Interocular Timing Differences in Horizontal Saccades of Ball Game Players
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Apparatus
2.3. Procedure
2.4. Data Analysis
2.5. Statistics
3. Results
3.1. MANOVA and ANOVA for All Dependent Variables
3.2. Onset Time
3.3. Time to Peak Velocity
3.4. Duration
3.5. Peak Velocity
4. Discussion
4.1. Interocular Timing Differences and Sport-Specific Demands
4.2. Temporal Asymmetry Between the Abducting and Adducting Eyes
4.3. Implications for Binocular Vision in Sports and Practical Applications
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Di Russo, F.; Pitzalis, S.; Spinelli, D. Fixation stability and saccadic latency in elite shooters. Vision Res. 2003, 43, 1837–1845. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.T.; Kan, N.W.; Barquero, C.; Teo, M.M.J.; Wang, C.A. Saccade Latency and Metrics in the Interleaved Pro- and Anti-Saccade Task in Open Skill Sports Athletes. Scand. J. Med. Sci. Sports 2024, 34, e14713. [Google Scholar] [CrossRef] [PubMed]
- Ceyte, H.; Lion, A.; Caudron, S.; Perrin, P.; Gauchard, G.C. Visuo-oculomotor skills related to the visual demands of sporting environments. Exp. Brain Res. 2017, 235, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Lenoir, M.; Crevits, L.; Goethals, M.; Wildenbeest, J.; Musch, E. Are better eye movements an advantage in ball games? A study of prosaccadic and antisaccadic eye movements. Percept. Mot. Skills 2000, 91, 546–552. [Google Scholar] [CrossRef]
- Morrillo, M.; Di Russo, F.; Pitzalis, S.; Spinelli, D. Latency of prosaccades and antisaccades in professional shooters. Med. Sci. Sports Exerc. 2006, 38, 388–394. [Google Scholar] [CrossRef] [PubMed]
- Jafarzadehpur, E.; Aazami, N.; Bolouri, B. Comparison of saccadic eye movements and facility of ocular accommodation in female volleyball players and non-players. Scand. J. Med. Sci. Sports 2007, 17, 186–190. [Google Scholar] [CrossRef]
- Kokubu, M.; Ando, S.; Kida, N.; Oda, S. Interference effects between saccadic and key-press reaction times of volleyball players and nonathletes. Percept. Mot. Skills 2006, 103, 709–716. [Google Scholar] [CrossRef] [PubMed]
- Piras, A.; Lobietti, R.; Squatrito, S. A study of saccadic eye movement dynamics in volleyball: Comparison between athletes and non-athletes. J. Sports Med. Phys. Fit. 2010, 50, 99–108. [Google Scholar]
- Zhang, J.; Watanabe, K. Differences in saccadic latency and express saccades between skilled and novice ball players in tracking predictable and unpredictable targets at two visual angles. Percept. Mot. Skills 2005, 100, 1127–1136. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, Y.; Kizuka, T.; Ono, S. Properties of fast vergence eye movements and horizontal saccades in athletes. Physiol. Behav. 2021, 235, 113397. [Google Scholar] [CrossRef]
- Vicente, R.; Bittencourt, J.; Costa, E.; Nicoliche, E.; Gongora, M.; Di Giacomo, J.; Bastos, V.H.; Teixeira, S.; Orsini, M.; Budde, H.; et al. Differences between hemispheres and in saccade latency regarding volleyball athletes and non-athletes during saccadic eye movements: An analysis using EEG. Arq. Neuropsiquiatr. 2023, 81, 876–882. [Google Scholar] [CrossRef] [PubMed]
- Jedziniak, W.; Lesiakowski, P.; Zwierko, T. Oculomotor Control in Amputee Soccer Players. Adapt. Phys. Act. Q. 2020, 37, 41–55. [Google Scholar] [CrossRef]
- Zwierko, T.; Jedziniak, W.; Florkiewicz, B.; Stepinski, M.; Buryta, R.; Kostrzewa-Nowak, D.; Nowak, R.; Popowczak, M.; Wozniak, J. Oculomotor dynamics in skilled soccer players: The effects of sport expertise and strenuous physical effort. Eur. J. Sport Sci. 2019, 19, 612–620. [Google Scholar] [CrossRef]
