Fiber Optics Sensors in Asphalt Pavement: State-of-the-Art Review
Abstract
:1. Introduction
2. Testing Methods and Technologies
2.1. Falling Weight Deflectometer
2.2. Fiber Optics Sensors
2.2.1. Fiber-Optic Strain Gauge (2007) (Laval University, Canada)
2.2.2. Fiber-Optic Strain Gauge (2007) (National Technical University of Athens, Greece)
2.2.3. Telecom Fiber Optic Cable as Distributed Sensor (2014) (IFSTTAR, France)
2.2.4. Fiber-Optic Strain Plate (2014) (Federal Aviation Administration, USA)
2.2.5. FOS Monitoring System (2014) (Japan)
2.2.6. Asphalt Pavement Structural Health Monitoring with FBG Sensors (2012–2014) (China)
2.2.7. Installation of FBG Sensors in Asphalt (2016) (ASPARi, The Netherlands)
2.2.8. FBG Monitoring System (2017) (UAntwerp, Belgium)
3. Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Read, J.; Whiteoak, D.; Hunter, R.N. The Shell Bitumen Handbook; Thomas Telford: London, UK, 2003; p. 460. [Google Scholar]
- Van Gurp, C.A.P.M. Characterization of Seasonal Influences on Asphalt Pavements with the Use of Falling Weight Deflectometers. Ph.D. Thesis, TU Delft, Delft, The Netherland, 1995. Available online: https://repository.tudelft.nl/islandora/object/uuid:596d5b28-308d-4c74-a3b8-cad632a93619?collection=research (accessed on 12 May 2019).
- Sun, L. Structural Behavior of Asphalt Pavements; Butterworth-Heinemann: Oxford, UK, 2016; p. 1070. ISBN 978-0-1280-2893-3. [Google Scholar]
- Permissible Maximum Weights of Lorries in Europe, International Transport Forum. 2015. Available online: https://www.itf-oecd.org/sites/default/files/docs/weights_0.pdf (accessed on 12 May 2019).
- Dong, Z.; Li, S.; Wen, J.; Chen, H. Asphalt pavement structural health monitoring utilizing FBG sensors. Adv. Eng. Forum 2012, 5, 339–344. [Google Scholar] [CrossRef]
- Bock, W.J.; Gannot, I.; Tanev, S. Optical Waveguide Sensing and Imaging, NATO Science for Peace and Security Series-B: Physics and Biophysics; Springer: Dordrecht, The Netherlands, 2008; p. 269. [Google Scholar] [CrossRef]
- Imai, M.; Igarashi, Y.; Shibata, M.; Miura, S. Experimental study on strain and deformation monitoring of asphalt structures using embedded fiber optic sensor. J. Civ. Struct. Health Monit. 2014, 4, 209–220. [Google Scholar] [CrossRef]
- Chapeleau, X.; Blanc, J.; Hornych, P.; Gautier, J.-L.; Carroget, J. Assessment of cracks detection in pavement by a distributed fiber optic sensing technology. J. Civ. Struct. Health Monit. 2017, 7, 459–470. [Google Scholar] [CrossRef]
- Meggitt, B.T. Chapter 17-Fiber Optics in Sensor Instrumentation. In Instrumentation Reference Book; Boyes, W., Ed.; Butterworth-Heinemann: Oxford, UK, 2010; pp. 191–216. [Google Scholar] [CrossRef]
- Wang, J.-N.; Tang, J.-L.; Chang, H.-P. Fiber Bragg grating sensors for use in pavement structural strain-temperature monitoring. Proc. SPIE 2006, 6174, 61743S. [Google Scholar] [CrossRef]
- Luyckx, G.; Voet, E.; Lammens, N.; Degrieck, J. Strain measurements of composite laminates with embedded fibre Bragg gratings: Criticism and opportunities for research. Sensors 2011, 11, 384–408. [Google Scholar] [CrossRef] [PubMed]
- Geernaert, T.; Sulejmani, S.; Sonnenfeld, C.; Luyckx, G.; Chah, K.; Areias, L.; Mergo, P.; Urbanczyk, W.; Van Marcke, P.; Coppens, E.; et al. Microstructured optical fiber Bragg grating-based strain and temperature sensing in the concrete buffer of the Belgian supercontainer concept. Proc. SPIE 2014, 9157, 915777. [Google Scholar] [CrossRef]
