Machine Learning-Based Prediction Performance Comparison of Marshall Stability and Flow in Asphalt Mixtures
Abstract
1. Introduction
2. Methodology
2.1. Dataset
2.2. Data Scaling
2.3. Correlation Heatmap
2.4. Feature Importance Analysis
2.5. Algorithms
2.5.1. Linear Regression (LR)
2.5.2. Decision Tree Regressor (DT)
2.5.3. Random Forest Regressor (RF)
2.5.4. Support Vector Machines (SVM)
2.5.5. Gradient Boosting Machines (GBM):
2.5.6. ANN
2.6. Model Performance Assessment
3. Results and Analysis
3.1. Feature Importance Analysis
3.1.1. Marshall Stability (MS)
3.1.2. Marshall Flow (MF)
3.2. Machine Learning Models
3.2.1. Linear Regression (LR)
3.2.2. Decision Tree (DT)
3.2.3. Random Forest (RF)
3.2.4. Support Vector Machines (SVM)
3.2.5. Gradient Boosting Machines (GBM)
3.2.6. Artificial Neural Network (ANN)
3.3. Comparison of Model’s Performance
4. Conclusions
- VMA was the most important factor influencing the stability of the asphalt mixture in RF and PI algorithms. The amount of bitumen Pb was the most influential factor for MS in the LassoR algorithm.
- The feature importance analysis for the Marshall Flow (MF) parameter identified the Air Voids and Bulk Specific Gravity (Gmb) as the most significant factors, particularly in RF and PI algorithms. Although VMA was identified as an influential factor for the MS parameter, it showed less significance for the MF parameter.
- The Random Forest (RF) algorithm performed better than the other algorithms in predicting MS, achieving the lowest error metrics and the highest R2 score, making it a reliable MS prediction model. ANN and DT also performed well, but their performance was inferior to that of the RF model.
- In the case of MF prediction, again, the Random Forest (RF) algorithm demonstrated good performance, followed by DT and ANN models, making them reliable for MF prediction.
- The GBM and LR algorithms performed poorly compared to other models in predicting both the MS and MF parameters.
- Implementing more complex hyperparameters optimization techniques, such as Bayesian optimization, may help achieve better configurations for the model, as overfitting was observed in some of them.
- Using larger datasets may help the models to make better predictions by allowing them to recognize patterns more effectively and reduce the chances of overfitting.
- Although this study focused on specific ML algorithms, evaluating and comparing other algorithms may yield better results or different insights, potentially lead to better performance.
- Several other critical properties of asphalt pavements are also essential for long-term pavement performance, such as fatigue resistance, rutting potential, and thermal cracking resistance. It would be valuable to undertake a comparative analysis of the selected ML models to effectively predict these other properties as well.
- Identifying features such as VMA, air void % and Gmb can help engineers understand their impact on MS and MF, which may facilitate the optimization of asphalt mix designs to create durable and flexible pavements that withstand traffic loads.
- This study also highlighted the importance of selecting suitable algorithms for specific prediction tasks. The superior performance of the RF algorithm, compared to others, can serve as a recommendation for researchers to leverage ensemble-based approaches for similar engineering tasks.
