Vehicles. Shock. Vib. 2015, 2015, 286139. [Google Scholar] [CrossRef]
- Sarmadi, H.; Entezami, A.; Yuen, K.-V.; Behkamal, B. Review on Smartphone Sensing Technology for Structural Health Monitoring. Measurement 2023, 223, 113716. [Google Scholar] [CrossRef]
- Fujino, Y.; Siringoringo, D.M. Bridge Monitoring in Japan: The Needs and Strategies. Struct. Infrastruct. Eng. 2011, 7, 597–611. [Google Scholar] [CrossRef]
- Akgul, F. A BMS Development Project with an Integrated Inspection Program. In Proceedings of the 6th International Conference on Bridge Maintenance, Safety and Management (IABMAS), Stresa, Italy, 8–12 July 2012. [Google Scholar]
- Miyamoto, A.; Kawamura, K.; Nakamura, H. Bridge Management System and Maintenance Optimization for Existing Bridges. Comput.-Aided Civ. Infrastruct. Eng. 2000, 15, 45–55. [Google Scholar] [CrossRef]
- Miyamoto, A.; Kawamura, K.; Nakamura, H. Development of a Bridge Management System for Existing Bridges. Adv. Eng. Softw. 2001, 32, 821–833. [Google Scholar] [CrossRef]
- Lee, J.; Sanmugarasa, K.; Blumenstein, M.; Loo, Y.-C. Improving the Reliability of a Bridge Management System (BMS) Using an ANN-Based Backward Prediction Model (BPM). Autom. Constr. 2008, 17, 758–772. [Google Scholar] [CrossRef]
- Gholami, M.; Sam, A.R.B.M.; Yatim, J.M. Assessment of Bridge Management System in Iran. Procedia Eng. 2013, 54, 573–583. [Google Scholar] [CrossRef]
- Chupanit, P.; Phromsorn, C. The Importance of Bridge Health Monitoring. Proc. World Acad. Sci. 2012, 6, 135–138. [Google Scholar]
- Rashidi, M.; Mohammadi, M.; Sadeghlou Kivi, S.; Abdolvand, M.M.; Truong-Hong, L.; Samali, B. A Decade of Modern Bridge Monitoring Using Terrestrial Laser Scanning: Review and Future Directions. Remote Sens. 2020, 12, 3796. [Google Scholar] [CrossRef]
- Zinno, R.; Haghshenas, S.S.; Guido, G.; VItale, A. Artificial Intelligence and Structural Health Monitoring of Bridges: A Review of the State-of-the-Art. IEEE Access 2022, 10, 88058–88078. [Google Scholar] [CrossRef]
- Rytter, A.A. Vibration Based Inspection of Civil Engineering Structures. Ph.D. Thesis, University of Aalborg, Aalborg, Denmark, 1993. [Google Scholar]
- Brincker, R.; Carlos, E. Ventura Introduction to Operational Modal Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Wenzel, H. Health Monitoring of Bridges; John Wiley & Sons: Vienna, Austria, 2009; ISBN 9780080542539. [Google Scholar]
- Teixeira de Freitas, S.; Kolstein, H.; Bijlaard, F. Structural Monitoring of a Strengthened Orthotropic Steel Bridge Deck Using Strain Data. Struct. Health Monit. 2012, 11, 558–576. [Google Scholar] [CrossRef]
- Vicente, M.; Gonzalez, D.; Minguez, J.; Schumacher, T. A Novel Laser and Video-Based Displacement Transducer to Monitor Bridge Deflections. Sensors 2018, 18, 970. [Google Scholar] [CrossRef]
- Huber, M.S.; Bay, J.A.; Halling, M.W.; Womack, K.C. Use of Velocity Transducers in Low-Frequency Modal Testing of Structures. Nondestruct. Eval. Highw. Util. Pipelines IV 2000, 3995, 414–424. [Google Scholar] [CrossRef]
- Ragam, P.; Sahebraoji, N.D. Application of MEMS-Based Accelerometer Wireless Sensor Systems for Monitoring of Blast-Induced Ground Vibration and Structural Health: A Review. IET Wirel. Sens. Syst. 2019, 9, 103–109. [Google Scholar] [CrossRef]
- Xu, Y.L.; Chen, B.; Ng, C.L.; Wong, K.Y.; Chan, W.Y. Monitoring Temperature Effect on a Long Suspension Bridge. Struct. Control Health Monit. 2010, 17, 632–653. [Google Scholar] [CrossRef]
- Rad, H.N.; Sani, S.S.; Rad, M.N. A New Inexpensive System for SHM of Bridge Decks Using Wireless Sensor Networks Based on Measurements of Temperature and Humidity. In Proceedings of the 2015 2nd International Conference on Knowledge-Based Engineering and Innovation (KBEI), Tehran, Iran, 5–6 November 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 998–1009. [Google Scholar]
- Bayraktar, A.; Altunişik, A.C.; Türker, T. Structural Condition Assessment of Birecik Highway Bridge Using Operational Modal Analysis. Int. J. Civ. Eng. 2016, 14, 35–46. [Google Scholar] [CrossRef]
- Zhang, G.; Moutinho, C.; Magalhães, F. Continuous Dynamic Monitoring of a Large-span Arch Bridge with Wireless Nodes Based on MEMS Accelerometers. Struct. Control Health Monit. 2022, 29, e2963. [Google Scholar] [CrossRef]
- Rainieri, C.; Fabbrocino, G. Operational Modal Analysis of Civil Engineering Structures: An Introduction and Guide for Applications; Springer: New York, NY, USA, 2014; ISBN 1493907670. [Google Scholar]
- Römer, K.; Blum, P.; Meier, L. Time Synchronization and Calibration in Wireless Sensor Networks. In Handbook of Sensor Networks: Algorithms and Architectures; Wiley: New York, NY, USA, 2005; pp. 199–237. [Google Scholar] [CrossRef]
- Chen, Y.; Xue, X. Advances in the Structural Health Monitoring of Bridges Using Piezoelectric Transducers. Sensors 2018, 18, 4312. [Google Scholar] [CrossRef]
- Ghemari, Z. Study and Analysis of the Piezoresistive Accelerometer Stability and Improvement of Their Performances. Int. J. Syst. Assur. Eng. Manag. 2017, 8, 1520–1526. [Google Scholar] [CrossRef]
- Bedon, C.; Bergamo, E.; Izzi, M.; Noè, S. Prototyping and Validation of MEMS Accelerometers for Structural Health Monitoring—The Case Study of the Pietratagliata Cable-Stayed Bridge. J. Sens. Actuator Netw. 2018, 7, 30. [Google Scholar] [CrossRef]
- Sabato, A. Pedestrian Bridge Vibration Monitoring Using a Wireless MEMS Accelerometer Board. In Proceedings of the 2015 IEEE 19th International Conference on Computer Supported Cooperative Work in Design (CSCWD), Calabria, Italy, 6–8 May 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 437–442. [Google Scholar]
- Chen, Y.; Zheng, X.; Luo, Y.; Shen, Y.; Xue, Y.; Fu, W. An Approach for Time Synchronization of Wireless Accelerometer Sensors Using Frequency-Squeezing-Based Operational Modal Analysis. Sensors 2022, 22, 4784. [Google Scholar] [CrossRef]
- Shi, F.; Tuo, X.; Yang, S.; Li, H.; Shi, R. Multiple Two-Way Time Message Exchange (TTME) Time Synchronization for Bridge Monitoring Wireless Sensor Networks. Sensors 2017, 17, 1027. [Google Scholar] [CrossRef]
- Fu, Y.; Mechitov, K.; Hoang, T.; Kim, J.R.; Memon, S.A.; Spencer, B.F. Efficient and High-precision Time Synchronization for Wireless Monitoring of Civil Infrastructure Subjected to Sudden Events. Struct. Control Health Monit. 2021, 28, e2643. [Google Scholar] [CrossRef]
- Maguire, J.; Severn, R. Assessing the Dynamic Properties of Prototype Structures By Hammer Testing. Proc. Inst. Civ. Eng. 1987, 83, 769–784. [Google Scholar] [CrossRef]
- Şahin, A.; Bayraktar, A. Forced-Vibration Testing and Experimental Modal Analysis of a Steel Footbridge for Structural Identification. J. Test. Eval. 2014, 42, 20130166. [Google Scholar] [CrossRef]
- Zwolski, J.; Bien, J. Modal Analysis of Bridge Structures by Means of Forced Vibration Tests. J. Civ. Eng. Manag. 2011, 17, 590–599. [Google Scholar] [CrossRef]
- Chen, G.-W.; Omenzetter, P.; Beskhyroun, S. Operational Modal Analysis of an Eleven-Span Concrete Bridge Subjected to Weak Ambient Excitations. Eng. Struct. 2017, 151, 839–860. [Google Scholar] [CrossRef]
- Kvåle, K.A.; Øiseth, O.; Rønnquist, A. Operational Modal Analysis of an End-Supported Pontoon Bridge. Eng. Struct. 2017, 148, 410–423. [Google Scholar] [CrossRef]
- Brownjohn, J.M.W.; Au, S.-K.; Zhu, Y.; Sun, Z.; Li, B.; Bassitt, J.; Hudson, E.; Sun, H. Bayesian Operational Modal Analysis of Jiangyin Yangtze River Bridge. Mech. Syst. Signal Process. 2018, 110, 210–230. [Google Scholar] [CrossRef]
- Rainieri, C.; Notarangelo, M.A.; Fabbrocino, G. Experiences of Dynamic Identification and Monitoring of Bridges in Serviceability Conditions and after Hazardous Events. Infrastructures 2020, 5, 86. [Google Scholar] [CrossRef]
- Benedettini, F.; Gentile, C. Operational Modal Testing and FE Model Tuning of a Cable-Stayed Bridge. Eng. Struct. 2011, 33, 2063–2073. [Google Scholar] [CrossRef]
- Kasimzade, A.; Tuhta, S.; Aydin, H.; Gunday, F. Determination of Modal Parameters on Steel Model Bridge Using Operational Modal Analysis. In Proceedings of the 8th International Steel Structures Symposium, Konya, Turkey, 24 October 2019. [Google Scholar]
- Kudu, F.N.; Bayraktar, A.; Bakir, P.G.; Turker, T.; Altunisik, A.C. Ambient Vibration Testing of Berta Highway Bridge with Post-Tension Tendons. Steel Compos. Struct. 2014, 16, 21–44. [Google Scholar] [CrossRef]
- Ali, A.; Sandhu, T.Y.; Usman, M. Ambient Vibration Testing of a Pedestrian Bridge Using Low-Cost Accelerometers for Shm Applications. Smart Cities 2019, 2, 20–30. [Google Scholar] [CrossRef]
- Salehi, M.; Demirlioglu, K.; Erduran, E. Evaluation of the Effect of Operational Modal Analysis Algorithms on Identified Modal Parameters of Railway Bridges. In Proceedings of the IABSE Congress, Ghent 2021: Structural Engineering for Future Societal Needs, Ghent, Belgium, 22–24 September 2021; pp. 441–449. [Google Scholar] [CrossRef]
- Lee, S.; Kalos, N.; Shin, D.H. Non-Destructive Testing Methods in the U.S. for Bridge Inspection and Maintenance. KSCE J. Civ. Eng. 2014, 18, 1322–1331. [Google Scholar] [CrossRef]
- Farhangdoust, S.; Mehrabi, A. Health Monitoring of Closure Joints in Accelerated Bridge Construction: A Review of Non-Destructive Testing Application. J. Adv. Concr. Technol. 2019, 17, 381–404. [Google Scholar] [CrossRef]
- Zahid, F.B.; Ong, Z.C.; Khoo, S.Y. A Review of Operational Modal Analysis Techniques for In-Service Modal Identification. J. Braz. Soc. Mech. Sci. Eng. 2020, 42, 398. [Google Scholar] [CrossRef]
- Sanchez, H.G.; Nova, F.R.; Gonzalez-Estrada, O.A. Implementation of the Operational Modal Analysis Technique in a Power Transmission Shaft. J. Phys. Conf. Ser. 2019, 1247, 012032. [Google Scholar] [CrossRef]
