Exposure Modeling of Transmission Towers for Large-Scale Natural Hazard Risk Assessments Based on Deep-Learning Object Detection Models
Abstract
1. Introduction
2. Materials and Methods
2.1. Geospatial Data
2.1.1. OpenStreetMap (OSM)
2.1.2. Street-Level Imagery with Google Street View (GSV)
2.1.3. Study Area
2.2. Data Preparation
2.3. Model Prediction and Evaluation
2.3.1. Object Detection Models
2.3.2. Performance Evaluation Metrics
- True positive (TP): when the correct detection of a ground truth box occurs.
- False positive (FP): when the model detects an object that is not present or the model mislabel an existing object (e.g., the model assigns the label dog to an image of a cat).
- False negative (FN): when a ground truth bounding box goes undetected by the model.
- True negative (TN): when a bounding box is correctly not identified.
- AP for small objects: area < 322 pixels
- AP for medium objects: 322 < area < 962 pixels
- AP for large objects: area > 962 pixels
3. Results and Discussion
3.1. Identification
3.2. Classification
3.3. Spatial Distribution of the Predictions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
GSV | Google Street View |
OSM | Open Street Map |
YOLOv5 | You Only Look Once version 5 |
API | Application Programming Interface |
JSON | JavaScript Object Notation |
UAV | Unmanned Aerial Vehicle |
mAP | Mean average precision |
SRTM | Shuttle Radar Topography Mission |
SSD | Single-stage detector |
TSD | Two-stage detector |
AP | Average precision |
IoU | Intersection over Union |
ML | Machine Learning |
DL | Deep Learning |
VGI | Volunteered Geographic Information |
FPN | Feature Pyramid Network |
RPN | Region Proposal Network |
RoI | Region of Interest |
TP | True Positive |
FP | False Positive |
FN | False Negative |
TN | True Negative |
P | Precision |
R | Recall |
Appendix A. Equation for Deriving the Optimal Google Street-View Parameters
References
- IPCC. Summary for Policymakers. In Climate Change 2022: Impacts, Adaptation and Vulnerability; Pörtner, H.-O., Roberts, D.C., Poloczanska, E.S., Mintenbeck, K., Tignor, M., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar] [CrossRef]
- Figueiredo, R.; Martina, M. Using open building data in the development of exposure data sets for catastrophe risk modelling. Nat. Hazards Earth Syst. Sci. 2016, 16, 417–429. [Google Scholar] [CrossRef]
- Pearson, L.; Pelling, M. The UN Sendai Framework for Disaster Risk Reduction 2015–2030: Negotiation Process and Prospects for Science and Practice. J. Extrem. Events 2015, 02, 1571001. [Google Scholar] [CrossRef]
- Wieland, M.; Pittore, M.; Parolai, S.; Zschau, J.; Moldobekov, B.; Begaliev, U. Estimating building inventory for rapid seismic vulnerability assessment: Towards an integrated approach based on multi-source imaging. Soil Dyn. Earthq. Eng. 2012, 36, 70–83. [Google Scholar] [CrossRef]
- De Albuquerque, J.P.; Herfort, B.; Brenning, A.; Zipf, A. A geographic approach for combining social media and authoritative data towards identifying useful information for disaster management. Int. J. Geogr. Inf. Sci. 2015, 29, 667–689. [Google Scholar] [CrossRef]
- Klonner, C.; Marx, S.; Usón, T.; Porto de Albuquerque, J.; Höfle, B. Volunteered Geographic Information in Natural Hazard Analysis: A Systematic Literature Review of Current Approaches with a Focus on Preparedness and Mitigation. ISPRS Int. J. Geo-Inf. 2016, 5, 103. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Geiß, C.; Schauß, A.; Riedlinger, T.; Dech, S.; Zelaya, C.; Guzmán, N.; Hube, M.A.; Arsanjani, J.J.; Taubenböck, H. Joint use of remote sensing data and volunteered geographic information for exposure estimation: Evidence from Valparaíso, Chile. Nat. Hazards 2017, 86, 81–105. [Google Scholar] [CrossRef]
- Aravena Pelizari, P.; Geiß, C.; Aguirre, P.; Santa María, H.; Merino Peña, Y.; Taubenböck, H. Automated building characterization for seismic risk assessment using street-level imagery and deep learning. ISPRS J. Photogramm. Remote Sens. 2021, 180, 370–386. [Google Scholar] [CrossRef]