- Luyckx, G.; Voet, E.; Grefhorst, R.; Peeters, J.; Degrieck, J. Long term monitoring of an all-composite water lock using fibre optics. In Proceedings of the SAMPE EUROPE 2016, Liege, Belgium, 13–15 September 2016. [Google Scholar]
- Liu, W.; Liu, X.; Wang, Z.; Zhi, Z. High temperature deformation investigation of asphalt mixture with nanosized volcanic ash fillers using optical fiber sensor. Measurement 2019, 140, 171–181. [Google Scholar] [CrossRef]
- Li, L.; Huang, X.; Wang, L.; Li, C. Integrated experimental and numerical study on permanent deformation of asphalt pavement at intersections. J. Mater. Civ. Eng. 2013, 25, 907–912. [Google Scholar] [CrossRef]
- Abe, N.; Mizukami, J.; Kimura, M. Influence of moving load to extend the deformation of asphalt pavement. In Proceedings of the 11th ISAP conference on Asphalt Pavements, Nagoya, Japan, 1–6 August 2010; pp. 1054–1063. [Google Scholar]
- Xie, J.; Li, H.; Gao, L.; Liu, M. Laboratory investigation of rutting performance for multilayer pavement with fiber Bragg gratings. Constr. Build. Mater. 2017, 154, 331–339. [Google Scholar] [CrossRef]
- Dong, Z.; Tan, Y.; Cao, L.; Li, S. Rutting mechanism analysis of heavy-duty asphalt pavement based on pavement survey, finite element simulation and instrumentation. J. Test. Eval. 2012, 40, 1228–1237. [Google Scholar] [CrossRef]
- Li, K.; Xie, J. Experiment and research of using fiber Bragg grating to monitor the dynamic response of asphalt concrete. Appl. Mech. Mater. 2011, 97–98, 301–304. [Google Scholar] [CrossRef]
- Li, Q.; Cary, C.; Combs, S.; Garg, N. Evaluation of asphalt concrete layer response using asphalt strain gauges and fiber optic strain gauges. In Proceedings of the International Conference on Transportation and Development, Houston, TX, USA, 26–29 June 2016; pp. 42–53. [Google Scholar] [CrossRef]
- Chen, S.-Z.; Wu, G.; Feng, D.-C.; Zhang, L. Development of a bridge weigh-in-motion system based on long-gauge fiber Bragg grating sensors. J. Bridge Eng. 2018, 23, 04018063. [Google Scholar] [CrossRef]
- Kara De Maeijer, P.; Van den bergh, W.; Vuye, C. Case study on the technique of installation of fiber Bragg gratings sensors in three asphalt layers. In Proceedings of the 13th ISAP Conference on Asphalt Pavements, Fortaleza, Brazil, 19–21 June 2018; pp. 1–7. [Google Scholar]
- Kara De Maeijer, P.; Van den bergh, W.; Vuye, C. Fiber Bragg gratings sensors in three asphalt pavement layers. Infrastructures 2018, 3, 16. [Google Scholar] [CrossRef]
- Kara De Maeijer, P.; Van den bergh, W.; Vuye, C. Case study on strain and temperature real-time monitoring by using fiber Bragg grating sensors embedded in three asphalt layers. In Proceedings of the 4th International Conference on Service Life Design for Infrastructures, Delft, The Netherlands, 27–30 August 2018; Ye, G., Yuan, Y., Romero Rodriguez, C., Zhang, H., Šavija, B., Eds.; RILEM PRO 125. RILEM Publications: Paris, France; pp. 937–940.
- Kara De Maeijer, P. The Effectiveness of Application of Fiber Bragg Grating Sensors in Pavement Engineering. Presented at the Asphalt Innovatie Symposium (AIS2018), Antwerp, Belgium, 13 December 2018; Available online: https://www.uantwerpen.be/en/research-groups/emib/rers/activities/ais2018 (accessed on 12 May 2019).