- Zong, Z.H.; Jaishi, B.; Ge, J.P.; Ren, W.X. Dynamic Analysis of a Half-through Concrete-Filled Steel Tubular Arch Bridge. Eng. Struct. 2005, 27, 3–15. [Google Scholar] [CrossRef]
- Bayraktar, A.; Altunişik, A.C.; Birinci, F.; Sevim, B.; Türker, T. Finite-Element Analysis and Vibration Testing of a Two-Span Masonry Arch Bridge. J. Perform. Constr. Facil. 2010, 24, 46–52. [Google Scholar] [CrossRef]
- Gentile, C. Modal and Structural Identification of a R.C. Arch Bridge. Struct. Eng. Mech. 2006, 22, 53–70. [Google Scholar] [CrossRef]
- Chopra, A.K. Dynamics of Structures: Theory and Applications to Earthquake Engineering; Earthquake Spectra; Prentice Hall: Hoboken, NJ, USA, 2012; Volume 635–636. [Google Scholar]
- Heylen, W.; Lammens, S.; Sas, P. Modal Analysis Theory and Testing; Katholieke Universiteit Leuven: Leuven, Belgium, 1995. [Google Scholar]
- Zhang, L.; Wang, T.; Tamura, Y. A Frequency–Spatial Domain Decomposition (FSDD) Method for Operational Modal Analysis. Mech. Syst. Signal Process. 2010, 24, 1227–1239. [Google Scholar] [CrossRef]
- Peeters, B.; Ventura, C.E. Comparative Study of Modal Analysis Techniques for Bridge Dynamic Characteristics. Mech. Syst. Signal Process. 2003, 17, 965–988. [Google Scholar] [CrossRef]
- Guo, J.; Jie, C.; Min, H.; Zhu, J.; Qing, Y. Monitoring—Based Evaluation of Dynamic Characteristics of a Long Span Suspension Bridge under Typhoons. J. Civ. Struct. Health Monit. 2021, 11, 397–410. [Google Scholar] [CrossRef]
- Feng, M.Q.; Kim, D.K.; Yi, J.-H.; Chen, Y. Baseline Models for Bridge Performance Monitoring. J. Eng. Mech. 2004, 130, 562–569. [Google Scholar] [CrossRef]
- Bayraktar, A.; Altunişik, A.C.; Sevim, B.; Türker, T.; Domaniç, A.; Taş, Y. Vibration Characteristics of Kömürhan Highway Bridge Constructed with Balanced Cantilever Method. J. Perform. Constr. Facil. 2009, 23, 90–99. [Google Scholar] [CrossRef]
- Jin, S.-S.; Jeong, S.; Sim, S.-H.; Seo, D.-W.; Park, Y.-S. Fully Automated Peak-Picking Method for an Autonomous Stay-Cable Monitoring System in Cable-Stayed Bridges. Autom. Constr. 2021, 126, 103628. [Google Scholar] [CrossRef]
- Zimmerman, A.T.; Swartz, R.A.; Lynch, J.P. Automated Identification of Modal Properties in a Steel Bridge Instrumented with a Dense Wireless Sensor Network. In Bridge Maintenance, Safety, Management, Health Monitoring and Informatics, Proceedings of the 4th International Conference on Bridge Maintenance, Safety and Management, Seoul, Republic of Korea, 13–17 July 2008; Taylor & Francis Group: London, UK, 2008; p. 345. [Google Scholar] [CrossRef]
- Gentile, C.; Gallino, N. Ambient Vibration Testing and Structural Evaluation of an Historic Suspension Footbridge. Adv. Eng. Softw. 2008, 39, 356–366. [Google Scholar] [CrossRef]
- Ren, W.-X.; Peng, X.-L. Baseline Finite Element Modeling of a Large Span Cable-Stayed Bridge through Field Ambient Vibration Tests. Comput. Struct. 2005, 83, 536–550. [Google Scholar] [CrossRef]
- Ren, W.-X.; Zatar, W.; Harik, I.E. Ambient Vibration-Based Seismic Evaluation of a Continuous Girder Bridge. Eng. Struct. 2004, 26, 631–640. [Google Scholar] [CrossRef]
- Galvín, P.; Domínguez, J. Dynamic Analysis of a Cable-Stayed Deck Steel Arch Bridge. J. Constr. Steel Res. 2007, 63, 1024–1035. [Google Scholar] [CrossRef]
- Chen, G.; Beskhyroun, S. Dynamic Properties of an Eleven-Span Motorway Bridge at Different Levels of Excitation. In Proceedings of the New Zealand Society for Earthquake Engineering Annual Conference, Auckland, New Zealand, 21–23 March 2014; pp. 1–9. [Google Scholar]
- Bayraktar, A.; Can Altunişik, A.; Sevim, B.; Türker, T. Ambient Vibration Tests of a Steel Footbridge. J. Nondestr. Eval. 2010, 29, 14–24. [Google Scholar] [CrossRef]
- Wang, L.; Li, B.; Hou, J.; Ou, J. Modal Analysis of Dongying Yellow River Bridge for Long Term Monitoring. In Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems; Tomizuka, M., Ed.; SPIE: Bellingham, DC, USA, 2011; p. 79811Z. [Google Scholar]
- Lei, Y.; Shen, W.A.; Song, Y.; Wang, Y.; Lynch, J.P. Intelligent Sensors with Application to the Identification of Structural Modal Parameters and Steel Cable Forces. In Proceedings of the Earth & Space 2008, Long Beach, CA, USA, 4 September 2008; American Society of Civil Engineers: Reston, VA, USA, 2008; pp. 1–8. [Google Scholar]
- Brincker, R.; Zhang, L.; Andersen, P. Modal Identification from Ambient Responses Using Frequency Domain Decomposition. In Proceedings of the 18th International Modal Analysis Conference (IMAC), San Antonio, TX, USA, 7–10 February 2000. [Google Scholar]
- Malekjafarian, A.; OBrien, E.J. Identification of Bridge Mode Shapes Using Short Time Frequency Domain Decomposition of the Responses Measured in a Passing Vehicle. Eng. Struct. 2014, 81, 386–397. [Google Scholar] [CrossRef]
- Ahmed, E.; Uddin, N.; OBrien, E. Identifying Localized Bridge Damage Using Frequency Domain Decomposition. In Proceedings of the 26th ASNT Research Symposium, Jacksonville, FL, USA, 13–16 March 2017. [Google Scholar]
- Akköse, M.; Gomez, H.C.; Feng, M.Q. Modal Response Identification of a Highway Bridge under Traffic Loads Using Frequency Domain Decomposition (FDD). Chall. J. Struct. Mech. 2017, 3, 63. [Google Scholar] [CrossRef]
- Brincker, R.; Ventura, C.E.; Andersen, P. Damping Estimation by Frequency Domain Decomposition. In Proceedings of the IMAC 19: A Conference on Structural Dynamics, Kissimmee, FL, USA, 5–8 February 2001. [Google Scholar]
- Wu, J.; Li, H.; Ye, F.; Ma, K. Damage Identification of Bridge Structure Based on Frequency Domain Decomposition and Strain Mode. J. Vibroeng. 2019, 21, 2096–2105. [Google Scholar] [CrossRef]
- Makki Alamdari, M.; Anaissi, A.; Khoa, N.L.D.; Mustapha, S. Frequency Domain Decomposition-Based Multisensor Data Fusion for Assessment of Progressive Damage in Structures. Struct. Control Health Monit. 2019, 26, e2299. [Google Scholar] [CrossRef]
- OBrien, E.J.; Malekjafarian, A. A Mode Shape-Based Damage Detection Approach Using Laser Measurement from a Vehicle Crossing a Simply Supported Bridge. Struct. Control Health Monit. 2016, 23, 1273–1286. [Google Scholar] [CrossRef]
- Cunha, A.; Caetano, E.; Brincker, R.; Andersen, P. Identification from the Natural Response of Vasco Da Gama Bridge. In Proceedings of the IMAC 22, International Modal Analysis Conference, Dearborn, MI, USA, 26–29 January 2004. [Google Scholar]
- Cho, S.; Park, J.; Jung, H.J.; Yun, C.B.; Jang, S.; Jo, H.; Spencer, B.F.; Nagayama, T.; Seo, J.W. Structural Health Monitoring of a Cable-Stayed Bridge Using Acceleration Data via Wireless Smart Sensor Network. In Bridge Maintenance, Safety, Management and Life-Cycle Optimization, Proceedings of the 5th International Conference on Bridge Maintenance, Safety and Management, Philadelphia, PA, USA, 11–15 July 2010; CRC Press: Boca Raton, FL, USA, 2010; Volume 6, pp. 158–164. [Google Scholar]
- Weng, J.-H.; Loh, C.-H.; Lynch, J.P.; Lu, K.-C.; Lin, P.-Y.; Wang, Y. Output-Only Modal Identification of a Cable-Stayed Bridge Using Wireless Monitoring Systems. Eng. Struct. 2008, 30, 1820–1830. [Google Scholar] [CrossRef]
- Brincker, R.; Andersen, P.; Jacobsen, N.J. Automated Frequency Domain Decomposition for Operational Modal Analysis. In Conference Proceedings of the Society for Experimental Mechanics Series; Springer: Cham, Switzerland, 2007. [Google Scholar]
- Michel, C.; Keller, S. Determining and Investigating the Variability of Bridges’ Natural Frequencies with Ground-Based Radar. Appl. Sci. 2022, 12, 5354. [Google Scholar] [CrossRef]
- Torbol, M. Real-Time Frequency-Domain Decomposition for Structural Health Monitoring Using General-Purpose Graphic Processing Unit. Comput.-Aided Civ. Infrastruct. Eng. 2014, 29, 689–702. [Google Scholar] [CrossRef]
- Brincker, R.; Andersen, P.; Zhang, L. Modal Identification and Damage Detection on a Concrete Highway Bridge by Frequency Domain Decomposition. In Proceedings of the Structural Engineers World Congress, Yokohama, Japan, 9–12 October 2002; pp. 1–8. [Google Scholar]
- Yan, B.F.; Miyamoto, B. Wavelet-Aided Frequency Domain Decomposition Method for Dynamic Monitoring of Bridge Structure. J. Civ. Struct. Health Monit. 2005. [Google Scholar]
- Xing, S.; Halling, M.W.; Barr, P.J.; Meng, Q. Ambient Vibration Analysis of a Highway Bridge with Subspace Method and Frequency Domain Decomposition. In Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China, 12–17 October 2008. [Google Scholar]
- Elahi, A.R.; Cardoni, A.; Domaneschi, M.; Cimellaro, G.P. Automating the Frequency Domain Decomposition Technique Using the Modal Assurance Criterion. In Proceedings of the 17th World Conference on Seismic Isolation (17WCSI), Turin, Italy, 11–15 September 2022; Springer: Cham, Switzerland, 2023; pp. 1063–1073. [Google Scholar]
- Brincker, R.; Zhang, L.; Andersen, P. Modal Identification of Output-Only Systems Using Frequency Domain Decomposition. Smart Mater. Struct. 2001, 10, 441–445. [Google Scholar] [CrossRef]
- Sevim, B.; Bayraktar, A.; Altunişik, A.C.; Adanur, S.; Akköse, M. Modal Parameter Identification of a Prototype Arch Dam Using Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification Techniques. J. Test. Eval. 2010, 38, 1. [Google Scholar] [CrossRef]
- Jacobsen, N.J.; Andersen, P.; Brincker, R. Using Enhanced Frequency Domain Decomposition as a Robust Technique to Harmonic Excitation in Operational Modal Analysis. In Proceedings of the ISMA2006: International Conference on Noise and Vibration Engineering, Lueven, Belgium, 18 September 2006; Volume 6, pp. 3129–3140. [Google Scholar]