- Yang, Q.; Kapoula, Z. Binocular coordination of saccades at far and at near in children and in adults. J. Vis. 2003, 3, 554–561. [Google Scholar] [CrossRef] [PubMed]
- Kapoula, Z.; Bucci, M.P.; Eggert, T.; Garraud, L. Impairment of the binocular coordination of saccades in strabismus. Vision Res. 1997, 37, 2757–2766. [Google Scholar] [CrossRef] [PubMed]
- Otero-Millan, J.; Macknik, S.L.; Martinez-Conde, S. Fixational eye movements and binocular vision. Front. Integr. Neurosci. 2014, 8, 52. [Google Scholar] [CrossRef]
- Bucci, M.P.; Kapoula, Z.; Eggert, T.; Garraud, L. Deficiency of adaptive control of the binocular coordination of saccades in strabismus. Vision Res. 1997, 37, 2767–2777. [Google Scholar] [CrossRef] [PubMed]
- Gray, R.; Regan, D. Accuracy of estimating time to collision using binocular and monocular information. Vision Res. 1998, 38, 499–512. [Google Scholar] [CrossRef]
- Zwierko, T.; Puchalska-Niedbal, L.; Krzepota, J.; Markiewicz, M.; Wozniak, J.; Lubinski, W. The Effects of Sports Vision Training on Binocular Vision Function in Female University Athletes. J. Hum. Kinet. 2015, 49, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Jorge, J.; Diaz-Rey, A. Binocular Function Parameters in Elite Football Players. J. Binocul. Vis. Ocul. Motil. 2022, 72, 97–104. [Google Scholar] [CrossRef]
- Schoemann, M.D.; Lochmann, M.; Paulus, J.; Michelson, G. Repetitive dynamic stereo test improved processing time in young athletes. Restor. Neurol. Neurosci. 2017, 35, 413–421. [Google Scholar] [CrossRef]
- Collewijn, H.; Erkelens, C.J.; Steinman, R.M. Trajectories of the human binocular fixation point during conjugate and non-conjugate gaze-shifts. Vision Res. 1997, 37, 1049–1069. [Google Scholar] [CrossRef] [PubMed]
- Collewijn, H. Interocular timing differences in the horizontal components of human saccades. Vision Res. 2001, 41, 3413–3423. [Google Scholar] [CrossRef] [PubMed]
- Collewijn, H.; Erkelens, C.J.; Steinman, R.M. Binocular co-ordination of human horizontal saccadic eye movements. J. Physiol. 1988, 404, 157–182. [Google Scholar] [CrossRef]
- Collewijn, H.; Erkelens, C.J.; Steinman, R.M. Voluntary binocular gaze-shifts in the plane of regard: Dynamics of version and vergence. Vision Res. 1995, 35, 3335–3358. [Google Scholar] [CrossRef] [PubMed]
- van Leeuwen, A.F.; Collewijn, H.; Erkelens, C.J. Dynamics of horizontal vergence movements: Interaction with horizontal and vertical saccades and relation with monocular preferences. Vision Res. 1998, 38, 3943–3954. [Google Scholar] [CrossRef] [PubMed]
- Presta, V.; Vitale, C.; Ambrosini, L.; Gobbi, G. Stereopsis in Sports: Visual Skills and Visuomotor Integration Models in Professional and Non-Professional Athletes. Int. J. Environ. Res. Public Health 2021, 18, 11281. [Google Scholar] [CrossRef]
- Finocchio, D.V.; Preston, K.L.; Fuchs, A.F. Obtaining a quantitative measure of eye movements in human infants: A method of calibrating the electrooculogram. Vision Res. 1990, 30, 1119–1128. [Google Scholar] [CrossRef]
- Jia, Y.; Tyler, C.W. Measurement of saccadic eye movements by electrooculography for simultaneous EEG recording. Behav. Res. Methods 2019, 51, 2139–2151. [Google Scholar] [CrossRef]
- Aungsakun, S.; Phinyomark, A.; Phukpattaranont, P.; Limsakul, C. Development of robust electrooculography (EOG)-based human-computer interface controlled by eight- directional eye movements. Int. J. Phys. Sci. 2012, 7, 2196–2208. [Google Scholar] [CrossRef]