- Kara De Maeijer, P.; Van den bergh, W.; Vuye, C.; Vanlanduit, S.; Braspenninckx, J.; Stevens, N.; Voet, E.; Luyckx, G.; De Wolf, J. Inverse modelling approach-fiber Bragg grating (FBG) measurements in comparison to falling weight deflectometer (FWD) measurements: Review. In Proceedings of the 7th International Conference Bituminous Mixtures and Pavements, Thessaloniki, Greece, 12–14 June 2019; p. 211. [Google Scholar]
- Lenngren, C. Advanced backcalculation of FWD data on asphalt pavements. In Proceedings of the 13th ISAP Conference on Asphalt Pavements, Fortaleza, Brazil, 19–21 June 2018. [Google Scholar]
- Papavasiliou, V.; Loizos, A. Assessment of the bearing capacity of pavements using fiber optic sensors. In Proceedings of the 10th International Conference on the Bearing Capacity of Roads, Railways and Airfields (BCRRA 2017), Athens, Greece, 28–30 June 2017; Taylor & Francis Group: London, UK, 2017; pp. 653–660, ISBN 978-1-138-29595-7. [Google Scholar]
- Kim, Y.R.; Park, H. Use of Falling Weight Deflectometer Multi-Load Data for Pavement Strength Estimation; Final Report, Research Project No HWY-00-4; Department of Civil Engineering, North Carolina State University Raleigh: Raleigh, NC, USA, 2002. [Google Scholar]
- Chen, D.; Scullion, T. Forensic investigations of roadway pavement failures. J. Perform. Constr. Facil. 2008, 22, 35–44. [Google Scholar] [CrossRef]
- Bilodeau, J.-P.; Doré, G. Estimation of tensile strains at the bottom of asphalt concrete layers under wheel loading using deflection basins from falling weight deflectometer tests. Can. J. Civ. Eng. 2012, 39, 771–778. [Google Scholar] [CrossRef]
- Xue, W.; Wang, D.; Wang, L. A review and perspective about pavement monitoring. Int. J. Pavement Res. Technol. 2012, 5, 295–302. [Google Scholar]
- Bueche, N.; Rychen, P.; Dumont, A.G. Optical fiber feasibility study in accelerated pavement testing facility. In Proceedings of the 6th International Conference on Maintenance and Rehabilitation of Pavement and Technological Control (MAIREPAV), Torino, Italy, 8–10 July 2009. [Google Scholar]
- Doré, G.; Duplain, G.; Pierre, P. Monitoring mechanical response of in service pavements using retrofitted fibre optic sensors. In Proceedings of the Advanced Characterization of Pavement and Soil Engineering, Athens, Greece, 20–22 June 2007; Loizos, A., Scarpas, T., Al-Qadi, I.L., Eds.; CRC Press Taylor & Francis Group: London, UK, 2007; pp. 883–891, ISBN 978-0-415-44882-6. [Google Scholar]
- Grellet, D.; Dore, G.; Bilodeau, J.-P. Comparative study on the impact of wide base tires and dual tires on the strains occurring within flexible pavements asphalt concrete surface course. Can. J. Civ. Eng. 2012, 39, 526–535. [Google Scholar] [CrossRef]
- OpSens Solutions White-Light Polarization Interferometry Technology. Available online: https://opsens-solutions.com/wp-content/uploads/sites/4/2015/04/IMP0002-WLPI-REV2.5.pdf (accessed on 17 June 2019).
- Loizos, A.; Papavasiliou, V.; Plati, C. Investigating in situ stress-dependent behavior of foamed asphalt-treated pavement materials. Road Mater. Pavement Des. 2012, 13, 678–690. [Google Scholar] [CrossRef]
- Loizos, A.; Plati, C.; Papavasiliou, V. Fiber optic sensors for assessing strains in cold in-place recycled pavements. Int. J. Pavement Eng. 2013, 14, 125–133. [Google Scholar] [CrossRef]
- Loizos, A.; Papavasiliou, V.; Plati, C. Effectiveness of FWD to simulate traffic loading in recycled pavements. J. Perform. Constr. Facil. 2016, 30, 04014193. [Google Scholar] [CrossRef]
- Chapeleau, X.; Blanc, J.; Hornych, P.; Gautier, J.-L.; Carroget, J. Use of distributed fiber optic sensors to detect damage in a pavement. In Proceedings of the 7th European Workshop on Structural Health Monitoring, Nantes, France, 8–11 July 2014; pp. 1847–1854. [Google Scholar]
- Grellet, D.; Doré, G.; Bilodeau, J.-P. Effect of tire type on strains occurring in asphalt concrete layers. In Proceedings of the 11th International Conference on Asphalt Pavements, Nagoya, Japan, 1–6 August 2010; p. 10. [Google Scholar]