- Gonen, S.; Soyoz, S. Dynamic Identification of Masonry Arch Bridges Using Multiple Methodologies. In Conference Proceedings of the Society for Experimental Mechanics Series; Springer: Cham, Switzerland, 2021; pp. 37–47. [Google Scholar]
- AltuniŞik, A.C.; Bayraktar, A.; Sevim, B. Analytical and Experimental Modal Analyses of a Highway Bridge Model. Comput. Concr. 2013, 12, 803–818. [Google Scholar] [CrossRef]
- Ghalishooyan, M.; Shooshtari, A.; Abdelghani, M. Output-Only Modal Identification by in-Operation Modal Appropriation for Use with Enhanced Frequency Domain Decomposition Method. J. Mech. Sci. Technol. 2019, 33, 3055–3067. [Google Scholar] [CrossRef]
- Mohammadi, N.; Nasirshoaibi, M. Modal Parameter Identification of a Three-Storey Structure Using Frequency Domain Techniques FDD and EFDD and Time Domain Technique SSI: Experimental Studies and Simulations. J. Vibroeng. 2017, 19, 2759–2776. [Google Scholar] [CrossRef]
- Altunişik, A.C.; Bayraktar, A.; Sevim, B. Operational Modal Analysis of a Scaled Bridge Model Using EFDD and SSI Methods; NISCAIR-CSIR: New Delhi, India, 2012; Volume 19. [Google Scholar]
- Kasımzade, A.; Tuhta, S.; Aydın, H.; Günday, F. Investigation of Modal Parameters on Steel Model Bridge Using EFDD Method. In Proceedings of the 2nd International Conference on Technology and Science, Thimphu, Bhutan, 14–16 November 2019. [Google Scholar]
- Chu, I.; Amin, M.N.; Kim, J.-K. Prediction Model for the Hydration Properties of Concrete. Comput. Concr. 2013, 12, 377–392. [Google Scholar] [CrossRef]
- Cunha, Á.; Caetano, E.; Magalhães, F.; Moutinho, C. Dynamic Identification and Continuous Dynamic Monitoring of Bridges: Different Applications along Bridges Life Cycle. Struct. Infrastruct. Eng. 2018, 14, 445–467. [Google Scholar] [CrossRef]
- Cole, J.R.H. On-the-Line Analysis of Random Vibrations. In Proceedings of the 9th Structural Dynamics and Materials Conference, Palm Springs, CA, USA, 1–3 April 1968. [Google Scholar] [CrossRef]
- Liu, C.; Teng, J.; Liu, J. Improvement of the Decentralized Random Decrement Technique in Wireless Sensor Networks. In Proceedings of the 2014 Word Congress on Advance in Civil, Environmental, and Materials, Busan, Republic of Korea, 24–28 August 2014; pp. 24–28. [Google Scholar]
- Vandiver, J.K.; Dunwoody, A.B.; Campbell, R.B.; Cook, M.F. A Mathematical Basis for the Random Decrement Vibration Signature Analysis Technique. J. Mech. Des. 1982, 104, 307–313. [Google Scholar] [CrossRef]
- Morsy, R.; Marzouk, H.; Haddara, M.; Gu, X. Multi-Channel Random Decrement Smart Sensing System for Concrete Bridge Girders Damage Location Identification. Eng. Struct. 2017, 143, 469–476. [Google Scholar] [CrossRef]
- Kordestani, H.; Xiang, Y.-Q.; Ye, X.-W.; Jia, Y.-K. Application of the Random Decrement Technique in Damage Detection under Moving Load. Appl. Sci. 2018, 8, 753. [Google Scholar] [CrossRef]
- He, X.H.; Hua, X.G.; Chen, Z.Q.; Huang, F.L. EMD-Based Random Decrement Technique for Modal Parameter Identification of an Existing Railway Bridge. Eng. Struct. 2011, 33, 1348–1356. [Google Scholar] [CrossRef]
- Wu, W.-H.; Chen, C.-C.; Liau, J.-A. A Multiple Random Decrement Method for Modal Parameter Identification of Stay Cables Based on Ambient Vibration Signals. Adv. Struct. Eng. 2012, 15, 969–982. [Google Scholar] [CrossRef]
- Kaloop, M.R.; Hu, J.W. Dynamic Performance Analysis of the Towers of a Long-Span Bridge Based on GPS Monitoring Technique. J. Sens. 2016, 2016, 7494817. [Google Scholar] [CrossRef]
- Huang, Z.; Li, Y.; Hua, X.; Chen, Z.; Wen, Q. Automatic Identification of Bridge Vortex-Induced Vibration Using Random Decrement Method. Appl. Sci. 2019, 9, 2049. [Google Scholar] [CrossRef]
- Wen, Q.; Hua, X.G.; Chen, Z.Q.; Niu, H.W.; Wang, X.Y. AMD-Based Random Decrement Technique for Modal Identification of Structures with Close Modes. J. Aerosp. Eng. 2018, 31, 04018057. [Google Scholar] [CrossRef]
- Morsy, R.; Marzouk, H.; Gu, X. The Use of Multichannel Random Decrement for Monitoring of Concrete Bridge Girders. In Proceedings of the SMAR 2015: Third Conference on Smart Monitoring, Assessment & Rehabilitation of Civil Structures, Antalya, Turkey, 7–9 September 2015. [Google Scholar]
- Morsy, R.; Marzouk, H.; Gu, X.; Elshafey, A. Use of the Random Decrement Technique for Nondestructive Detection of Damage to Beams. Mater. Struct. 2016, 49, 4719–4727. [Google Scholar] [CrossRef]
- Brincker, R.; Olsen, P.; Amador, S.; Juul, M.; Malekjafarian, A.; Ashory, M. Modal Participation in Multiple Input Ibrahim Time Domain Identification. Math. Mech. Solids 2019, 24, 168–180. [Google Scholar] [CrossRef]
- Ibrahim, S.R.; EC, M. A Method for Direct Identification of Vibration Parameters from the Free Response. In The Shock and Vibration Bulletin; NASA: Washington, DC, USA, 1977. [Google Scholar]
- Ibrahim, S.R. A Time Domain Vibration Test Technique. Ph.D. Thesis, University of Calgary, Calgary, AB, Canada, 1973. [Google Scholar]
- Malekjafarian, A.; Brincker, R.; Ashory, M.R.; Khatibi, M.M. Modified Ibrahim Time Domain Method for Identification of Closely Spaced Modes: Experimental Results. In Conference Proceedings of the Society for Experimental Mechanics Series; Springer: New York, NY, USA, 2012; pp. 443–449. [Google Scholar]
- Huang, C.S.; Yang, Y.B.; Lu, L.Y.; Chen, C.H. Dynamic Testing and System Identification of a Multi-Span Highway Bridge. Earthq. Eng. Struct. Dyn. 1999, 28, 857–878. [Google Scholar] [CrossRef]
- Siringoringo, D.M.; Fujino, Y. System Identification of Suspension Bridge from Ambient Vibration Response. Eng. Struct. 2008, 30, 462–477. [Google Scholar] [CrossRef]
- Liu, C.; Teng, J. Modal Analysis of a Cable-Stayed Bridge Model Using a Modified Ibrahim Time Domain Algorithm. J. Vibroeng. 2014, 16, 3033–3044. [Google Scholar]
- Asmussen, J.C.; Ibrahim, S.R.; Brincker, R. Random Decrement and Regression Analysis of Traffic Responses of Bridges; Aalborg University: Aalborg, Denmark, 1995. [Google Scholar]
- Fujino, Y.; Abe, M.; Shibuya, H.; Yanagihara, M.; Sato, M.; Nakamura, S.-I.; Sakamoto, Y. Forced and Ambient Vibration Tests and Vibration Monitoring of Hakucho Suspension Bridge. Transp. Res. Rec. J. Transp. Res. Board 2000, 1696, 57–63. [Google Scholar] [CrossRef]
- Wu, W.H.; Liao, C.A.; Chen, C.C. Parameter Identification for Multiple Modes of Cable-Stayed Bridge Cables Using Ambient Vibration Measurements from a Single Station. WIT Trans. Model. Simul. 2007, 46, 691–700. [Google Scholar] [CrossRef]
- Zulkifli, E.; Widarda, D.R. Modal Parameters Identification of Light Rail Bridges. IOP Conf. Ser. Mater. Sci. Eng. 2019, 669, 012027. [Google Scholar] [CrossRef]
- Jiang, H.; Meng, G.W.; Xiong, B.W. Modal Parameters Identification of Bridge Structure Based on Excitation of Wind Load. Appl. Mech. Mater. 2013, 405–408, 1660–1663. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Chen, C.-H. Dynamic Characteristics of a Cable-Stayed Bridge Measured from Traffic-Induced Vibrations. In Proceedings of the International Conference of Numerical Analysis and Applied Mathematics, Kos, Greece, 19–25 September 2012; pp. 2278–2281. [Google Scholar]
- Juang, J.-N.; Pappa, R.S. An Eigensystem Realization Algorithm for Modal Parameter Identification and Model Reduction. J. Guid. Control. Dyn. 1985, 8, 620–627. [Google Scholar] [CrossRef]
- Chiang, D.-Y.; Lin, C.-S. Identification of Modal Parameters from Ambient Vibration Data Using Eigensystem Realization Algorithm with Correlation Technique. J. Mech. Sci. Technol. 2010, 24, 2377–2382. [Google Scholar] [CrossRef]
- Qin, Q.; Li, H.B.; Qian, L.Z.; Lau, C.-K. Modal Identification of Tsing Ma Bridge by Using Improved Eigensystem Realization Algorithm. J. Sound Vib. 2001, 247, 325–341. [Google Scholar] [CrossRef]
- Zhang, G.; Ma, J.; Chen, Z.; Wang, R. Automated Eigensystem Realisation Algorithm for Operational Modal Analysis. J. Sound Vib. 2014, 333, 3550–3563. [Google Scholar] [CrossRef]
- Qu, C.-X.; Mei, D.-P.; Yi, T.-H.; Li, H.-N. Spurious Mode Distinguish by Modal Response Contribution Index in Eigensystem Realization Algorithm. Struct. Des. Tall Spec. Build. 2018, 27, e1491. [Google Scholar] [CrossRef]
- Catbas, F.N.; Lenett, M.; Brown, D.L.; Doebling, S.W.; Farrar, C.R.; Turer, A. Modal Analysis of Multi-Reference Impact Test Data for Steel Stringer Bridges. In Proceedings of the International Modal Analysis Conference—IMAC, Orlando, FL, USA, 3–6 February 1997; Volume 1, pp. 381–391. [Google Scholar]
- Yang, X.-M.; Yi, T.-H.; Qu, C.-X.; Li, H.-N.; Liu, H. Automated Eigensystem Realization Algorithm for Operational Modal Identification of Bridge Structures. J. Aerosp. Eng. 2019, 32, 04018148. [Google Scholar] [CrossRef]
- Szafrański, M. A Dynamic Vehicle-Bridge Model Based on the Modal Identification Results of an Existing EN57 Train and Bridge Spans with Non-Ballasted Tracks. Mech. Syst. Signal Process. 2021, 146, 107039. [Google Scholar] [CrossRef]
- Lu, W.; Dong, J.; Pan, Y.; Li, G.; Guo, J. Damage Identification of Bridge Structure Model Based on Empirical Mode Decomposition Algorithm and Autoregressive Integrated Moving Average Procedure. Arch. Civ. Eng. 2022, 68, 653–667. [Google Scholar] [CrossRef]
- Rainieri, C.; Fabbrocino, G. Operational Modal Analysis: Overview and Applications. Strateg. Reduct. Seism. Risk 2008, 29–44. [Google Scholar]
- Chen, Y.; Feng, M.Q.; Tan, C.-A. Modeling of Traffic Excitation for System Identification of Bridge Structures. Comput.-Aided Civ. Infrastruct. Eng. 2006, 21, 57–66. [Google Scholar] [CrossRef]
- Erdoğan, H.; Gülal, E. The Application of Time Series Analysis to Describe the Dynamic Movements of Suspension Bridges. Nonlinear Anal. World Appl. 2009, 10, 910–927. [Google Scholar] [CrossRef]