- Xu, J.Z.; Lu, W.; Li, Z.; Khaitan, P.; Zaytseva, V. Building Damage Detection in Satellite Imagery Using Convolutional Neural Networks. arXiv 2019, arXiv:1910.06444. [Google Scholar]
- Iannelli, G.; Dell’Acqua, F. Extensive Exposure Mapping in Urban Areas through Deep Analysis of Street-Level Pictures for Floor Count Determination. Urban Sci. 2017, 1, 16. [Google Scholar] [CrossRef]
- Fujita, S.; Hatayama, M. Estimation Method for Roof-damaged Buildings from Aero-Photo Images During Earthquakes Using Deep Learning. Inf. Syst. Front. 2021, 25, 351–363. [Google Scholar] [CrossRef]
- Hu, Z.; He, T.; Zeng, Y.; Luo, X.; Wang, J.; Huang, S.; Liang, J.; Sun, Q.; Xu, H.; Lin, B. Fast image recognition of transmission tower based on big data. Prot. Control Mod. Power Syst. 2018, 3, 15. [Google Scholar] [CrossRef]
- Wang, H.; Yang, G.; Li, E.; Tian, Y.; Zhao, M.; Liang, Z. High-Voltage Power Transmission Tower Detection Based on Faster R-CNN and YOLO-V3. In Proceedings of the 2019 Chinese Control Conference (CCC), Guangzhou, China, 27–30 July 2019; pp. 8750–8755. [Google Scholar] [CrossRef]
- Pescaroli, G.; Alexander, D. Critical infrastructure, panarchies and the vulnerability paths of cascading disasters. Nat. Hazards 2016, 82, 175–192. [Google Scholar] [CrossRef]
- Bhusal, N.; Abdelmalak, M.; Kamruzzaman, M.; Benidris, M. Power System Resilience: Current Practices, Challenges, and Future Directions. IEEE Access 2020, 8, 18064–18086. [Google Scholar] [CrossRef]
- López, A.L.; Rocha, L.E.P.; Escobedo, D.d.L.; Sánchez, J. Reliability and Vulnerability Analysis of Electrical Substations and Transmission Towers for Definition of Wind and Seismic Damage Maps for Mexico. In Proceedings of the 11th Americas Conference on Wind Engineering, San Juan, Puerto Rico, 22–26 June 2009; p. 13. [Google Scholar]
- Rezaei, S.N.; Chouinard, L.; Legeron, F.; Langlois, S. Vulnerability Analysis of Transmission Towers subjected to Unbalanced Ice Loads. In Proceedings of the 112th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12, Vancouver, BC, Canada, 12–15 July 2015; p. 8. [Google Scholar]
- Tapia-Hernández, E.; De-León-Escobedo, D. Vulnerability of transmission towers under intense wind loads. Struct. Infrastruct. Eng. 2021, 18, 1235–1250. [Google Scholar] [CrossRef]
- Minghini, M.; Sarretta, A.; Napolitano, M. OpenStreetMap Contribution to Local Data Ecosystems in COVID-19 Times: Experiences and Reflections from the Italian Case. Data 2022, 7, 39. [Google Scholar] [CrossRef]
- Contributors, O. Stats—OpenStreetMap Wiki. 2024. Available online: https://wiki.openstreetmap.org/wiki/Stats (accessed on 1 June 2025).
- Contributors, O. Elements—OpenStreetMap Wiki. 2024. Available online: https://wiki.openstreetmap.org/wiki/Elements (accessed on 1 June 2025).
- OpenStreetMap Contributors. List of OSM-Based Services—OpenStreetMap Wiki. 2024. Available online: https://wiki.openstreetmap.org/wiki/List_of_OSM-based_services (accessed on 10 May 2024).
- Alvarez Leon, L.; Quinn, S. Street-level Imagery. In The Geographic Information Science & Technology Body of Knowledge; University Consortium for Geographic Information Science: Chesapeake, VA, USA, 2019. [Google Scholar] [CrossRef]
- Anguelov, D.; Dulong, C.; Filip, D.; Frueh, C.; Lafon, S.; Lyon, R.; Ogale, A.; Vincent, L.; Weaver, J. Google Street View: Capturing the World at Street Level. Computer 2010, 43, 32–38. [Google Scholar] [CrossRef]
- Zou, S.; Wang, L. Detecting individual abandoned houses from google street view: A hierarchical deep learning approach. ISPRS J. Photogramm. Remote Sens. 2021, 175, 298–310. [Google Scholar] [CrossRef]
- Google. Panoramica dell’API Street View Static|Street View Static API. July 2024. Available online: https://developers.google.com/maps/documentation/streetview/overview?hl=it (accessed on 11 June 2024).
- Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes (VOC) Challenge. Int. J. Comput. Vis. 2010, 88, 303–338. [Google Scholar] [CrossRef]
- Lin, T.Y.; Maire, M.; Belongie, S.; Bourdev, L.; Girshick, R.; Hays, J.; Perona, P.; Ramanan, D.; Zitnick, C.L.; Dollár, P. Microsoft COCO: Common Objects in Context. arXiv 2015, arXiv:1405.0312. [Google Scholar]
- Chiu, M.T.; Xu, X.; Wei, Y.; Huang, Z.; Schwing, A.G.; Brunner, R.; Khachatrian, H.; Karapetyan, H.; Dozier, I.; Rose, G.; et al. Agriculture-Vision: A Large Aerial Image Database for Agricultural Pattern Analysis. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 2825–2835. [Google Scholar] [CrossRef]
- Preeti, C.; Mohan, K.J. Analysis of transmission towers with different configurations. Jordan J. Civ. Eng. 2013, 7, 450–460. [Google Scholar]
- Paiva, F.; Henriques, J.; Barros, R.C. Review of transmission tower testing stations around the world. Procedia Eng. 2013, 57, 859–868. [Google Scholar] [CrossRef]
- Tibolt, M.; Bezas, M.; Vayas, I.; Jaspart, J. The design of a steel lattice transmission tower in Central Europe. ce/papers 2021, 4, 243–248. [Google Scholar] [CrossRef]
- Stracqualursi, E.; Pelliccione, G.; Celozzi, S.; Araneo, R. Tower models for power systems transients: A review. Energies 2022, 15, 4893. [Google Scholar] [CrossRef]
- Marin-Castro, H.; Sucar, E.; Morales, E. Automatic Image Annotation Using a Semi-supervised Ensemble of Classifiers. In Progress in Pattern Recognition, Image Analysis and Applications; Rueda, L., Mery, D., Kittler, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 4756, pp. 487–495. [Google Scholar] [CrossRef]
- Ratner, A.; Bach, S.H.; Ehrenberg, H.; Fries, J.; Wu, S.; Ré, C. Snorkel: Rapid training data creation with weak supervision. VLDB J. 2020, 29, 709–730. [Google Scholar] [CrossRef]
- Shahinfar, S.; Meek, P.; Falzon, G. “How many images do I need?” Understanding how sample size per class affects deep learning model performance metrics for balanced designs in autonomous wildlife monitoring. Ecol. Inform. 2020, 57, 101085. [Google Scholar] [CrossRef]
- Nguyen, V.N.; Jenssen, R.; Roverso, D. Intelligent Monitoring and Inspection of Power Line Components Powered by UAVs and Deep Learning. IEEE Power Energy Technol. Syst. J. 2019, 6, 11–21. [Google Scholar] [CrossRef]
- Hui, X.; Bian, J.; Zhao, X.; Tan, M. Vision-based autonomous navigation approach for unmanned aerial vehicle transmission-line inspection. Int. J. Adv. Robot. Syst. 2018, 15, 172988141775282. [Google Scholar] [CrossRef]
- Zhang, S.; Benenson, R.; Omran, M.; Hosang, J.; Schiele, B. How Far are We from Solving Pedestrian Detection? In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1259–1267. [Google Scholar] [CrossRef]
- Olivier, A.; Raynaud, C. Balanced sampling for an object detection problem—Application to fetal anatomies detection. In Proceedings of the Medical Imaging with Deep Learning, Lübeck, Germany, 7 July 2021; p. 13. [Google Scholar]
- Reitermanova, Z. Data splitting. In Proceedings of the WDS’10 Proceedings of Contributed Papers-WDS 2010; Prague, Czech Republic, 1–4 June 2010, Volume 10, pp. 31–36.