- Hamada, T. A method for calibrating the gain of the electro-oculogram (EOG) using the optical properties of the eye. J. Neurosci. Methods 1984, 10, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Postelnicu, C.-C.; Girbacia, F.; Talaba, D. EOG-based visual navigation interface development. Expert Syst. Appl. 2012, 39, 10857–10866. [Google Scholar] [CrossRef]
- Chavant, M.; Kapoula, Z. Loss of audiovisual facilitation with age occurs for vergence eye movements but not for saccades. Sci. Rep. 2022, 12, 4453. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Wang, T.; Su, N.; Xiao, S.; Kapoula, Z. Specific saccade deficits in patients with Alzheimer’s disease at mild to moderate stage and in patients with amnestic mild cognitive impairment. Age 2013, 35, 1287–1298. [Google Scholar] [CrossRef]
- Mouga, S.; Castelhano, J.; Cafe, C.; Sousa, D.; Duque, F.; Oliveira, G.; Castelo-Branco, M. Social Attention Deficits in Children with Autism Spectrum Disorder: Task Dependence of Objects vs. Faces Observation Bias. Front. Psychiatry 2021, 12, 640599. [Google Scholar] [CrossRef]
- Burris, K.; Liu, S.; Appelbaum, L. Visual-motor expertise in athletes: Insights from semiparametric modelling of 2317 athletes tested on the Nike SPARQ Sensory Station. J. Sports Sci. 2020, 38, 320–329. [Google Scholar] [CrossRef]
- Laby, D.M.; Rosenbaum, A.L.; Kirschen, D.G.; Davidson, J.L.; Rosenbaum, L.J.; Strasser, C.; Mellman, M.F. The visual function of professional baseball players. Am. J. Ophthalmol. 1996, 122, 476–485. [Google Scholar] [CrossRef] [PubMed]
- Regan, D. Visual factors in hitting and catching. J. Sports Sci. 1997, 15, 533–558. [Google Scholar] [CrossRef] [PubMed]
- Boden, L.M.; Rosengren, K.J.; Martin, D.F.; Boden, S.D. A comparison of static near stereo acuity in youth baseball/softball players and non-ball players. Optometry 2009, 80, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Uchida, Y.; Kudoh, D.; Higuchi, T.; Honda, M.; Kanosue, K. Dynamic visual acuity in baseball players is due to superior tracking abilities. Med. Sci. Sports Exerc. 2013, 45, 319–325. [Google Scholar] [CrossRef]
- Morize, A.; Bremond-Gignac, D.; Daniel, F.; Kapoula, Z. Effects of Pure Vergence Training on Initiation and Binocular Coordination of Saccades. Investig. Ophthalmol. Vis. Sci. 2017, 58, 329–342. [Google Scholar] [CrossRef] [PubMed]
- Tochikura, I.; Sato, D.; Imoto, D.; Nuruki, A.; Yamashiro, K.; Funada, R.; Maruyama, A. Baseball Players’ Eye Movements and Higher Coincident-Timing Task Performance. Percept. Mot. Skills 2020, 127, 571–586. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, T.; Nagami, T.; Nakata, H.; Kanosue, K. Head-eye movement of collegiate baseball batters during fastball hitting. PLoS ONE 2018, 13, e0200443. [Google Scholar] [CrossRef]
- Roca, A.; Ford, P.R.; McRobert, A.P.; Williams, A.M. Perceptual-cognitive skills and their interaction as a function of task constraints in soccer. J. Sport Exerc. Psychol. 2013, 35, 144–155. [Google Scholar] [CrossRef] [PubMed]
- Vaeyens, R.; Lenoir, M.; Williams, A.M.; Philippaerts, R.M. Mechanisms underpinning successful decision making in skilled youth soccer players: An analysis of visual search behaviors. J. Mot. Behav. 2007, 39, 395–408. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.M.; Davids, K. Visual search strategy, selective attention, and expertise in soccer. Res. Q. Exerc. Sport 1998, 69, 111–128. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.M.; Davids, K.; Burwitz, L.; Williams, J.G. Visual search strategies in experienced and inexperienced soccer players. Res. Q. Exerc. Sport 1994, 65, 127–135. [Google Scholar] [CrossRef]