- Pakzad, S.N.; Fenves, G.L. Statistical Analysis of Vibration Modes of a Suspension Bridge Using Spatially Dense Wireless Sensor Network. J. Struct. Eng. 2009, 135, 863–872. [Google Scholar] [CrossRef]
- Fang, R.; Jianxi, Y. Application of the ARMA Model to Bridge Structural Health Monitoring. Intell. Autom. Soft Comput. 2010, 16, 755–762. [Google Scholar] [CrossRef]
- Lu, D.G.; Zhang, W.H.; Zhao, Z. Health Monitoring Data Modeling and Reliability Prediction of an Actual Bridge Based on ARMA Model. In Maintenance, Safety, Risk, Management and Life-Cycle Performance of Bridges, Proceedings of the 9th International Conference on Bridge Maintenance, Safety and Management, IABMAS 2018, Melbourne, Australia, 9–13 July 2018; CRC Press: Boca Raton, FL, USA, 2018; pp. 2089–2096. [Google Scholar] [CrossRef]
- Boonyapinyo, V.; Miyata, T.; Yamada, H. Advanced Aerodynamic Analysis of Suspension Bridges by State-Space Approach. J. Struct. Eng. 1999, 125, 1357–1366. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, Y.; Ouyang, H. Influence of Random Multi-Point Seismic Excitations on the Safety Performance of a Train Running on a Long-Span Bridge. Int. J. Struct. Stab. Dyn. 2020, 20, 2050054. [Google Scholar] [CrossRef]
- Xiong, C.; Lu, H.; Zhu, J. Operational Modal Analysis of Bridge Structures with Data from GNSS/Accelerometer Measurements. Sensors 2017, 17, 436. [Google Scholar] [CrossRef]
- Vu, V.H.; Thomas, M.; Lakis, A.A.; Marcouiller, L. Identification of Modal Parameters by Operational Modal Analysis for the Assessment of Bridge Rehabilitation. In Proceedings of the 2nd International Operational Modal Analysis Conference, IOMAC 2007, Copenhagen, Denmark, 30 April–2 May 2007. [Google Scholar]
- Kim, B.H.; Stubbs, N.; Park, T. A New Method to Extract Modal Parameters Using Output-Only Responses. J. Sound Vib. 2005, 282, 215–230. [Google Scholar] [CrossRef]
- Kim, B.H.; Lee, J.; Lee, D.H. Extracting Modal Parameters of High-Speed Railway Bridge Using the TDD Technique. Mech. Syst. Signal Process. 2010, 24, 707–720. [Google Scholar] [CrossRef]
- Daniotti, N.; Cheynet, E.; Jakobsen, J.B.; Snæbjörnsson, J. Damping Estimation from Full-Scale Traffic-Induced Vibrations of a Suspension Bridge. In Proceedings of the ASCE International Conference on Computing in Civil Engineering, Atlanta, GA, USA, 17–19 June 2019. [Google Scholar]
- Salokhe, N.; Thakre, P.; Awale, R.N.; Kambale, S. Vibration Based Damage Detection Using Overall Frequency Response and Time Domain Decomposition. In Proceedings of the 2016 IEEE International Conference on Engineering and Technology (ICETECH), Coimbatore, India, 17–18 March 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 991–994. [Google Scholar]
- Park, J.; Park, C.; Kang, H.; Jo, B. Dynamic Characteristics of Seohae Cable-Stayed Bridge Based on Results from Long-Term Structural Health Monitoring. In Proceedings of the IABSE Symposium: Improving Infrastructure Worldwide, Weimar, Germany, 19–21 September 2007; pp. 212–215. [Google Scholar]
- Huang, Q.; Gardoni, P.; Hurlebaus, S. Updating Structural Properties Using Modal Parameters Considering Measurement Errors. In Proceedings of the Structures Congress 2009, Austin, TX, USA, 29 April 2009; American Society of Civil Engineers: Reston, VA, USA, 2009; pp. 1–9. [Google Scholar]
- De Moor, B.; Van Overschee, P.; Suykens, J. Subspace Algorithms for System Identification and Stochastic Realization. In Proceedings of the MTNS, Kobe, Japan, 17 June 1991. [Google Scholar]
- Van Overschee, P.; De Moor, B. Subspace Identification for Linear Systems: Theory, Implementation and Applications; Kluwer Academic Publishers: Alphen aan den Rijn, The Netherlands, 1996. [Google Scholar]
- Peeters, B. System Identification and Damage Detection in Civil Engineering. Ph.D. Thesis, Katholieke Universiteit Leuven, Leuven, Belgium, 2000. [Google Scholar]
- Maddipour Farrokhifard, M.; Hatami, M.; Venkatasubramanian, V.M. Performance of Stochastic Subspace Identification Methods in Presence of Forced Oscillations. In Proceedings of the 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), College Station, TX, USA, 21–23 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–8. [Google Scholar]
- Jin, N.; Yang, Y.B.; Dimitrakopoulos, E.G.; Paraskeva, T.S.; Katafygiotis, L.S. Application of Short-Time Stochastic Subspace Identification to Estimate Bridge Frequencies from a Traversing Vehicle. Eng. Struct. 2021, 230, 111688. [Google Scholar] [CrossRef]
- Yang, Y.B.; Chen, W.-F. Extraction of Bridge Frequencies from a Moving Test Vehicle by Stochastic Subspace Identification. J. Bridge Eng. 2016, 21, 04015053. [Google Scholar] [CrossRef]
- Boonyapinyo, V.; Janesupasaeree, T. Data-Driven Stochastic Subspace Identification of Flutter Derivatives of Bridge Decks. J. Wind. Eng. Ind. Aerodyn. 2010, 98, 784–799. [Google Scholar] [CrossRef]
- Brownjohn, J.M.W.; Magalhaes, F.; Caetano, E.; Cunha, A. Ambient Vibration Re-Testing and Operational Modal Analysis of the Humber Bridge. Eng. Struct. 2010, 32, 2003–2018. [Google Scholar] [CrossRef]
- Li, J.; Zhu, X.; Law, S.; Samali, B. Indirect Bridge Modal Parameters Identification with One Stationary and One Moving Sensors and Stochastic Subspace Identification. J. Sound Vib. 2019, 446, 1–21. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiang, X.; Zhang, M.; Zhang, J.; Sun, H.; Li, X. Modal Parameters Identification of Bridge by Improved Stochastic Subspace Identification Method with Grubbs Criterion. Meas. Control (U. K.) 2021, 54, 457–464. [Google Scholar] [CrossRef]
- Loh, C.-H.; Chen, M.-C.; Chao, S.-H. Stochastic Subspace Identification for Operational Modal Analysis of an Arch Bridge. In Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2012; Tomizuka, M., Yun, C.-B., Lynch, J.P., Eds.; SPIE: Bellingham, DC, USA, 2012; p. 834504. [Google Scholar]
- Wu, W.H.; Wang, S.W.; Chen, C.C.; Lai, G. Mode Identifiability of a Cable-Stayed Bridge under Different Excitation Conditions Assessed with an Improved Algorithm Based on Stochastic Subspace Identification. Smart Struct. Syst. 2016, 17, 363–389. [Google Scholar] [CrossRef]
- Tran, T.T.X.; Ozer, E. Synergistic Bridge Modal Analysis Using Frequency Domain Decomposition, Observer Kalman Filter Identification, Stochastic Subspace Identification, System Realization Using Information Matrix, and Autoregressive Exogenous Model. Mech. Syst. Signal Process. 2021, 160, 107818. [Google Scholar] [CrossRef]
- Kvåle, K.A.; Øiseth, O.; Rönnquist, A. Covariance-Driven Stochastic Subspace Identification of an End-Supported Pontoon Bridge Under Varying Environmental Conditions. In Conference Proceedings of the Society for Experimental Mechanics Series; Springer: Cham, Switzerland, 2017; pp. 107–115. [Google Scholar]
- Wu, W.-H.; Wang, S.-W.; Chen, C.-C.; Lai, G. Application of Stochastic Subspace Identification for Stay Cables with an Alternative Stabilization Diagram and Hierarchical Sifting Process. Struct. Control Health Monit. 2016, 23, 1194–1213. [Google Scholar] [CrossRef]
- Zhou, X.; Cao, L.; Khan, I.; Li, Q. Data Inspecting and Denoising Method for Data-Driven Stochastic Subspace Identification. Shock. Vib. 2018, 2018, 3926817. [Google Scholar] [CrossRef]
- Bayraktar, A.; Türker, T.; Altunişik, A.C. Experimental Frequencies and Damping Ratios for Historical Masonry Arch Bridges. Constr. Build. Mater. 2015, 75, 234–241. [Google Scholar] [CrossRef]
- Fan, J.; Zhang, Z.; Hua, H. Data Processing in Subspace Identification and Modal Parameter Identification of an Arch Bridge. Mech. Syst. Signal Process. 2007, 21, 1674–1689. [Google Scholar] [CrossRef]
- Ren, W.; Zhao, T.; Harik, I.E.; Asce, M. Experimental and Analytical Modal Analysis of Steel Arch Bridge. J. Struct. Eng. 2004, 130, 9445. [Google Scholar] [CrossRef]
- Loh, C.H.; Chen, M.C. Modeling of Environmental Effects for Vibration-Based SHM Using Recursive Stochastic Subspace Identification Analysis. Key Eng. Mater. 2013, 558, 52–64. [Google Scholar] [CrossRef]
- Hsu, W.-T.; Loh, C.-H.; Chao, S.-H. Uncertainty Calculation for Modal Parameters Used with Stochastic Subspace Identification: An Application to a Bridge Structure. In Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems; Lynch, J.P., Ed.; SPIE: Bellingham, DC, USA, 2015; p. 94350Q. [Google Scholar]
- Altunişik, A.C.; Bayraktar, A.; Sevim, B.; Özdemir, H. Experimental and Analytical System Identification of Eynel Arch Type Steel Highway Bridge. J. Constr. Steel Res. 2011, 67, 1912–1921. [Google Scholar] [CrossRef]
- Döhler, M.; Lam, X.-B.; Mevel, L. Uncertainty Quantification for Modal Parameters from Stochastic Subspace Identification on Multi-Setup Measurements. Mech. Syst. Signal Process. 2013, 36, 562–581. [Google Scholar] [CrossRef]
- Yang, X.-M.; Yi, T.-H.; Qu, C.-X.; Li, H.-N.; Liu, H. Performance Assessment of a High-Speed Railway Bridge through Operational Modal Analysis. J. Perform. Constr. Facil. 2021, 35, 04021091. [Google Scholar] [CrossRef]
- Can, A.; Bayraktar, A.; Sevim, B. Output-Only System Identification of Posttensioned Segmental Concrete Highway Bridges. J. Bridge Eng. 2011, 259–266. [Google Scholar] [CrossRef]
- James, G.H., III; Carne, T.G.; Lauffer, J.P. The Natural Excitation Technique (NExT) for Modal Parameter Extraction from Operating Wind Turbines; Technical Report; Sandia National Labs.: Albuquerque, NM, USA, 1993. [Google Scholar]
- Farrar, C.R.; James III, G.H. System Identification from Ambient Vibration Measurements on a Bridge. J. Sound Vib. 1997, 205, 1–18. [Google Scholar] [CrossRef]