- The methodology applied in this study can be extended to predict other critical pavement properties, such as fatigue resistance, rutting potential, and thermal cracking resistance. This approach facilitates the use of ML in a broader range of pavement design and analysis tasks.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ng, C.P.; Law, T.H.; Jakarni, F.M.; Kulanthayan, S. Road infrastructure development and economic growth. IOP Conf. Ser. Mater. Sci. Eng. 2019, 512, 012045. [Google Scholar] [CrossRef]
- Luo, D.; Khater, A.; Yue, Y.; Abdelsalam, M.; Zhang, Z.; Li, Y.; Li, J.; Iseley, D.T. The performance of asphalt mixtures modified with lignin fiber and glass fiber: A review. Constr. Build. Mater. 2019, 209, 377–387. [Google Scholar] [CrossRef]
- Li, Y.; Hao, P.; Zhang, M. Fabrication, characterization and assessment of the capsules containing rejuvenator for improving the self-healing performance of asphalt materials: A review. J. Clean. Prod. 2021, 287, 125079. [Google Scholar] [CrossRef]
- Awan, H.H.; Hussain, A.; Javed, M.F.; Qiu, Y.; Alrowais, R.; Mohamed, A.M.; Fathi, D.; Alzahrani, A.M. Predicting Marshall Flow and Marshall Stability of Asphalt Pavements Using Multi Expression Programming. Buildings 2022, 12, 314. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, Y.R. Prediction of layer moduli from falling weight deflectometer and surface wave measurements using artificial neural network. Transp. Res. Rec. 1998, 1639, 53–61. [Google Scholar] [CrossRef]
- Chakroborty, P.; Das, A.; Ghosh, P. Determining Reliability of an Asphalt Mix Design: Case of Marshall Method. J. Transp. Eng. 2010, 136, 31–37. [Google Scholar] [CrossRef]
- Radzi, H.M.; Muniandy, R.; Hassim, S.; Law, T.H.; Jakarni, F.M. An overview of asphalt mix designs using various compactors. IOP Conf. Ser. Mater. Sci. Eng. 2019, 512, 012031. [Google Scholar] [CrossRef]
- Nouman, M.; Maqbool, Z.; Ali, S.; Saleem, A. Performance Evaluation of Wearing Course Asphalt Mixes Based on Resilient Modulus, Indirect Tensile Strength and Marshall Stability. Int. J. Pavement Res. Technol. 2022, 15, 63–72. [Google Scholar] [CrossRef]
- Ayoub, M. A review on machine learning algorithms to predict daylighting inside buildings. Sol. Energy 2020, 202, 249–275. [Google Scholar] [CrossRef]
- Dhall, D.; Kaur, R.; Juneja, M. Machine Learning: A Review of the Algorithms and Its Applications. Lect. Notes Electr. Eng. 2020, 597, 47–63. [Google Scholar] [CrossRef]
- Gupta, S.; Saluja, K.; Goyal, A.; Vajpayee, A.; Tiwari, V. Comparing the performance of machine learning algorithms using estimated accuracy. Meas. Sens. 2022, 24, 100432. [Google Scholar] [CrossRef]
- Li, Y.; Wang, L. Computer-aided procedure for determination of asphalt content in asphalt mixture using discrete element method. Int. J. Pavement Eng. 2017, 18, 765–774. [Google Scholar] [CrossRef]
- Alnaqbi, A.J.; Zeiada, W.; Al-Khateeb, G.; Abttan, A.; Abuzwidah, M. Predictive models for flexible pavement fatigue cracking based on machine learning. Transp. Eng. 2024, 16, 100243. [Google Scholar] [CrossRef]
- Ozturk, H.I.; Saglik, A.; Demir, B.; Gungor, A.G. An artificial neural network base prediction model and sensitivity analysis for marshall mix design. In Proceedings of the 6th Eurasphalt & Eurobitume Congress, Prague, Czech Republic, 1–3 June 2016. [Google Scholar] [CrossRef]
- Tapkin, S.; Çevik, A.; Uşar, Ü. Prediction of Marshall test results for polypropylene modified dense bituminous mixtures using neural networks. Expert. Syst. Appl. 2010, 37, 4660–4670. [Google Scholar] [CrossRef]
- Oskooei, P.R.; Mohammadinia, A.; Arulrajah, A.; Horpibulsuk, S. Application of artificial neural network models for predicting the resilient modulus of recycled aggregates. Int. J. Pavement Eng. 2020, 23, 1121–1133. [Google Scholar] [CrossRef]