- Muhammad, A.R.; Utomo, H.P.; Hidayatullah, P.; Syakrani, N. Early Stopping Effectiveness for YOLOv4. J. Inf. Syst. Eng. Bus. Intell. 2022, 8, 29988. [Google Scholar] [CrossRef]
- Sultana, F.; Sufian, A.; Dutta, P. A Review of Object Detection Models Based on Convolutional Neural Network. In Intelligent Computing: Image Processing Based Applications; Mandal, J.K., Banerjee, S., Eds.; Advances in Intelligent Systems and Computing; Springer: Singapore, 2020; Volume 1157, pp. 1–16. [Google Scholar] [CrossRef]
- Wu, Y.; Kirillov, A.; Massa, F.; Lo, W.Y.; Girshick, R. Detectron2. 2019. Available online: https://github.com/facebookresearch/detectron2 (accessed on 1 June 2025).
- Jocher, G.; Stoken, A.; Chaurasia, A.; Borovec, J.; NanoCode012; TaoXie; Kwon, Y.; Michael, K.; Changyu, L.; Fang, J.; et al. ultralytics/yolov5: V6.0-YOLOv5n ’Nano’ Models, Roboflow Integration, TensorFlow Export, OpenCV DNN Support. 2021; Available online: https://zenodo.org/records/5563715 (accessed on 22 June 2025).
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. arXiv 2016, arXiv:1612.03144. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In Proceedings of the Advances in Neural Information Processing Systems; Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R., Eds.; Curran Associates, Inc.: San Diego, CA, USA, 2015; Volume 28. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. arXiv 2016, arXiv:1506.02640. [Google Scholar]
- Soviany, P.; Ionescu, R.T. Optimizing the Trade-off between Single-Stage and Two-Stage Object Detectors using Image Difficulty Prediction. arXiv 2018, arXiv:1803.08707. [Google Scholar]
- Lu, X.; Li, Q.; Li, B.; Yan, J. MimicDet: Bridging the Gap Between One-Stage and Two-Stage Object Detection. In Computer Vision—ECCV 2020; Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2020; Volume 12359, pp. 541–557. [Google Scholar] [CrossRef]
- Padilla, R.; Passos, W.L.; Dias, T.L.B.; Netto, S.L.; Da Silva, E.A.B. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, 10, 279. [Google Scholar] [CrossRef]
- Stehman, S.V. Selecting and interpreting measures of thematic classification accuracy. Remote Sens. Environ. 1997, 62, 77–89. [Google Scholar] [CrossRef]
- Ivchenko, G.I.; Honov, S.A. On the jaccard similarity test. J. Math. Sci. 1998, 88, 789–794. [Google Scholar] [CrossRef]
- Saito, T.; Rehmsmeier, M. The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets. PLoS ONE 2015, 10, e0118432. [Google Scholar] [CrossRef]
- Abdelfattah, R.; Wang, X.; Wang, S. TTPLA: An Aerial-Image Dataset for Detection and Segmentation of Transmission Towers and Power Lines. arXiv 2020, arXiv:2010.10032. [Google Scholar]
- Mittal, P.; Singh, R.; Sharma, A. Deep learning-based object detection in low-altitude UAV datasets: A survey. Image Vis. Comput. 2020, 104, 104046. [Google Scholar] [CrossRef]
- Zhu, L.; Geng, X.; Li, Z.; Liu, C. Improving YOLOv5 with Attention Mechanism for Detecting Boulders from Planetary Images. Remote Sens. 2021, 13, 3776. [Google Scholar] [CrossRef]
Name | Family | Label | Icon |
---|---|---|---|
Single level | Self-supporting | ss_1 | |
Double level | Self-supporting | ss_2 | |
Triple level | Self-supporting | ss_3 | |
Modified delta structure | Self-supporting | ss_4 | |
Delta | Waist-type | wt_5 | |
Portal | Waist-type | wt_6 | |
Tubular single level | Monopole | mono_7 | |
Tubular double level | Monopole | mono_8 | |
Tubular triple level | Monopole | mono_9 | |
Tubular modified delta structures | Monopole | mono_10 |