- Yang, X.-M.; Yi, T.-H.; Qu, C.-X.; Li, H.-N. Modal Identification of Bridges Using Asynchronous Responses through an Enhanced Natural Excitation Technique. J. Eng. Mech. 2021, 147, 04021106. [Google Scholar] [CrossRef]
- Kim, S.; Kim, H.-K. Damping Identification of Bridges Under Nonstationary Ambient Vibration. Engineering 2017, 3, 839–844. [Google Scholar] [CrossRef]
- Pan, C.; Ye, X.; Mei, L. Improved Automatic Operational Modal Analysis Method and Application to Large-Scale Bridges. J. Bridge Eng. 2021, 26, 04021051. [Google Scholar] [CrossRef]
- Kim, S.; Park, J.; Kim, H.-K. Damping Identification and Serviceability Assessment of a Cable-Stayed Bridge Based on Operational Monitoring Data. J. Bridge Eng. 2017, 22, 04016123. [Google Scholar] [CrossRef]
- Kim, S.; Kim, H.K.; You, Y.C. Enhanced Damping Estimation for Cable-Stayed Bridges Based on Operational Monitoring Data. Struct. Eng. Int. 2018, 28, 308–317. [Google Scholar] [CrossRef]
- Heo, G.H.; Lee, G.; Lee, D.G.; Lee, C.O.; Kim, M.G. An Analysis of the Characteristics of SPG Bridges Using NExT and ERA for Real-Time Monitoring. Key Eng. Mater. 2004, 270–273, 2012–2017. [Google Scholar] [CrossRef]
- Catbas, F.N.; Gul, M.; Burkett, J.L. Conceptual Damage-Sensitive Features for Structural Health Monitoring: Laboratory and Field Demonstrations. Mech. Syst. Signal Process. 2008, 22, 1650–1669. [Google Scholar] [CrossRef]
- Moughty, J.J.; Casas, J.R. A State of the Art Review of Modal-Based Damage Detection in Bridges: Development, Challenges, and Solutions. Appl. Sci. 2017, 7, 510. [Google Scholar] [CrossRef]
- Adams, R.D.; Walton, D.; Flitcroft, J.E.; Short, D. Vibration Testing as a Nondestructive Test Tool for Composite Materials. In Composite Reliability, Philadelphia: American Society for Testing and Materials; ASTM International: West Conshohocken, PA, USA, 1975. [Google Scholar]
- Cawley, P.; Adams, R.D. The Location of Defects in Structures from Measurements of Natural Frequencies. J. Strain Anal. Eng. Des. 1979, 14, 49–57. [Google Scholar] [CrossRef]
- Salawu, O.S. Detection of Structural Damage through Changes in Frequency: A Review. Eng. Struct. 1997, 19, 718–723. [Google Scholar] [CrossRef]
- Limongelli, M.P.; Siegert, D.; Merliot, E.; Waeytens, J.; Bourquin, F.; Vidal, R.; Le Corvec, V.; Gueguen, I.; Cottineau, L.M. Damage Detection in a Post Tensioned Concrete Beam—Experimental Investigation. Eng. Struct. 2016, 128, 15–25. [Google Scholar] [CrossRef]
- Bonopera, M.; Chang, K.; Tullini, N. Vibration of Prestressed Beams: Experimental and Finite-Element Analysis of Post–Tensioned Thin-Walled Box-Girders. J. Constr. Steel Res. 2023, 205, 107854. [Google Scholar] [CrossRef]
- Messina, A.; Williams, E.J.; Contursi, T. Structural Damage Detection by a Sensitivity and Statistical-Based Method. J. Sound Vib. 1998, 216, 791–808. [Google Scholar] [CrossRef]
- KIM, J.-T.; STUBBS, N. Crack Detection in Beam-Type Structures Using Frequency Data. J. Sound Vib. 2003, 259, 145–160. [Google Scholar] [CrossRef]
- Lee, Y.-S.; Chung, M.-J. A Study on Crack Detection Using Eigenfrequency Test Data. Comput. Struct. 2000, 77, 327–342. [Google Scholar] [CrossRef]
- Casas, J.R.; Aparicio, A.C. Structural Damage Identification from Dynamic-Test Data. J. Struct. Eng. 1994, 120, 2437–2450. [Google Scholar] [CrossRef]
- Pau, A.; Greco, A.; Vestroni, F. Numerical and Experimental Detection of Concentrated Damage in a Parabolic Arch by Measured Frequency Variations. J. Vib. Control 2011, 17, 605–614. [Google Scholar] [CrossRef]
- Montazer, M.; Seyedpoor, S.M. A New Flexibility Based Damage Index for Damage Detection of Truss Structures. Shock. Vib. 2014, 2014, 460692. [Google Scholar] [CrossRef]
- Deraemaeker, A.; Reynders, E.; De Roeck, G.; Kullaa, J. Vibration-Based Structural Health Monitoring Using Output-Only Measurements under Changing Environment. Mech. Syst. Signal Process. 2008, 22, 34–56. [Google Scholar] [CrossRef]
- Erazo, K.; Sen, D.; Nagarajaiah, S.; Sun, L. Vibration-Based Structural Health Monitoring under Changing Environmental Conditions Using Kalman Filtering. Mech. Syst. Signal Process. 2019, 117, 1–15. [Google Scholar] [CrossRef]
- Deraemaeker, A.; Worden, K. A Comparison of Linear Approaches to Filter out Environmental Effects in Structural Health Monitoring. Mech. Syst. Signal Process. 2018, 105, 1–15. [Google Scholar] [CrossRef]
- Allemang, R.J.; Brown, D.L. A Correlation Coefficient for Modal Vector Analysis. In Proceedings of the 1st SEM International Modal Analysis Conference, Orlando, FL, USA, 8–10 November 1982. [Google Scholar]
- Allemang, R.J. The Modal Assurance Criterion—Twenty Years of Use and Abuse. Sound Vib. 2003, 37, 14–21. [Google Scholar]
- Greś, S.; Döhler, M.; Mevel, L. Uncertainty Quantification of the Modal Assurance Criterion in Operational Modal Analysis. Mech. Syst. Signal Process. 2021, 152, 107457. [Google Scholar] [CrossRef]
- Kim, J.H.; Jeon, H.S.; Lee, C.W. Application of the Modal Assurance Criteria for Detecting and Locating Structural Faults. In Proceedings of the 10th International Modal Analysis Conference, San Diego, CA, USA, 3–7 February 1992. [Google Scholar]
- Salawu, O.S.; Williams, C. Bridge Assessment Using Forced-Vibration Testing. J. Struct. Eng. 1995, 121, 161–173. [Google Scholar] [CrossRef]
- Salgado, R.; Cruz, P.J.S.; Ramos, L.F.; Lourenco, P.B. Comparison between Damage Detection Methods Applied to Beam Structures; IABMAS’06; Taylor and Francis: Abingdon, UK, 2006. [Google Scholar]
- Balsamo, L.; Mukhopadhyay, S.; Betti, R.; Lus, H. Damage Detection Using Flexibility Proportional Coordinate Modal Assurance Criterion. In Topics in Modal Analysis, Volume 7, Proceedings of the 31st IMAC, A Conference on Structural Dynamics; Springer: New York, NY, USA, 2014; pp. 1–8. [Google Scholar]
- Zhao, J.; Zhang, L. Structural Damage Identification Based on the Modal Data Change. Int. J. Eng. Manuf. 2012, 2, 59–66. [Google Scholar] [CrossRef]
- Hunt, D.L. Application of an Enhanced Coordinate Modal Assurance Criterion. In Proceedings of the 10th International Modal Analysis Conference, San Diego, CA, USA, 3–7 February 1992. [Google Scholar]
- Ho, V.L. Hybrid Computational Intelligence Approach for Defect Identification in Vietnamese Structures. Ph.D. Thesis, Ghent University, Ghent, Belgium, 2022. [Google Scholar]
- Pandey, A.K.; Biswas, M.; Samman, M.M. Damage Detection from Changes in Curvature Mode Shapes. J. Sound Vib. 1991, 145, 321–332. [Google Scholar] [CrossRef]
- Ho, Y.K.; Ewins, D.J. Structural Damage Identification with Mode Shapes. In Proceedings of the European COST F3 Conference on System Identification & Structural Health Monitoring, Madrid, Spain, 6–9 June 2000. [Google Scholar]
- Farrar, C.R.; Worden, K. Structural Health Monitoring—A Machine Learning Perspective; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Hamming, R. Digital Filters; Courier Corporation: North Chelmsford, MA, USA, 1989. [Google Scholar]
- Sazonov, E.; Klinkhachorn, P. Optimal Spatial Sampling Interval for Damage Detection by Curvature or Strain Energy Mode Shapes. J. Sound Vib. 2005, 285, 783–801. [Google Scholar] [CrossRef]
- Chance, J.; Tomlinson, G.R.; Worden, K. A Simplified Approach to the Numerical and Experimental Modelling of the Dynamics of a Cracked Beam. In Proceedings of the 12th International Modal Conference, Honolulu, HI, USA, 31 January–3 February 1994. [Google Scholar]
- Capecchi, D.; Ciambella, J.; Pau, A.; Vestroni, F. Damage Identification in a Parabolic Arch by Means of Natural Frequencies, Modal Shapes and Curvatures. Meccanica 2016, 51, 2847–2859. [Google Scholar] [CrossRef]
- Wahab, M.A.; De Roeck, G. Damage Detection in Bridges Using Modal Curvatures: Application to a Real Damage Scenario. J. Sound Vib. 1999, 226, 217–235. [Google Scholar] [CrossRef]
- Stubbs, N.; Kim, J.T.; Topole, K. An Efficient and Robust Algorithm for Damage Localization in Offshore Platforms. In Proceedings of the ASCE 10th Structures Congress, San Antonio, TX, USA, 13–15 April 1992. [Google Scholar]
- Kim, J.-T.; Ryu, Y.-S.; Cho, H.-M.; Stubbs, N. Damage Identification in Beam-Type Structures: Frequency-Based Method vs Mode-Shape-Based Method. Eng. Struct. 2003, 25, 57–67. [Google Scholar] [CrossRef]
- Yam, L.Y.; Leung, T.P.; Li, D.B.; Xue, K.Z. Theoretical and Experimental Study of Modal Strain Analysis. J. Sound Vib. 1996, 191, 251–260. [Google Scholar] [CrossRef]
- Pandey, A.K.; Biswas, M. Damage Detection in Structures Using Changes in Flexibility. J. Sound Vib. 1994, 169, 3–17. [Google Scholar] [CrossRef]
- Toksoy, T.; Aktan, A.E. Bridge-Condition Assessment by Modal Flexibility. Exp. Mech. 1994, 34, 271–278. [Google Scholar] [CrossRef]
- Wang, J.Y.; Ko, J.M.; Ni, Y.Q. Modal Sensitivity Analysis of Tsing Ma Bridge for Structural Damage Detection. In Proceedings of the SPIE’s 5th Annual International Symposium on Nondestructive Evaluation and Health Monitoring of Aging Infrastructure, International Society for Optics and Photonics, Newport Beach, CA, USA, 6–8 March 2000. [Google Scholar]
- Zhang, Z.; Aktan, A.E. The Damage Indices for Constructed Facilities. In Proceedings of the International Modal Analysis Conference, Nashville, Tennessee, 13–16 February 1995. [Google Scholar]
- Lu, Q.; Ren, G.; Zhao, Y. Multiple Damage Location with Flexibility Curvature and Relative Frequency Change for Beam Structures. J. Sound Vib. 2002, 253, 1101–1114. [Google Scholar] [CrossRef]
- Talebinejad, I.; Fischer, C.; Ansari, F. Numerical Evaluation of Vibration-Based Methods for Damage Assessment of Cable-Stayed Bridges. Comput.-Aided Civ. Infrastruct. Eng. 2011, 26, 239–251. [Google Scholar] [CrossRef]