- Hoang, H.G.T.; Nguyen, T.A.; Nguyen, H.L.; Ly, H.B. Neural network approach for GO-modified asphalt properties estimation. Case Stud. Constr. Mater. 2022, 17, e01617. [Google Scholar] [CrossRef]
- Gul, M.A.; Islam, M.K.; Awan, H.H.; Sohail, M.; Al Fuhaid, A.F.; Arifuzzaman, M.; Qureshi, H.J. Prediction of Marshall Stability and Marshall Flow of Asphalt Pavements Using Supervised Machine Learning Algorithms. Symmetry 2022, 14, 2324. [Google Scholar] [CrossRef]
- Ismael, M.Q.; Joni, H.H.; Fattah, M.Y. Neural network modeling of rutting performance for sustainable asphalt mixtures modified by industrial waste alumina. Ain Shams Eng. J. 2023, 14, 101972. [Google Scholar] [CrossRef]
- Shan, A.; Hafeez, I.; Hussan, S.; Jamil, M.B. Predicting the laboratory rutting response of asphalt mixtures using different neural network algorithms. Int. J. Pavement Eng. 2022, 23, 1948–1956. [Google Scholar] [CrossRef]
- Jweihan, Y.S.; Alawadi, R.J.; Momani, Y.S.; Tarawneh, A.N. Prediction of Marshall Test Results for Dense Glasphalt Mixtures Using Artificial Neural Networks. Front. Built Environ. 2022, 8, 949167. [Google Scholar] [CrossRef]
- Solatifar, N.; Lavasani, S.M. Development of an artificial neural network model for asphalt pavement deterioration using LTPP data. J. Rehabil. Civil. Eng. 2020, 8, 121–132. [Google Scholar] [CrossRef]
- Khuntia, S.; Das, A.K.; Mohanty, M.; Panda, M. Prediction of Marshall Parameters of Modified Bituminous Mixtures Using Artificial Intelligence Techniques. Int. J. Transp. Sci. Technol. 2014, 3, 211–227. [Google Scholar] [CrossRef]
- Atakan, M.; Yıldız, K. Prediction of Marshall design parameters of asphalt mixtures via machine learning algorithms based on literature data. Road Mater. Pavement Des. 2024, 25, 454–473. [Google Scholar] [CrossRef]
- Ibrahim, A.H.A. Effects of long-term aging on asphalt mixes containing SBS and PP-polymer. Int. J. Pavement Res. Technol. 2021, 14, 153–160. [Google Scholar] [CrossRef]
- Azarhoosh, A.; Pouresmaeil, S. Prediction of Marshall Mix Design Parameters in Flexible Pavements Using Genetic Programming. Arab. J. Sci. Eng. 2020, 45, 8427–8441. [Google Scholar] [CrossRef]
- Pasha, S.N.; Madhuri, D.M. Investigation of Modified Bitumen Using Glass Fibre in Bituminous Concrete. Int. J. Adv. Res. Innov. Ideas Educ. 2017, 3, 298–311. [Google Scholar]
- Zhu, J.; Ma, T.; Fan, J.; Fang, Z.; Chen, T.; Zhou, Y. Experimental study of high modulus asphalt mixture containing reclaimed asphalt pavement. J. Clean. Prod. 2020, 263, 121447. [Google Scholar] [CrossRef]
- Abdel-Jaber, M.; Al-shamayleh, R.A.; Ibrahim, R.; Alkhrissat, T.; Alqatamin, A. Mechanical properties evaluation of asphalt mixtures with variable contents of reclaimed asphalt pavement (RAP). Results Eng. 2022, 14, 100463. [Google Scholar] [CrossRef]
- Naser, M.; Abdel-Jaber, M.T.; Al-shamayleh, R.; Louzi, N.; Ibrahim, R. Evaluating the effects of using reclaimed asphalt pavement and recycled concrete aggregate on the behavior of hot mix asphalts. Transp. Eng. 2022, 10, 100140. [Google Scholar] [CrossRef]
- Chowdhury, R.; Al Biruni, M.T.; Afia, A.; Hasan, M.; Islam, M.R.; Ahmed, T. Medical Waste Incineration Fly Ash as a Mineral Filler in Dense Bituminous Course in Flexible Pavements. Materials 2023, 16, 5612. [Google Scholar] [CrossRef]
- Harsha, K.S.; Nikhil, M.; Raja, K.H. Article ID: IJCIET_08_04_131 Cite this Article: K. Sri Harsha, M. Nikhil and K. Hemantha Raja, Partial Replacement of Bitumen with Glass Fiber in Flexible Pavement. 2017. Available online: https://iaeme.com/MasterAdmin/Journal_uploads/IJCIET/VOLUME_8_ISSUE_4/IJCIET_08_04_131.pdf (accessed on 1 December 2023).