- Grellet, D.; Doré, G.; Kerzreho, J.-P.; Piau, J.-M.; Chabot, A.; Hornych, P. Experimental and Theoretical Investigation of three-dimensional strain occurring near the surface in asphalt concrete layers. In 7th RILEM International Conference on Cracking in Pavements; Scarpas, A., Kringos, N., Al-Qadi, I.A.L., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 1017–1027. [Google Scholar] [CrossRef]
- Grellet, D.; Doré, G.; Bilodeau, J.-P.; Gauliard, T. Wide-base single-tire and dual-tire assemblies: Comparison based on experimental pavement response and predicted damage. Transp. Res. Rec. 2013, 2369, 47–56. [Google Scholar] [CrossRef]
- Grellet, D.; Doré, G.; Chupin, O.; Piau, J.-M. Experimental evidence of the viscoelastic behavior of interfaces in bituminous pavements—An explanation to top-down cracking? In 8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements; Springer: Dordrecht, The Netherlands, 2016; pp. 575–580. [Google Scholar]
- Garg, N.; Bilodeau, J.-P.; Doré, G. Experimental study of asphalt concrete strain distribution in flexible pavements at the national airport pavement test facility. In Proceedings of the 2014 FAA Worldwide Airport Technology Transfer Conference, Galloway, NJ, USA, 5–7 August 2014. [Google Scholar]
- Zhou, Z.; Liu, W.; Huang, Y.; Wang, H.; He, J.; Huang, M.; Ou, J. Optical fiber Bragg grating sensor assembly for 3D strain monitoring and its case study in highway pavement. Mech. Syst. Signal Process. 2012, 28, 36–49. [Google Scholar] [CrossRef]
- Tan, Y.; Wang, H.; Ma, S.; Xu, H. Quality control of asphalt pavement compaction using fiber Bragg grating sensing technology. Constr. Build. Mater. 2014, 54, 53–59. [Google Scholar]
- Van der Vegt, J. Over de Haalbaarheid van Fiber Bragg Grating Sensoren in Het Asfaltverwerkingsproces. Bachelor’s Thesis, UTwente, Enschede, The Netherlands, 2016. (In Dutch). Available online: https://essay.utwente.nl/71035/1/Vegt-Jurian.pdf (accessed on 12 May 2019).
- Van den bergh, W.; Jacobs, G.; Kara De Maeijer, P.; Vuye, C.; Arimilli, S.; Couscheir, K.; Lauriks, L.; Baetens, R.; Severins, I.; Margaritis, A.; et al. Demonstrating innovative technologies for the Flemish asphalt sector in the CyPaTs project. In Proceedings of the 3rd World Multidisciplinary Civil Engineering, Architecture, Urban Planning Symposium, Prague, Czech Republic, 18–22 June 2018; IOP Publishing: Bristol, UK, 2019; Volume 471, p. 022031. [Google Scholar] [CrossRef]
- FBGS, Strain Measurement Wire SMW-01, Technical Datasheet. 2015. Available online: http://www.fbgs.com/products/strain-sensors/smw-01/ (accessed on 17 June 2019).
- Prismusz, P.; Peterfalvi, J.; Marko, G.; Toth, C. Effect of pavement stiffness on the shape of deflection bowl. Acta Silv. Lign. Hung. 2015, 11, 39–54. [Google Scholar] [CrossRef]
- Duong, N.S.; Blanc, J.; Hornych, P. Analysis of the behavior of pavement layers interfaces from in situ measurements. In Bearing Capacity of Roads, Railways and Airfields; Taylor & Francis Group: London, UK, 2017; pp. 1503–1510. ISBN 978-1-138-29595-7. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kara De Maeijer, P.; Luyckx, G.; Vuye, C.; Voet, E.; Van den bergh, W.; Vanlanduit, S.; Braspenninckx, J.; Stevens, N.; De Wolf, J. Fiber Optics Sensors in Asphalt Pavement: State-of-the-Art Review. Infrastructures 2019, 4, 36. https://doi.org/10.3390/infrastructures4020036
Kara De Maeijer P, Luyckx G, Vuye C, Voet E, Van den bergh W, Vanlanduit S, Braspenninckx J, Stevens N, De Wolf J. Fiber Optics Sensors in Asphalt Pavement: State-of-the-Art Review. Infrastructures. 2019; 4(2):36. https://doi.org/10.3390/infrastructures4020036
Chicago/Turabian StyleKara De Maeijer, Patricia, Geert Luyckx, Cedric Vuye, Eli Voet, Wim Van den bergh, Steve Vanlanduit, Johan Braspenninckx, Nele Stevens, and Jurgen De Wolf. 2019. "Fiber Optics Sensors in Asphalt Pavement: State-of-the-Art Review" Infrastructures 4, no. 2: 36. https://doi.org/10.3390/infrastructures4020036
APA StyleKara De Maeijer, P., Luyckx, G., Vuye, C., Voet, E., Van den bergh, W., Vanlanduit, S., Braspenninckx, J., Stevens, N., & De Wolf, J. (2019). Fiber Optics Sensors in Asphalt Pavement: State-of-the-Art Review. Infrastructures, 4(2), 36. https://doi.org/10.3390/infrastructures4020036