- Ndambi, J.-M.; Vantomme, J.; Harri, K. Damage Assessment in Reinforced Concrete Beams Using Eigenfrequencies and Mode Shape Derivatives. Eng. Struct. 2002, 24, 501–515. [Google Scholar] [CrossRef]
- Cruz, P.J.S.; Salgado, R. Performance of Vibration-Based Damage Detection Methods in Bridges. Comput.-Aided Civ. Infrastruct. Eng. 2009, 24, 62–79. [Google Scholar] [CrossRef]
- Wei, F.; Qiao, P. Vibration-Based Damage Identification Methods: A Review and Comparative Study. Struct. Health Monit. 2011, 10, 83–111. [Google Scholar] [CrossRef]
- Peeters, B.; De Roeck, G. One-Year Monitoring of the Z24-Bridge: Environmental Effects versus Damage Events. Earthq. Eng. Struct. Dyn. 2001, 30, 149–171. [Google Scholar] [CrossRef]
- Askegaard, V.; Mossing, P. Long Term Observation of Rc-Bridge Using Changes in Natural Frequency; Nordic Concrete Federation: Helsinki, Finland, 1988. [Google Scholar]
- Cornwell, P.; Farrar, C.R.; Doebling, S.W.; Sohn, H. Environmental Variability of Modal Properties. Exp. Tech. 1999, 23, 45–48. [Google Scholar] [CrossRef]
- Giraldo, D.F.; Dyke, S.J.; Caicedo, J.M. Damage Detection Accommodating Varying Environmental Conditions. Struct. Health Monit. 2006, 5, 155–172. [Google Scholar] [CrossRef]
- Xia, Y.; Hao, H.; Zanardo, G.; Deeks, A. Long Term Vibration Monitoring of an RC Slab: Temperature and Humidity Effect. Eng. Struct. 2006, 28, 441–452. [Google Scholar] [CrossRef]
- Farrar, C.R.; Baker, W.E.; Bell, T.M.; Cone, K.M.; Darling, T.W.; Duffey, T.A.; Eklund, A.; Migliori, A. Dynamic Characterization and Damage Detection in the I-40 Bridge over the Rio Grande; Los Alamos National Lab: Los Alamos, NM, USA, 1994. [Google Scholar]
- Soyoz, S.; Feng, M.Q. Long-Term Monitoring and Identification of Bridge Structural Parameters. Comput.-Aided Civ. Infrastruct. Eng. 2009, 24, 82–92. [Google Scholar] [CrossRef]
- Cross, E.J.; Koo, K.Y.; Brownjohn, J.M.W.; Worden, K. Long-Term Monitoring and Data Analysis of the Tamar Bridge. Mech. Syst. Signal Process. 2013, 35, 16–34. [Google Scholar] [CrossRef]
- Kim, C.Y.; Jung, D.S.; Kim, N.S.; Yoon, J.G. Effect of Vehicle Mass on the Measured Dynamic Characteristics of Bridges from Traffic-Induced Test. In Proceedings of the IMAC XIX—19th International Modal Analysis, Kissimmee, FL, USA, 5–8 February 2001. [Google Scholar]
- Kim, C.W.; Kawatani, M.; Hao, J. Modal Parameter Identification of Short Span Bridges under a Moving Vehicle by Means of Multivariate AR Model. Struct. Infrastruct. Eng. 2012, 8, 459–472. [Google Scholar] [CrossRef]
- Farreras-Alcover, I.; Chryssanthopoulos, M.K.; Andersen, J.E. Regression Models for Structural Health Monitoring of Welded Bridge Joints Based on Temperature, Traffic and Strain Measurements. Struct. Health Monit. 2015, 14, 648–662. [Google Scholar] [CrossRef]
- Song, Y.; Ding, Y. Fatigue Monitoring and Analysis of Orthotropic Steel Deck Considering Traffic Volume and Ambient Temperature. Sci. China Technol. Sci. 2013, 56, 1758–1766. [Google Scholar] [CrossRef]
- Sohn, H. Effects of Environmental and Operational Variability on Structural Health Monitoring. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2007, 365, 539–560. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Chen, B.; Weng, S.; Ni, Y.-Q.; Xu, Y.-L. Temperature Effect on Vibration Properties of Civil Structures: A Literature Review and Case Studies. J. Civ. Struct. Health Monit. 2012, 2, 29–46. [Google Scholar] [CrossRef]
- Magalhães, F.; Cunha, A.; Caetano, E. Vibration Based Structural Health Monitoring of an Arch Bridge: From Automated OMA to Damage Detection. Mech. Syst. Signal Process. 2012, 28, 212–228. [Google Scholar] [CrossRef]
- Peeters, B.; Maeck, J.; Roeck, G. De Vibration-Based Damage Detection in Civil Engineering: Excitation Sources and Temperature Effects. Smart Mater. Struct. 2001, 10, 518–527. [Google Scholar] [CrossRef]
- Liu, C.; DeWolf, J.T.; Kim, J.-H. Development of a Baseline for Structural Health Monitoring for a Curved Post-Tensioned Concrete Box–Girder Bridge. Eng. Struct. 2009, 31, 3107–3115. [Google Scholar] [CrossRef]
- Sohn, H.; Dzwonczyk, M.; Straser, E.G.; Kiremidjian, A.S.; Law, K.H.; Meng, T. An Experimental Study of Temperature Effect on Modal Parameters of the Alamosa Canyon Bridge. Earthq. Eng. Struct. Dyn. 1999, 28, 879–897. [Google Scholar] [CrossRef]
- Ding, Y.; Li, A. Temperature-Induced Variations of Measured Modal Frequencies of Steel Box Girder for a Long-Span Suspension Bridge. Int. J. Steel Struct. 2011, 11, 145–155. [Google Scholar] [CrossRef]
- Hassan, R.; Hekmati Athar, S.P.; Taheri, M.; Cesmeci, S.; Taheri, H. Regression Model for Structural Health Monitoring of a Lab Scaled Bridge. In NDE 4.0 and Smart Structures for Industry, Smart Cities, Communication, and Energy, Proceedings of the SPIE Smart Structures + Nondestructive Evaluation, Online, 21 March 2021; Meyendorf, N.G., Niezrecki, C., Farhangdoust, S., Eds.; SPIE: Bellingham, DC, USA, 2021; p. 18. [Google Scholar]
- Mangalathu, S.; Jeon, J.-S.; DesRoches, R. Critical Uncertainty Parameters Influencing Seismic Performance of Bridges Using Lasso Regression. Earthq. Eng. Struct. Dyn. 2018, 47, 784–801. [Google Scholar] [CrossRef]
- Kim, C.W.; Morita, T.; Oshima, Y.; Sugiura, K. A Bayesian Approach for Vibration-Based Long-Term Bridge Monitoring to Consider Environmental and Operational Changes. Smart Struct. Syst. 2015, 15, 395–408. [Google Scholar] [CrossRef]
- Laory, I.; Trinh, T.N.; Smith, I.F.C.; Brownjohn, J.M.W. Methodologies for Predicting Natural Frequency Variation of a Suspension Bridge. Eng. Struct. 2014, 80, 211–221. [Google Scholar] [CrossRef]
- Entezami, A.; Sarmadi, H.; Behkamal, B.; Mariani, S. Big Data Analytics and Structural Health Monitoring: A Statistical Pattern Recognition-Based Approach. Sensors 2020, 20, 2328. [Google Scholar] [CrossRef]
- Figueiredo, E.; Brownjohn, J. Three Decades of Statistical Pattern Recognition Paradigm for SHM of Bridges. Struct. Health Monit. 2022, 21, 3018–3054. [Google Scholar] [CrossRef]
- Gao, Z.; Li, F.; Yu, X.; Yan, J.; Chen, Z. Research and Application of Pattern Recognition LSTM Based Bridge Data Anomaly Detection. In Proceedings of the 2022 China Automation Congress (CAC), Xiamen, China, 25 November 2022; IEEE: Piscataway, NJ, USA; pp. 4630–4635. [Google Scholar]
- Farrar, C.R.; Worden, K. An Introduction to Structural Health Monitoring. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2007, 365, 303–315. [Google Scholar] [CrossRef]
- Hu, W.-H.; Tang, D.-H.; Teng, J.; Said, S.; Rohrmann, R.G. Structural Health Monitoring of a Prestressed Concrete Bridge Based on Statistical Pattern Recognition of Continuous Dynamic Measurements over 14 Years. Sensors 2018, 18, 4117. [Google Scholar] [CrossRef]
- Haritos, N.; Owen, J.S. The Use of Vibration Data for Damage Detection in Bridges: A Comparison of System Identification and Pattern Recognition Approaches. Struct. Health Monit. 2004, 3, 141–163. [Google Scholar] [CrossRef]
- Datteo, A.; Lucà, F.; Busca, G. Statistical Pattern Recognition Approach for Long-Time Monitoring of the G.Meazza Stadium by Means of AR Models and PCA. Eng. Struct. 2017, 153, 317–333. [Google Scholar] [CrossRef]
- Cheung, A.; Cabrera, C.; Sarabandi, P.; Nair, K.K.; Kiremidjian, A.; Wenzel, H. The Application of Statistical Pattern Recognition Methods for Damage Detection to Field Data. Smart Mater. Struct. 2008, 17, 065023. [Google Scholar] [CrossRef]
- Bao, Y.; Chen, Z.; Wei, S.; Xu, Y.; Tang, Z.; Li, H. The State of the Art of Data Science and Engineering in Structural Health Monitoring. Engineering 2019, 5, 234–242. [Google Scholar] [CrossRef]
- Malekloo, A.; Ozer, E.; Alhamaydeh, M.; Girolami, M. Machine Learning and Structural Health Monitoring Overview with Emerging Technology and High-Dimensional Data Source Highlights. Struct. Health Monit. 2022, 21, 1906–1955. [Google Scholar] [CrossRef]
- Hu, X.; Shentu, J.; Xie, N.; Huang, Y.; Lei, G.; Hu, H.; Guo, P.; Gong, X. Predicting Triaxial Compressive Strength of High-Temperature Treated Rock Using Machine Learning Techniques. J. Rock Mech. Geotech. Eng. 2023, 15, 2072–2082. [Google Scholar] [CrossRef]
- Wedel, F.; Marx, S. Application of Machine Learning Methods on Real Bridge Monitoring Data. Eng. Struct. 2022, 250, 113365. [Google Scholar] [CrossRef]
- Naderpour, H.; Rafiean, A.H.; Fakharian, P. Compressive Strength Prediction of Environmentally Friendly Concrete Using Artificial Neural Networks. J. Build. Eng. 2018, 16, 213–219. [Google Scholar] [CrossRef]
- Rezazadeh Eidgahee, D.; Jahangir, H.; Solatifar, N.; Fakharian, P.; Rezaeemanesh, M. Data-Driven Estimation Models of Asphalt Mixtures Dynamic Modulus Using ANN, GP and Combinatorial GMDH Approaches. Neural Comput. Appl. 2022, 34, 17289–17314. [Google Scholar] [CrossRef]
- Rizzo, F.; Caracoglia, L. Artificial Neural Network Model to Predict the Flutter Velocity of Suspension Bridges. Comput. Struct. 2020, 233, 106236. [Google Scholar] [CrossRef]
- Naseri Nasab, M.; Jahangir, H.; Hasani, H.; Majidi, M.-H.; Khorashadizadeh, S. Estimating the Punching Shear Capacities of Concrete Slabs Reinforced by Steel and FRP Rebars with ANN-Based GUI Toolbox. Structures 2023, 50, 1204–1221. [Google Scholar] [CrossRef]
- Farhangi, V.; Jahangir, H.; Eidgahee, D.R.; Karimipour, A.; Javan, S.A.N.; Hasani, H.; Fasihihour, N.; Karakouzian, M. Behaviour Investigation of SMA-Equipped Bar Hysteretic Dampers Using Machine Learning Techniques. Appl. Sci. 2021, 11, 10057. [Google Scholar] [CrossRef]
- Kwon, T.H.; Park, S.H.; Park, S.I.; Lee, S.-H. Building Information Modeling-Based Bridge Health Monitoring for Anomaly Detection under Complex Loading Conditions Using Artificial Neural Networks. J. Civ. Struct. Health Monit. 2022, 12, 483. [Google Scholar] [CrossRef]