Task | # Images | Image Size (Pixel) | # Classes |
---|---|---|---|
Identification | 300 | 512 × 512 | 1 |
Classification | 750 | 512 × 512 | 10 |
Event Observed | Event Observed | ||
---|---|---|---|
Yes | No | Total | |
Yes | a (true positive) | b (false positive) | |
No | c (false negative) | d (true negative) | |
Total |
Model | Epochs | Batch Size | Learning Rate | GPU Specs | Training Time |
---|---|---|---|---|---|
YOLOv5 † | 2000 | 64 | 0.001 | Tesla T4 16 GB | ∼1.5 h |
Detectron2 ‡ | 2000 | 64 | 0.001 * | Tesla T4 16 GB | ∼2.5 h |
Metric | YOLOv5 | Detectron2 |
---|---|---|
mAP0.50 [%] | 83.67 | 88.64 |
AP[0.5:0.05:0.95] [%] | 51.56 | 56.44 |
APsmall [%] | 18.91 | 23.99 |
APmedium [%] | 50.25 | 48.83 |
APlarge [%] | 60.84 | 70.89 |
Label | F1-Score | Precision | Recall | |||
---|---|---|---|---|---|---|
YOLOv5 | Detectron2 | YOLOv5 | Detectron2 | YOLOv5 | Detectron2 | |
ss_1 | 0.13 | 0.25 | 0.17 | 0.33 | 0.10 | 0.20 |
ss_2 | 0.54 | 0.40 | 0.64 | 0.50 | 0.47 | 0.33 |
ss_3 | 0.82 | 0.86 | 0.84 | 0.81 | 0.79 | 0.92 |
ss_4 | 0.67 | 0.56 | 0.71 | 0.56 | 0.63 | 0.56 |
wt_5 | 0.63 | 0.84 | 0.81 | 1.00 | 0.52 | 0.72 |
wt_6 | 0.67 | 0.72 | 0.64 | 0.60 | 0.70 | 0.90 |
mono_7 | 0.24 | 0.54 | 1.00 | 0.64 | 0.13 | 0.47 |
mono_8 | 0.84 | 0.83 | 0.76 | 0.80 | 0.93 | 0.86 |
mono_9 | 0.63 | 0.59 | 0.71 | 0.63 | 0.56 | 0.56 |
mono_10 | 0.62 | 0.33 | 0.50 | 0.29 | 0.80 | 0.40 |
Average | 0.57 | 0.61 | 0.64 | 0.64 | 0.53 | 0.61 |
Tower Class | # Ground Truth | Label | mAP0.5 [%] YOLOv5 | mAP@0.5 [%] Detectron2 |
---|---|---|---|---|
Single level | 10 | ss_1 | 3.33 | 45.25 |
Double level | 15 | ss_2 | 45.00 | 34.36 |
Triple level | 48 | ss_3 | 72.03 | 89.86 |
Modified delta structure | 16 | ss_4 | 59.09 | 85.98 |
Delta | 25 | wt_5 | 43.14 | 76.99 |
Portal | 10 | wt_6 | 63.33 | 78.20 |
Tubular single level | 15 | mono_7 | 13.33 | 39.21 |
Tubular double level | 14 | mono_8 | 92.86 | 92.56 |
Tubular triple level | 9 | mono_9 | 59.76 | 65.96 |
Tubular modified delta structures | 5 | mono_10 | 54.29 | 40.51 |
mAP over all tower classes | 167 | 50.62 | 64.89 |
Metric | YOLOv5 | Detectron2 |
---|---|---|
mAP@0.50 [%] | 50.62 | 64.89 |
AP[0.5:0.05:0.95] [%] | 31.00 | 40.27 |
APsmall [%] | 14.85 | 28.15 |
APmedium [%] | 27.58 | 34.15 |
APlarge [%] | 41.43 | 49.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cesarini, L.; Figueiredo, R.; Romão, X.; Martina, M. Exposure Modeling of Transmission Towers for Large-Scale Natural Hazard Risk Assessments Based on Deep-Learning Object Detection Models. Infrastructures 2025, 10, 152. https://doi.org/10.3390/infrastructures10070152
Cesarini L, Figueiredo R, Romão X, Martina M. Exposure Modeling of Transmission Towers for Large-Scale Natural Hazard Risk Assessments Based on Deep-Learning Object Detection Models. Infrastructures. 2025; 10(7):152. https://doi.org/10.3390/infrastructures10070152
Chicago/Turabian StyleCesarini, Luigi, Rui Figueiredo, Xavier Romão, and Mario Martina. 2025. "Exposure Modeling of Transmission Towers for Large-Scale Natural Hazard Risk Assessments Based on Deep-Learning Object Detection Models" Infrastructures 10, no. 7: 152. https://doi.org/10.3390/infrastructures10070152
APA StyleCesarini, L., Figueiredo, R., Romão, X., & Martina, M. (2025). Exposure Modeling of Transmission Towers for Large-Scale Natural Hazard Risk Assessments Based on Deep-Learning Object Detection Models. Infrastructures, 10(7), 152. https://doi.org/10.3390/infrastructures10070152