- Pérez, I.; Pasandín, A.R.; Medina, L. Hot mix asphalt using C&D waste as coarse aggregates. Mater. Des. 2012, 36, 840–846. [Google Scholar] [CrossRef]
- Raju, V.N.G.; Lakshmi, K.P.; Jain, V.M.; Kalidindi, A.; Padma, V. Study the Influence of Normalization/Transformation process on the Accuracy of Supervised Classification. In Proceedings of the 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 20–22 August 2020; pp. 729–735. [Google Scholar] [CrossRef]
- Mukhametzyanov, I.Z. MS-Transformation of Z-Score. In Normalization of Multidimensional Data for Multi-Criteria Decision Making Problems: Inversion, Displacement, Asymmetry; Springer International Publishing: Cham, Switzerland, 2023; pp. 151–166. [Google Scholar] [CrossRef]
- Daoud, J.I. Multicollinearity and Regression Analysis. J. Phys. Conf. Ser. 2017, 949, 012009. [Google Scholar] [CrossRef]
- Rengasamy, D.; Mase, J.M.; Kumar, A.; Rothwell, B.; Torres, M.T.; Alexander, M.R.; Winkler, D.A.; Figueredo, G.P. Feature importance in machine learning models: A fuzzy information fusion approach. Neurocomputing 2022, 511, 163–174. [Google Scholar] [CrossRef]
- Yeturu, K. Machine learning algorithms, applications, and practices in data science. In Handbook of Statistics; Elsevier: Amsterdam, The Netherlands, 2020; pp. 81–206. [Google Scholar] [CrossRef]
- Matzavela, V.; Alepis, E. Decision tree learning through a Predictive Model for Student Academic Performance in Intelligent M-Learning environments. Comput. Educ. Artif. Intell. 2021, 2, 100035. [Google Scholar] [CrossRef]
- Grillone, B.; Danov, S.; Sumper, A.; Cipriano, J.; Mor, G. A review of deterministic and data-driven methods to quantify energy efficiency savings and to predict retrofitting scenarios in buildings. Renew. Sustain. Energy Rev. 2020, 131, 110027. [Google Scholar] [CrossRef]
- Ghosh, S.; Dasgupta, A.; Swetapadma, A. A Study on Support Vector Machine based Linear and Non-Linear Pattern Classification. In Proceedings of the 2019 International Conference on Intelligent Sustainable Systems (ICISS), Palladam, India, 21–22 February 2019; pp. 24–28. [Google Scholar] [CrossRef]
- Ayyadevara, V.K. Gradient Boosting Machine. In Pro Machine Learning Algorithms: A Hands-On Approach to Implementing Algorithms in Python and R; Apress: Berkeley, CA, USA, 2018; pp. 117–134. [Google Scholar] [CrossRef]
- Natekin, A.; Knoll, A. Gradient boosting machines, a tutorial. Front. Neurorobotics 2013, 7, 21. [Google Scholar] [CrossRef]