- Pesce, C.; Tessitore, A.; Casella, R.; Pirritano, M.; Capranica, L. Focusing of visual attention at rest and during physical exercise in soccer players. J. Sports Sci. 2007, 25, 1259–1270. [Google Scholar] [CrossRef]
- Paulus, J.; Tong, J.; Hornegger, J.; Schmidt, M.; Eskofier, B.; Michelson, G. Extended stereopsis evaluation of professional and amateur soccer players and subjects without soccer background. Front. Psychol. 2014, 5, 1186. [Google Scholar] [CrossRef] [PubMed]
- Jorge, J.; Diaz-Rey, A.; Lira, M. Prevalence of binocular vision dysfunctions in professional football players. Clin. Exp. Optom. 2022, 105, 853–859. [Google Scholar] [CrossRef] [PubMed]
- Jorge, J.; Jorge, J.P. Relationship between dynamic visual acuity and static visual acuity, refractive error, and binocular vision in elite soccer players. Clin. Exp. Optom. 2024, 107, 820–825. [Google Scholar] [CrossRef] [PubMed]
- Palidis, D.J.; Wyder-Hodge, P.A.; Fooken, J.; Spering, M. Distinct eye movement patterns enhance dynamic visual acuity. PLoS ONE 2017, 12, e0172061. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J. Differences on Prosaccade Task in Skilled and Less Skilled Female Adolescent Soccer Players. Front. Psychol. 2021, 12, 711420. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi, T.; Hiwatashi, S.; Kishimoto, S.; Tamada, A. Dissociation of the eyes in saccadic movement. Ann. N. Y. Acad. Sci. 1981, 374, 731–743. [Google Scholar] [CrossRef]
- Tagu, J.; Doré-Mazars, K.; Vergne, J.; Lemoine-Lardennois, C.; Vergilino-Perez, D. Recentering bias for temporal saccades only: Evidence from binocular recordings of eye movements. J. Vis. 2018, 18, 10. [Google Scholar] [CrossRef] [PubMed]
- Lenoir, M.; Musch, E.; la Grange, N. Ecological relevance of stereopsis in one-handed ball-catching. Percept. Mot. Skills 1999, 89, 495–508. [Google Scholar] [CrossRef] [PubMed]
- Mazyn, L.I.; Lenoir, M.; Montagne, G.; Delaey, C.; Savelsbergh, G.J. Stereo vision enhances the learning of a catching skill. Exp. Brain Res. 2007, 179, 723–726. [Google Scholar] [CrossRef] [PubMed]
- Mazyn, L.I.; Lenoir, M.; Montagne, G.; Savelsbergh, G.J.P. The contribution of stereo vision to one-handed catching. Exp. Brain Res. 2004, 157, 383–390. [Google Scholar] [CrossRef]
- Seassau, M.; Gerard, C.L.; Bui-Quoc, E.; Bucci, M.P. Binocular saccade coordination in reading and visual search: A developmental study in typical reader and dyslexic children. Front. Integr. Neurosci. 2014, 8, 85. [Google Scholar] [CrossRef] [PubMed]
- Vernet, M.; Yang, Q.; Kapoula, Z. Guiding Binocular Saccades during Reading: A TMS Study of the PPC. Front. Hum. Neurosci. 2011, 5, 14. [Google Scholar] [CrossRef] [PubMed]
- Fioravanti, F.; Inchingolo, P.; Pensiero, S.; Spanio, M. Saccadic eye movement conjugation in children. Vision Res. 1995, 35, 3217–3228. [Google Scholar] [CrossRef] [PubMed]
- Bucci, M.P.; Kapoula, Z. Binocular coordination of saccades in 7 years old children in single word reading and target fixation. Vision Res. 2006, 46, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Boi, M.; Poletti, M.; Victor, J.D.; Rucci, M. Consequences of the oculomotor cycle for the dynamics of perception. Curr. Biol. 2017, 27, 1268–1277. [Google Scholar] [CrossRef]
- King, J.A. Visuomotor Control in Normal Infants and Children with Williams Syndrome. Ph.D. Thesis, University College London, London, UK, 1998. Available online: https://discovery.ucl.ac.uk/id/eprint/10103151/ (accessed on 25 January 2025).