- Huang, Y.-H. Artificial Neural Network Model of Bridge Deterioration. J. Perform. Constr. Facil. 2010, 24, 597–602. [Google Scholar] [CrossRef]
- Mehrjoo, M.; Khaji, N.; Moharrami, H.; Bahreininejad, A. Damage Detection of Truss Bridge Joints Using Artificial Neural Networks. Expert Syst. Appl. 2008, 35, 1122–1131. [Google Scholar] [CrossRef]
- Favarelli, E.; Giorgetti, A. Machine Learning for Automatic Processing of Modal Analysis in Damage Detection of Bridges. IEEE Trans. Instrum. Meas. 2021, 70, 1–13. [Google Scholar] [CrossRef]
- Weinstein, J.C.; Sanayei, M.; Brenner, B.R. Bridge Damage Identification Using Artificial Neural Networks. J. Bridge Eng. 2018, 23, 04018084. [Google Scholar] [CrossRef]
- Nguyen, V.V. Damage Identification of a Bridge Component Using Model Updating and Artificial Neural Network Techniques Based on Frequency Response Functions. Ph.D. Thesis, University of Technology Sydney, Ultimo, Australia, 2018. [Google Scholar]
- Jayasundara, W.K.N. Damage Detection of Arch Bridges Using Vibration Characteristics and Artificial Neural Network. Ph.D. Thesis, Queensland University of Technology, Brisbane, Australia, 2020. [Google Scholar]
- Xu, H.; Humar, J. Damage Detection in a Girder Bridge by Artificial Neural Network Technique. Comput.-Aided Civ. Infrastruct. Eng. 2006, 21, 450–464. [Google Scholar] [CrossRef]
- Eftekhar Azam, S.; Rageh, A.; Linzell, D. Damage Detection in Structural Systems Utilizing Artificial Neural Networks and Proper Orthogonal Decomposition. Struct. Control Health Monit. 2019, 26, e2288. [Google Scholar] [CrossRef]
- Nguyen, V.V.; Dackermann, U.; Li, J.; Alamdari, M.M.; Mustapha, S.; Runcie, P.; Ye, L. Damage Identification of a Concrete Arch Beam Based on Frequency Response Functions and Artificial Neural Networks. Electron. J. Struct. Eng. 2015, 14, 75–84. [Google Scholar] [CrossRef]
- Tran, N.H. Structural Health Monitoring for Bridges Using Metaheuristic Optimization Algorithms Combined with Artificial Neural Network. Ph.D. Thesis, Ghent University, Ghent, Belgium, 2022. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Pan, H.; Azimi, M.; Gui, G.; Yan, F.; Lin, Z. Vibration-Based Support Vector Machine for Structural Health Monitoring. In Experimental Vibration Analysis for Civil Structures; Springer: Cham, Switzerland, 2018; pp. 167–178. [Google Scholar]
- Alamdari, M.M.; Dang Khoa, N.L.; Wang, Y.; Samali, B.; Zhu, X. A Multi-Way Data Analysis Approach for Structural Health Monitoring of a Cable-Stayed Bridge. Struct. Health Monit. 2019, 18, 35–48. [Google Scholar] [CrossRef]
- Pan, H.; Azimi, M.; Yan, F.; Lin, Z. Time-Frequency-Based Data-Driven Structural Diagnosis and Damage Detection for Cable-Stayed Bridges. J. Bridge Eng. 2018, 23, 04018033. [Google Scholar] [CrossRef]
- Fernández-Navamuel, A.; Zamora-Sánchez, D.; Varona-Poncela, T.; Jiménez-Fernández, C.; Díez-Hernández, J.; García-Sánchez, D.; Pardo, D. Vibration-Based SHM Strategy for a Real Time Alert System with Damage Location and Quantification. In European Workshop on Structural Health Monitoring; Springer: Cham, Switzerland, 2021; pp. 245–255. [Google Scholar]
- Kim, S.; Spencer, B.F.; Kim, H.K. Automated Long-Term Damping Estimation of the Cable-Stayed Bridge Using Faulty Data in Wireless Sensor Network. In Bridge Maintenance, Safety, Management, Life-Cycle Sustainability and Innovations; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Gui, G.; Pan, H.; Lin, Z.; Li, Y.; Yuan, Z. Data-Driven Support Vector Machine with Optimization Techniques for Structural Health Monitoring and Damage Detection. KSCE J. Civ. Eng. 2017, 21, 523–534. [Google Scholar] [CrossRef]
- Tang, H.; Tang, G.; Meng, L. Prediction of the Bridge Monitoring Data Based on Support Vector Machine. In Proceedings of the 2015 11th International Conference on Natural Computation (ICNC), Zhangjiajie, China, 15–17 August 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 781–785. [Google Scholar]
- Feng, C.-W.; Huang, H.-Y. Hybridization of Finite-Element Method and Support Vector Machine to Determine Scour Bridge Safety Level. J. Perform. Constr. Facil. 2015, 29, 04014079. [Google Scholar] [CrossRef]
- Bulut, A.; Singh, A.K.; Shin, P.; Fountain, T.; Jasso, H.; Yan, L.; Elgamal, A. Real-Time Nondestructive Structural Health Monitoring Using Support Vector Machines and Wavelets. Adv. Sens. Technol. Nondestruct. Eval. Struct. Health Monit. 2005, 5770, 180. [Google Scholar] [CrossRef]
- Li, X.; Guo, Y.; Li, Y. Particle Swarm Optimization-Based SVM for Classification of Cable Surface Defects of the Cable-Stayed Bridges. IEEE Access 2020, 8, 44485–44492. [Google Scholar] [CrossRef]
- Breiman, L. Bagging Predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef]
- Zhou, J.; Shi, X.; Du, K.; Qiu, X.; Li, X.; Mitri, H.S. Feasibility of Random-Forest Approach for Prediction of Ground Settlements Induced by the Construction of a Shield-Driven Tunnel. Int. J. Geomech. 2017, 17, 04016129. [Google Scholar] [CrossRef]
- Zhou, J.; Li, E.; Wei, H.; Li, C.; Qiao, Q.; Armaghani, D.J. Random Forests and Cubist Algorithms for Predicting Shear Strengths of Rockfill Materials. Appl. Sci. 2019, 9, 1621. [Google Scholar] [CrossRef]
- Zhou, J.; Asteris, P.G.; Armaghani, D.J.; Pham, B.T. Prediction of Ground Vibration Induced by Blasting Operations through the Use of the Bayesian Network and Random Forest Models. Soil Dyn. Earthq. Eng. 2020, 139, 106390. [Google Scholar] [CrossRef]
- Arnold, M.; Hoyer, M.; Keller, S. Convolutional Neural Networks for Detecting Bridge Crossing Events with Ground-Based Interferometric Radar Data. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, 5, 31–38. [Google Scholar] [CrossRef]
- Lei, X.; Sun, L.; Xia, Y.; He, T. Vibration-Based Seismic Damage States Evaluation for Regional Concrete Beam Bridges Using Random Forest Method. Sustainability 2020, 12, 5106. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiong, Z.; Liang, Z.; She, J.; Ma, C. Structural Damage Identification System Suitable for Old Arch Bridge in Rural Regions: Random Forest Approach. Comput. Model. Eng. Sci. 2023, 136, 447–469. [Google Scholar] [CrossRef]
- Wang, T.; Reiffsteck, P.; Chevalier, C.; Chen, C.W.; Schmidt, F. Application of Random Forest Algorithm in Bridge Scour Risk Prediction. In Proceedings of the Machine Learning & Risk Assessment in Geoengineering, Wrocław, Poland, 25–27 October 2021. [Google Scholar]
- Jia, H.; Lin, J.; Liu, J. Bridge Seismic Damage Assessment Model Applying Artificial Neural Networks and the Random Forest Algorithm. Adv. Civ. Eng. 2020, 2020, 6548682. [Google Scholar] [CrossRef]
- Bousquet, O.; von Luxburg, U.; Rätsch, G. (Eds.) Advanced Lectures on Machine Learning; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3176, ISBN 978-3-540-23122-6. [Google Scholar]
- Rasmussen, C.E. Gaussian Processes in Machine Learning. In Summer School on Machine Learning; Springer: Berlin/Heidelberg, Germany, 2004; pp. 63–71. [Google Scholar]
- Asso, R.; Cucuzza, R.; Rosso, M.M.; Masera, D.; Marano, G.C. Bridges Monitoring: An Application of AI with Gaussian Processes. In Proceedings of the 14th International Conference on Evolutionary and Deterministic Methods for Design, Optimization and Control, Athens, Greece, 28–30 June 2021; pp. 245–261. [Google Scholar] [CrossRef]
- Chalouhi, E.K.; Gonzalez, I.; Gentile, C.; Karoumi, R. Damage Detection in Railway Bridges Using Machine Learning: Application to a Historic Structure. Procedia Eng. 2017, 199, 1931–1936. [Google Scholar] [CrossRef]
- Zhang, T.; Barthorpe, R.; Worden, K. A Simplified Treed Gaussian Process Approach to the Modelling of Bridge Data for Structural Health Monitoring. In Proceedings of the Structural Health Monitoring 2017; DEStech Publications, Inc.: Lancaster, PA, USA, 2017. [Google Scholar]
- da Silva, S.; Figueiredo, E.; Moldovan, I. Damage Detection Approach for Bridges under Temperature Effects Using Gaussian Process Regression Trained with Hybrid Data. J. Bridge Eng. 2022, 27, 04022107. [Google Scholar] [CrossRef]
- O’Connor, S.M.; Zhang, Y.; Lynch, J.; Ettouney, M.; van der Linden, G. Automated Analysis of Long-Term Bridge Behavior and Health Using a Cyber-Enabled Wireless Monitoring System. In Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security 2014; Wu, H.F., Yu, T.-Y., Gyekenyesi, A.L., Shull, P.J., Eds.; SPIE: Bellingham, DC, USA, 2014; p. 90630Y. [Google Scholar]
- Moravej, H.; Chan, T.H.; Nguyen, K.-D.; Jesus, A. Vibration-Based Bayesian Model Updating of Civil Engineering Structures Applying Gaussian Process Metamodel. Adv. Struct. Eng. 2019, 22, 3487–3502. [Google Scholar] [CrossRef]
- Zhang, H.; Lin, J.; Hua, J.; Gao, F.; Tong, T. Data Anomaly Detection for Bridge SHM Based on CNN Combined with Statistic Features. J. Nondestr. Eval. 2022, 41, 28. [Google Scholar] [CrossRef]
- Gomez-Cabrera, A.; Escamilla-Ambrosio, P.J. Review of Machine-Learning Techniques Applied to Structural Health Monitoring Systems for Building and Bridge Structures. Appl. Sci. 2022, 12, 10754. [Google Scholar] [CrossRef]
- Nguyen, D.H.; Nguyen, Q.B.; Bui-Tien, T.; De Roeck, G.; Abdel Wahab, M. Damage Detection in Girder Bridges Using Modal Curvatures Gapped Smoothing Method and Convolutional Neural Network: Application to Bo Nghi Bridge. Theor. Appl. Fract. Mech. 2020, 109, 102728. [Google Scholar] [CrossRef]
- Shajihan, S.A.V.; Wang, S.; Zhai, G.; Spencer, B.F. CNN Based Data Anomaly Detection Using Multi-Channel Imagery for Structural Health Monitoring. Smart Struct. Syst. 2022, 29, 181–193. [Google Scholar] [CrossRef]