- Remesan, R.; Ahmadi, A.; Shamim, M.A.; Han, D. Effect of data time interval on real-time flood forecasting. J. Hydroinformatics 2010, 12, 396–407. [Google Scholar] [CrossRef]
No | References | P | S.P. | Pb % | Gsb | Gmb | Va % | VMA | VFA% | MS | MF |
---|---|---|---|---|---|---|---|---|---|---|---|
0.1 mm | °C | % | g/cm3 | g/cm3 | % | % | % | KN | mm | ||
1 | Ibrahim (2021) [25] | 42 | 54 | 4–6% | 2.634 | 2.32–2.368 | 3.6–7.2 | 14–15.5 | 51.7–76.8 | 8.7–10.75 | 2.8–4 |
2 | Azarhoosh (2020) [26] | 63–91 | 49–54 | 4–6% | 2.49–2.58 | 2.151–2.263 | 2.64–2.74 | 13.72–17.76 | 54.5–84.2 | 6.9–15.1 | 1.83–3.55 |
3 | Pasha & Madhuri, (2017) [27] | 68 | 47.25 | 5–7% | 2.63 | 2.237–2.261 | 3.16–6.15 | 18.54–20.44 | 66.8–84.5 | 6.26–9.23 | 2.2–4.5 |
4 | Tapkın et al. (2010) [15] | 55.4 | 48 | 3.5–7% | 2.703 | 2.37–2.458 | 2.5–8.8 | 15.3–18.2 | 48.23–86.3 | 7.2–15.62 | 2.4–6.9 |
5 | Zhu et al., (2020) [28] | 29 | 60 | 3.8–5.8% | 2.673 | 2.41–2.45 | 2.1–6.4 | 13.44–13.8 | 52.52–84.64 | 13.55–14.55 | 2.47–2.78 |
6 | Abdel-Jaber et al., (2022) [29] | 65 | 60 | 3.5–5.5% | 2.52 | 2.117–2.167 | 1.24–8.48 | 17.75–20.46 | 53.7–93.9 | 7.24–10.19 | 1.54–5.01 |
7 | Naser et al., (2022) [30] | 65 | 60 | 4–6.5% | 2.45 | 1.751–1.899 | 1–6.71 | 18.55–23.71 | 71.7–95.1 | 7.58–16.05 | 3.17–14.8 |
8 | Chowdhury et al., (2023) [31] | 61 | 49 | 4–6% | 2.72 | 2.32–2.41 | 2–9.0 | 14.2–16.2 | 44.4–86.21 | 18.5–22 | 2.8–4.4 |
9 | Harsha et al., (2017) [32] | 62.83 | 49.33 | 5–6% | 2.89 | 2.44–2.82 | 2.73–4.77 | 15.46–19.91 | 76.04–86.24 | 15.72–21.41 | 4.62–6.1 |
10 | Pérez et al., (2012) [33] | 69 | 48.5 | 4–5.5% | 2.68 | 2.32–2.4 | 1.3–6.3 | 13.3–14.95 | 57.86–90.37 | 9.25–10.9 | 2.2–2.65 |
11 | Awan et al., (2022) [4] | 61–68 | 45–50.5 | 2.5–5.5 | 2.625–2.751 | 2.29–2.483 | 1.27–10.6 | 11.23–17.4 | 19.9–89.3 | 10.0–29.15 | 1.5–5.7 |
MS | MF | P | S.P. | Pb | Gsb | Gmb | Va | VMA | VFA | |
---|---|---|---|---|---|---|---|---|---|---|
KN | mm | 0.1 mm | °C | % | (gm/cm3) | (gm/cm3) | % | % | % | |
Mean | 17.253 | 3.087 | 65.9 | 49.07 | 4.112 | 2.65 | 2.352 | 5.344 | 14.57 | 62.95 |
Median | 13.915 | 2.92 | 65 | 48.6 | 4 | 2.655 | 2.364 | 5.11 | 14.52 | 63.63 |
Mode | 13.83 | 2.6 | 66 | 49 | 4.5 | 2.66 | 2.34 | 3.7 | 14.31 | 63.81 |
Standard Deviation | 6.522 | 0.915 | 7.555 | 2.505 | 0.948 | 0.06 | 0.089 | 1.601 | 1.474 | 11.46 |
Sample Variance | 42.538 | 0.837 | 57.1 | 6.277 | 0.898 | 0.004 | 0.008 | 2.564 | 2.172 | 131.3 |
Kurtosis | −1.3 | 36.5 | 9.2 | 6.4 | 0.3 | 2.4 | 10.1 | 0.4 | 4.8 | 0.3 |
Skewness | 0.51 | 3.56 | 1.19 | 2.06 | 0.64 | −0.76 | −1.86 | 0.56 | 1.24 | −0.4 |