Variables | Direction | Baseball Group | Soccer Group | |||||
---|---|---|---|---|---|---|---|---|
Left Eye | Right Eye | Difference (Left − Right) | Left Eye | Right Eye | Difference (Left − Right) | |||
Mean ± SE | Mean ± SE | Mean ± SE | Mean ± SE | Mean ± SE | Mean ± SE | |||
Onset time (ms) | Leftward | 163.9 ± 6.6 | 168.8 ± 6.6 | −4.8 ± 1.0 | 160.8 ± 3.3 | 168.2 ± 3.4 | −7.4 ± 0.5 | * |
Rightward | 170.0 ± 5.9 | 164.5 ± 5.8 | 5.5 ± 0.8 | 177.8 ± 3.2 | 169.7 ± 3.2 | 8.1 ± 0.5 | ** | |
Peak velocity time (ms) | Leftward | 205.0 ± 6.7 | 204.0 ± 6.5 | 1.0 ± 0.6 | 202.6 ± 3.4 | 201.5 ± 3.4 | 1.1 ± 0.4 | |
Rightward | 204.3 ± 5.8 | 204.6 ± 5.9 | −0.2 ± 0.5 | 210.6 ± 3.3 | 211.5 ± 3.2 | −0.9 ± 0.4 | ||
Offset time (ms) | Leftward | 247.9 ± 6.7 | 245.5 ± 6.8 | 2.4 ± 0.9 | 243.8 ± 3.6 | 240.8 ± 3.7 | 3.1 ± 0.7 | |
Rightward | 246.1 ± 6.0 | 246.4 ± 6.0 | −0.3 ± 1.0 | 249.8 ± 3.5 | 251.5 ± 3.5 | −1.7 ± 0.7 | ||
Time to peak velocity (ms) | Leftward | 41.1 ± 0.9 | 35.2 ± 0.7 | 5.9 ± 1.2 | 41.7 ± 0.6 | 33.3 ± 0.4 | 8.5 ± 0.5 | * |
Rightward | 34.3 ± 0.5 | 40.0 ± 0.8 | −5.7 ± 1.0 | 32.8 ± 0.4 | 41.8 ± 0.6 | −9.0 ± 0.6 | ** | |
Time after peak velocity (ms) | Leftward | 42.9 ± 0.9 | 41.5 ± 1.0 | 1.4 ± 0.7 | 41.3 ± 0.8 | 39.3 ± 0.8 | 2.0 ± 0.7 | |
Rightward | 41.8 ± 0.9 | 41.8 ± 0.8 | −0.1 ± 0.8 | 39.1 ± 0.7 | 40.0 ± 0.7 | −0.8 ± 0.5 | ||
Duration (ms) | Leftward | 84.0 ± 1.5 | 76.7 ± 1.3 | 7.3 ± 1.2 | 83.0 ± 1.1 | 72.6 ± 1.0 | 10.4 ± 0.8 | * |
Rightward | 76.1 ± 1.1 | 81.8 ± 1.4 | −5.8 ± 1.3 | 71.9 ± 1.0 | 81.7 ± 1.0 | −9.8 ± 0.8 | ** | |
Peak velocity (deg/s) | Leftward | 403.6 ± 5.7 | 420.8 ± 7.4 | −17.2 ± 5.5 | 408.1 ± 6.1 | 445.0 ± 6.6 | −36.9 ± 3.6 | ** |
Rightward | 427.5 ± 6.1 | 410.3 ± 6.8 | 17.2 ± 5.9 | 449.4 ± 6.3 | 417.6 ± 5.5 | 31.8 ± 3.5 | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kokubu, M.; Komatsu, Y.; Kojima, T. Interocular Timing Differences in Horizontal Saccades of Ball Game Players. Vision 2025, 9, 9. https://doi.org/10.3390/vision9010009
Kokubu M, Komatsu Y, Kojima T. Interocular Timing Differences in Horizontal Saccades of Ball Game Players. Vision. 2025; 9(1):9. https://doi.org/10.3390/vision9010009
Chicago/Turabian StyleKokubu, Masahiro, Yoshihiro Komatsu, and Takashi Kojima. 2025. "Interocular Timing Differences in Horizontal Saccades of Ball Game Players" Vision 9, no. 1: 9. https://doi.org/10.3390/vision9010009
APA StyleKokubu, M., Komatsu, Y., & Kojima, T. (2025). Interocular Timing Differences in Horizontal Saccades of Ball Game Players. Vision, 9(1), 9. https://doi.org/10.3390/vision9010009