- Duan, Y.; Chen, Q.; Zhang, H.; Yun, C.B.; Wu, S.; Zhu, Q. CNN-Based Damage Identification Method of Tied-Arch Bridge Using Spatial-Spectral Information. Smart Struct. Syst. 2019, 23, 507–520. [Google Scholar] [CrossRef]
- Zou, J.Z.; Yang, J.X.; Wang, G.P.; Tang, Y.L.; Yu, C.S. Bridge Structural Damage Identification Based on Parallel CNN-GRU. IOP Conf. Ser. Earth Environ. Sci. 2021, 626, 012017. [Google Scholar] [CrossRef]
- Yessoufou, F.; Zhu, J. One-Class Convolutional Neural Network (OC-CNN) Model for Rapid Bridge Damage Detection Using Bridge Response Data. KSCE J. Civ. Eng. 2023, 27, 1640–1660. [Google Scholar] [CrossRef]
- Chamangard, M.; Ghodrati Amiri, G.; Darvishan, E.; Rastin, Z. Transfer Learning for CNN-Based Damage Detection in Civil Structures with Insufficient Data. Shock. Vib. 2022, 2022, 3635116. [Google Scholar] [CrossRef]
- Li, Z.-J.; Adamu, K.; Yan, K.; Xu, X.-L.; Shao, P.; Li, X.-H.; Bashir, H.M. Detection of Nut–Bolt Loss in Steel Bridges Using Deep Learning Techniques. Sustainability 2022, 14, 10837. [Google Scholar] [CrossRef]
- Khodabandehlou, H.; Pekcan, G.; Fadali, M.S. Vibration-based Structural Condition Assessment Using Convolution Neural Networks. Struct. Control Health Monit. 2018, 26, e2308. [Google Scholar] [CrossRef]
- Pamuncak, A.P.; Salami, M.R.; Adha, A.; Budiono, B.; Laory, I. Estimation of Structural Response Using Convolutional Neural Network: Application to the Suramadu Bridge. Eng. Comput. Swans. 2021, 38, 4047–4065. [Google Scholar] [CrossRef]
- Lee, K.; Byun, N.; Shin, D.H. A Damage Localization Approach for Rahmen Bridge Based on Convolutional Neural Network. KSCE J. Civ. Eng. 2020, 24, 1–9. [Google Scholar] [CrossRef]
- Teng, S.; Chen, X.; Chen, G.; Cheng, L.; Bassir, D. Structural Damage Detection Based on Convolutional Neural Networks and Population of Bridges. Measurement 2022, 202, 111747. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Li, S.; Laima, S.; Li, H. Data-driven Modeling of Bridge Buffeting in the Time Domain Using Long Short-term Memory Network Based on Structural Health Monitoring. Struct. Control Health Monit. 2021, 28, e2772. [Google Scholar] [CrossRef]
- Gers, F.A.; Schmidhuber, J.; Cummins, F. Learning to Forget: Continual Prediction with LSTM. Neural Comput. 2000, 12, 2451–2471. [Google Scholar] [CrossRef]
- Xiao, S.; Qiao, S.; Chen, H.; Liu, X.; Li, Y.; Tang, M.; Hu, H.; Li, G. Data Prediction Model Based on LSTM Neural Network in Bridge Health Monitoring System. IOP Conf. Ser. Earth Environ. Sci. 2021, 668, 012068. [Google Scholar] [CrossRef]
- Shin, R.; Okada, Y.; Yamamoto, K. Application of C-LSTM Networks to Automatic Labeling of Vehicle Dynamic Response Data for Bridges. Sensors 2022, 22, 3486. [Google Scholar] [CrossRef]
- Yue, Z.; Ding, Y.; Zhao, H.; Wang, Z. Ultra-High Precise Stack-LSTM-CNN Model of Temperature-Induced Deflection of a Cable-Stayed Bridge for Detecting Bridge State Driven by Monitoring Data. Structures 2022, 45, 110–125. [Google Scholar] [CrossRef]
- Hou, G.; Li, L.; Xu, Z.; Chen, Q.; Liu, Y.; Qiu, B. A BIM-Based Visual Warning Management System for Structural Health Monitoring Integrated with LSTM Network. KSCE J. Civ. Eng. 2021, 25, 2779–2793. [Google Scholar] [CrossRef]
- Yang, K.; Ding, Y.; Geng, F.; Jiang, H.; Zou, Z. A Multi-Sensor Mapping Bi-LSTM Model of Bridge Monitoring Data Based on Spatial-Temporal Attention Mechanism. Measurement 2023, 217, 113053. [Google Scholar] [CrossRef]
- Guo, A.; Jiang, A.; Lin, J.; Li, X. Data Mining Algorithms for Bridge Health Monitoring: Kohonen Clustering and LSTM Prediction Approaches. J. Supercomput. 2020, 76, 932–947. [Google Scholar] [CrossRef]
- Duan, D.-Y.; Wang, Z.-C.; Sun, X.-T.; Xin, Y. A Data Fusion Method for Bridge Displacement Reconstruction Based on LSTM Networks. Smart Struct. Syst. 2022, 29, 599. [Google Scholar]
- Yue, Z.; Ding, Y.; Zhao, H.; Wang, Z. Mechanics-Guided Optimization of an LSTM Network for Real-Time Modeling of Temperature-Induced Deflection of a Cable-Stayed Bridge. Eng. Struct. 2022, 252, 113619. [Google Scholar] [CrossRef]
- Zhao, H.; Ding, Y.; Li, A.; Sheng, W.; Geng, F. Digital Modeling on the Nonlinear Mapping between Multi-source Monitoring Data of In-service Bridges. Struct. Control Health Monit. 2020, 27, e2618. [Google Scholar] [CrossRef]
- Sharma, S.; Sen, S. Real-Time Structural Damage Assessment Using LSTM Networks: Regression and Classification Approaches. Neural Comput. Appl. 2023, 35, 557–572. [Google Scholar] [CrossRef]
- Wang, C.; Ansari, F.; Wu, B.; Li, S.; Morgese, M.; Zhou, J. LSTM Approach for Condition Assessment of Suspension Bridges Based on Time-Series Deflection and Temperature Data. Adv. Struct. Eng. 2022, 25, 3450–3463. [Google Scholar] [CrossRef]
- Liu, H.; Ding, Y.; Zhao, H.; Wang, M.; Geng, F. Deep Learning-Based Recovery Method for Missing Structural Temperature Data Using LSTM Network. Struct. Monit. Maint. 2020, 7, 109–124. [Google Scholar]
- Zhao, H.; Ding, Y.; Li, A.; Ren, Z.; Yang, K. Live-Load Strain Evaluation of the Prestressed Concrete Box-Girder Bridge Using Deep Learning and Clustering. Struct Health Monit. 2020, 19, 1051–1063. [Google Scholar] [CrossRef]
- Lu, Y.; Tang, L.; Chen, C.; Zhou, L.; Liu, Z.; Liu, Y.; Jiang, Z.; Yang, B. Reconstruction of Structural Long-Term Acceleration Response Based on BiLSTM Networks. Eng. Struct. 2023, 285, 116000. [Google Scholar] [CrossRef]
- Yang, K.; Ding, Y.; Jiang, H.; Zhao, H.; Luo, G. A Two-stage Data Cleansing Method for Bridge Global Positioning System Monitoring Data Based on Bi-direction Long and Short Term Memory Anomaly Identification and Conditional Generative Adversarial Networks Data Repair. Struct. Control Health Monit. 2022, 29, e2993. [Google Scholar] [CrossRef]
- Spadavecchia, C.; Belcore, E.; Di Pietra, V. Preliminary Test on Structural Elements Health Monitoring with a LiDAR-Based Approach. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, XLVIII-2/W, 247–253. [Google Scholar] [CrossRef]
- Cha, G.; Park, S.; Oh, T. A Terrestrial LiDAR-Based Detection of Shape Deformation for Maintenance of Bridge Structures. J. Constr. Eng. Manag. 2019, 145, 04019075. [Google Scholar] [CrossRef]
- Lõhmus, H.; Ellmann, A.; Märdla, S.; Idnurm, S. Terrestrial Laser Scanning for the Monitoring of Bridge Load Tests—Two Case Studies. Surv. Rev. 2018, 50, 270–284. [Google Scholar] [CrossRef]
- Truong-Hong, L.; Laefer, D.F. Using Terrestrial Laser Scanning for Dynamic Bridge Deflection Measurement. Angew. Chem. Int. Ed. 2018, 3, 10–27. [Google Scholar]
- Cafiso, S.; Di Graziano, A.; Goulias, D.; Mangiameli, M.; Mussumeci, G. Bridge Monitoring Combining Laser Scanning and Ground Penetrating Radar. In Proceedings of the International Conference of Numerical Analysis and Applied Mathematics (ICNAAM 2018), Rhodes, Greece, 13–18 September 2018; AIP Publishing: Melville, NY, USA, 2019; p. 280004. [Google Scholar]
- Xi, C.X.; Zhou, Z.; Xiang, X.; He, S.; Hou, X. Monitoring of Long-Span Bridge Deformation Based on 3D Laser Scanning. Instrum. Mes. Métrol. 2018, 18, 113–130. [Google Scholar] [CrossRef]
- Minehane, M.J.; O’Donovan, R.; Ruane, K.D.; O’Keeffe, B. The Use of 3D Laser Scanning Technology for Bridge Inspection and Assessment. Struct. Health Monit. 2014, 13, 14. [Google Scholar]
- Zhang, H.; Zhu, Y.; Xiong, W.; Cai, C.S. Point Cloud Registration Methods for Long-Span Bridge Spatial Deformation Monitoring Using Terrestrial Laser Scanning. Struct. Control Health Monit. 2023, 2023, 2629418. [Google Scholar] [CrossRef]
- Neitzel, F.; Niemeier, W.; Weisbrich, S.; Lehmann, M. Investigation of Low-Cost Accelerometer, Terrestrial Laser Scanner and Ground-Based Radar Interferometer for Vibration Monitoring of Bridges. In Proceedings of the 6th European Workshop—Structural Health Monitoring, EWSHM 2012, Dresden, Germany, 3–6 July 2012; Volume 1, pp. 542–551. [Google Scholar]
- Psomas, L.; Trainor, R.; Alzraiee, H. Case Study: Assessing the Structural Condition of Steel Bridges Using Terrestrial Laser Scanner (TLS). In Construction Research Congress 2022; ASCE: Reston, VA, USA, 2022. [Google Scholar]
- Mader, D.; Blaskow, R.; Westfeld, P.; Weller, C. Potential of Uav-Based Laser Scanner and Multispectral Camera Data in Building Inspection. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B1, 1135–1142. [Google Scholar] [CrossRef]
- Mohammadi, M.; Rashidi, M.; Mousavi, V.; Karami, A.; Yu, Y.; Samali, B. Quality Evaluation of Digital Twins Generated Based on UAV Photogrammetry and TLS: Bridge Case Study. Remote Sens. 2021, 13, 3499. [Google Scholar] [CrossRef]
- Zollini, S.; Alicandro, M.; Dominici, D.; Quaresima, R.; Giallonardo, M. UAV Photogrammetry for Concrete Bridge Inspection Using Object-Based Image Analysis (OBIA). Remote Sens. 2020, 12, 3180. [Google Scholar] [CrossRef]
- Jiang, R.; Jáuregui, D.V.; White, K.R. Close-Range Photogrammetry Applications in Bridge Measurement: Literature Review. Measurement 2008, 41, 823–834. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasani, H.; Freddi, F. Operational Modal Analysis on Bridges: A Comprehensive Review. Infrastructures 2023, 8, 172. https://doi.org/10.3390/infrastructures8120172
Hasani H, Freddi F. Operational Modal Analysis on Bridges: A Comprehensive Review. Infrastructures. 2023; 8(12):172. https://doi.org/10.3390/infrastructures8120172
Chicago/Turabian StyleHasani, Hamed, and Francesco Freddi. 2023. "Operational Modal Analysis on Bridges: A Comprehensive Review" Infrastructures 8, no. 12: 172. https://doi.org/10.3390/infrastructures8120172
APA StyleHasani, H., & Freddi, F. (2023). Operational Modal Analysis on Bridges: A Comprehensive Review. Infrastructures, 8(12), 172. https://doi.org/10.3390/infrastructures8120172