Range | 22.9 | 13.3 | 62 | 15 | 4.5 | 0.44 | 1.07 | 9.6 | 12.48 | 75.2 |
Minimum | 6.26 | 1.5 | 29 | 45 | 2.5 | 2.45 | 1.751 | 1 | 11.22 | 19.89 |
Maximum | 29.155 | 14.8 | 91 | 60 | 7 | 2.89 | 2.82 | 10.597 | 23.71 | 95.09 |
Penetration | S.P. | Pb % | Gsb | Gmb | Va % | VMA % | VFA % | |
---|---|---|---|---|---|---|---|---|
Penetration | 1.00 | −0.23 | 0.23 | −0.40 | −0.37 | −0.07 | 0.13 | 0.09 |
S.P. °C | −0.23 | 1.00 | 0.31 | −0.53 | −0.55 | −0.14 | 0.32 | 0.20 |
Pb % | 0.23 | 0.31 | 1.00 | −0.45 | −0.39 | −0.74 | 0.54 | 0.85 |
Gsb | −0.40 | −0.53 | −0.45 | 1.00 | 0.88 | 0.17 | −0.33 | −0.23 |
Gmb | −0.37 | −0.55 | −0.39 | 0.88 | 1.00 | −0.01 | −0.61 | −0.14 |
Air Void % | −0.07 | −0.14 | −0.74 | 0.17 | −0.01 | 1.00 | −0.06 | −0.96 |
VMA % | 0.13 | 0.32 | 0.54 | −0.33 | −0.61 | −0.06 | 1.00 | 0.32 |
VFA % | 0.09 | 0.20 | 0.85 | −0.23 | −0.14 | −0.96 | 0.32 | 1.00 |
Models | Hyperparameters | Grid Search Values Evaluated | Marshall Stability (MS) | Marshal Flow (MF) |
---|---|---|---|---|
Linear Regression (LR) | - | - | - | - |
Decision Tree (DT) | Criterion | [‘friedman_mse’] | friedman_mse | friedman_mse |
Splitter | [‘best’, ‘random’] | best | best | |
Max Depth | [None, 2, 6, 8, 12] | 8 | 12 | |
Min Samples Split | [2, 5, 10, 20] | 2 | 5 | |
Min Samples Leaf | [2, 5, 10, 20] | 2 | 2 | |
min_weight_fraction_leaf | 0 | 0 | 0 | |
Max Features | [None, ‘sqrt’, ‘log2’] | None | sqrt | |
random_state | [None] | None | None | |
Random Forest (RT) | Max Depth | [3, 5, 7, 10] | 10 | 10 |
Min Samples Split | [2, 5, 10] | 2 | 5 | |
Min Samples Leaf | [1, 2, 4] | 2 | 2 | |
Support Vector Machines (SVM) | Kernel | [‘linear’, ‘rbf’] | rbf | rbf |
C | [0.1, 1, 10] | 10 | 1 | |
Gamma | [‘scale’, ‘auto’] | auto | scale | |
Gradient Boosting Machines (GBM) | n_estimators | [50, 150, 200] | 200 | 150 |
Learning Rate | [0.01, 0.1, 0.5] | 0.1 | 0.01 | |
Max Depth | [3, 5, 7] | 5 | 5 | |
Artificial Neural Network (ANN) | Hidden Layers | [(50, 50), (100, 50), (100, 100)] | 2 layers 100, 100 neurons each | 2 layers 100, 50 neurons each |
Solver | adam | adam | adam | |
Activation Function | [‘relu’, ‘tanh’] | relu | relu | |
Max Iterations | [200, 500] | 500 | 200 |
Features | Random Forest | Permutation Importance | Lasso Regression |
---|---|---|---|
VMA % | 0.537 | 0.498 | 2.265 |
Softening Point °C | 0.135 | 0.338 | 1.369 |
Gsb | 0.130 | 0.364 | 2.090 |
Pb % | 0.078 | 0.169 | 3.347 |
Gmb | 0.051 | 0.120 | 0.000 |
Air Void % | 0.033 | 0.027 | 2.086 |
VFA % | 0.021 | 0.009 | 0.000 |
Penetration | 0.015 | 0.020 | 1.078 |
Features | Random Forest | Permutation Importance | Lasso Regression |
---|---|---|---|
Air Void % | 0.371 | 0.348 | 0.423 |
Gmb | 0.180 | 0.390 | 0.000 |
VFA % | 0.124 | 0.091 | 0.000 |
VMA % | 0.089 | 0.096 | 0.000 |
Gsb | 0.074 | 0.260 | 0.120 |
Softening Point °C | 0.064 | 0.140 | 0.000 |
Penetration | 0.052 | 0.102 | 0.000 |
Pb % | 0.045 | 0.058 | 0.000 |
Target Variable | Dataset | Metrics | LR | DT | RF | SVM | GMB | ANN |
---|---|---|---|---|---|---|---|---|
MS | Training | MSE | 16.635 | 0.913 | 0.855 | 8.196 | 0.120 | 2.531 |
MAE | 3.385 | 0.445 | 0.486 | 1.661 | 0.070 | 1.061 | ||
RMSE | 4.079 | 0.955 | 0.925 | 2.863 | 0.110 | 1.591 | ||
R2 | 0.605 | 0.978 | 0.980 | 0.805 | 0.990 | 0.940 | ||
Testing | MSE | 20.153 | 6.989 | 2.902 | 9.771 | 3.851 | 4.535 | |
MAE | 3.868 | 1.045 | 0.848 | 1.999 | 0.896 | 1.393 | ||
RMSE | 4.489 | 2.644 | 1.704 | 3.126 | 1.962 | 2.129 | ||
R2 | 0.530 | 0.837 | 0.932 | 0.772 | 0.910 | 0.894 | ||
MF | Training | MSE | 0.473 | 0.154 | 0.131 | 0.380 | 0.020 | 0.216 |
MAE | 0.458 | 0.136 | 0.120 | 0.287 | 0.033 | 0.279 | ||
RMSE | 0.688 | 0.392 | 0.361 | 0.616 | 0.043 | 0.465 | ||
R2 | 0.465 | 0.826 | 0.852 | 0.570 | 0.997 | 0.756 | ||
Testing | MSE | 0.341 | 0.191 | 0.126 | 0.242 | 0.098 | 0.182 | |
MAE | 0.433 | 0.238 | 0.202 | 0.290 | 0.159 | 0.314 | ||
RMSE | 0.584 | 0.437 | 0.355 | 0.492 | 0.314 | 0.427 | ||
R2 | 0.473 | 0.705 | 0.805 | 0.626 | 0.848 | 0.718 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zahoor, M.F.; Hussain, A.; Khattak, A. Machine Learning-Based Prediction Performance Comparison of Marshall Stability and Flow in Asphalt Mixtures. Infrastructures 2025, 10, 142. https://doi.org/10.3390/infrastructures10060142
Zahoor MF, Hussain A, Khattak A. Machine Learning-Based Prediction Performance Comparison of Marshall Stability and Flow in Asphalt Mixtures. Infrastructures. 2025; 10(6):142. https://doi.org/10.3390/infrastructures10060142
Chicago/Turabian StyleZahoor, Muhammad Farhan, Arshad Hussain, and Afaq Khattak. 2025. "Machine Learning-Based Prediction Performance Comparison of Marshall Stability and Flow in Asphalt Mixtures" Infrastructures 10, no. 6: 142. https://doi.org/10.3390/infrastructures10060142
APA StyleZahoor, M. F., Hussain, A., & Khattak, A. (2025). Machine Learning-Based Prediction Performance Comparison of Marshall Stability and Flow in Asphalt Mixtures. Infrastructures, 10(6), 142. https://doi.org/10.3390/infrastructures10060142