Expert Event Segmentation of Dance Is Genre-Specific and Primes Verbal Memory
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Event Segmentation Procedure, and Stimuli
2.3. Retrieval-Induced Forgetting (RIF) Task
2.3.1. Participants
2.3.2. Procedure
2.4. Statistical Analyses
3. Results
3.1. Event Segmentation
3.1.1. Average Event Borders
3.1.2. Movement Features of Event Borders
3.2. RIF Task
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zacks, J.M.; Sargent, J.Q. Event perception: A theory and its application to clinical neuroscience. In Introduction to Functional Magnetic Resonance Imaging, 1st ed.; Ross, B., Ed.; Elsevier Inc.: Burlington, UK, 2010; Volume 53, pp. 253–299. [Google Scholar]
- Zacks, J.M.; Tversky, B. Event structure in perception and conception. Psychol. Bull. 2001, 127, 3–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zacks, J.M.; Braver, T.S.; Sheridan, M.A.; Donaldson, D.I.; Snyder, A.Z.; Ollinger, J.M. Human brain activity time-locked to perceptual event boundaries. Nature Neurosci. 2001, 4, 651–655. [Google Scholar] [CrossRef] [PubMed]
- Hommel, B. The theory of event coding (TEC) as embodied-cognition framework. Front. Psychol. 2015, 6, 617–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hommel, B.; Müsseler, J.; Aschersleben, G.; Prinz, W. The theory of event coding (TEC): A framework for perception and action planning. Behav. Brain Sci. 2001, 24, 849–937. [Google Scholar] [CrossRef]
- Bransford, J.D.; Johnson, M.K. Contextual prerequisites for understanding: Some investigations of comprehension and recall. J. Verbal Learn. Verbal Behav. 1972, 11, 717–726. [Google Scholar] [CrossRef]
- Bartlett, F.C. Remembering: An Experimental and Social Study; Cambridge University Press: Cambridge, UK, 1932. [Google Scholar]
- Swallow, K.M.; Zacks, J.M. Sequences learned without awareness can orient attention during the perception of human activity. Psychon. Bull. Rev. 2008, 15, 116–122. [Google Scholar] [CrossRef] [Green Version]
- Speer, N.K.; Zacks, J.M. Temporal changes as event boundaries: Processing and memory consequences of narrative time shifts. J. Mem. Lang. 2005, 53, 125–140. [Google Scholar] [CrossRef]
- Zacks, J.M.; Speer, N.K.; Swallow, K.M.; Maley, C.J. The brain’s cutting-room floor: Segmentation of narrative cinema. Front. Hum. Neurosci. 2010, 4, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Schubotz, R.I.; Korb, F.M.; Schiffer, A.-M.; Stadler, W.; von Cramon, D.Y. The fraction of an action is more than a movement: Neural signatures of event segmentation in fMRI. NeuroImage 2012, 61, 1195–1205. [Google Scholar] [CrossRef]
- Bailey, H.R.; Kurby, C.A.; Giovannetti, T.; Zacks, J.M. Action perception predicts action performance. Neuropsychologia 2013, 51, 2294–2304. [Google Scholar] [CrossRef] [Green Version]
- Bailey, H.R.; Zacks, J.M.; Hambrick, D.Z.; Zacks, R.T.; Head, D.; Kurby, C.A.; Sargent, J.Q. Medial temporal lobe volume predicts elders’ everyday memory. Psychol. Sci. 2013, 24, 1113–1122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatterjee, A. Neuroaesthetics: A coming of age story. J. Cogn. Neurosci. 2011, 23, 53–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sridharan, D.; Levitin, D.J.; Chafe, C.H.; Berger, J.; Menon, V. Neural dynamics of event segmentation in music: Converging evidence for dissociable ventral and dorsal networks. Neuron 2007, 55, 521–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noble, K.; Glowinski, D.; Murphy, H.; Jola, C.; McAleer, P.; Darshane, N. Event segmentation and biological motion perception in watching dance. Art Percept. 2014, 2, 59–74. [Google Scholar] [CrossRef] [Green Version]
- Bläsing, B.E. Segmentation of dance movement: Effects of expertise, visual familiarity, motor experience and music. Front. Psychol. 2015, 5, 1500. [Google Scholar] [CrossRef] [Green Version]
- Levine, D.; Hirsh-Pasek, K.; Pace, A.; Michnick, G.R. A goal bias in action: The boundaries adults perceive in events align with sites of actor intent. J. Exp. Psychol. Learn. Mem. Cogn. 2017, 43, 916. [Google Scholar] [CrossRef]
- Abernethy, B.; Baker, J.; Côté, J. Transfer of pattern recall skills may contribute to the development of sport expertise. Appl. Cogn. Psychol. 2005, 19, 705–718. [Google Scholar] [CrossRef]
- Debarnot, U.; Sperduti, M.; Di Rienzo, F.; Guillot, A. Experts bodies, experts minds: How physical and mental training shape the brain. Front. Hum. Neurosci. 2014, 8, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Bar, R.J.; DeSouza, J.F.X. Tracking plasticity: Effects of long-term rehearsal in expert dancers encoding music to movement. PLoS ONE 2016, 11, e0147731. [Google Scholar] [CrossRef]
- Dhami, P.; Moreno, S.; DeSouza, J.F.X. New framework for rehabilitation fusion of cognitive and physical rehabilitation: The hope for dancing. Front. Psychol. 2015, 5, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Di Nota, P.M.; Chartrand, J.M.; Levkov, G.R.; Montefusco-Siegmund, R.; DeSouza, J.F.X. Experience-dependent modulation of alpha and beta during action observation and motor imagery. BMC Neurosci. 2017, 18, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Di Nota, P.M.; Levkov, G.; Bar, R.; DeSouza, J.F.X. Lateral occipitotemporal cortex (LOTC) activity is greatest while viewing dance compared to visualization and movement: Learning and expertise effects. Exp. Brain Res. 2016, 234, 2007–2023. [Google Scholar] [CrossRef]
- Gaser, C.; Schlaug, G. Brain structures differ between musicians and non-musicians. J. Neurosci. 2003, 23, 9240–9245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hänggi, J.; Koeneke, S.; Bezzola, L.; Jäncke, L. Structural neuroplasticity in the sensorimotor network of professional female ballet dancers. Hum. Brain Mapp. 2010, 31, 1196–1206. [Google Scholar] [CrossRef] [PubMed]
- Kattenstroth, J.-C.; Kalisch, T.; Holt, S.; Tegenthoff, M.; Dinse, H.R. Six months of dance intervention enhances postural, sensorimotor, and cognitive performance in elderly without affecting cardio-respiratory functions. Front. Aging Neurosci. 2013, 5, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olshansky, M.P.; Bar, R.J.; Fogarty, M.; DeSouza, J.F.X. Supplementary motor area and primary auditory cortex activation in an expert break-dancer during the kinesthetic motor imagery of dance to music. Neurocase 2015, 21, 607–617. [Google Scholar] [CrossRef] [PubMed]
- Del Rey, P.; Wughalter, E.; Carnes, M. Level of expertise, interpolated activity and contextual interference effects on memory and transfer. Percept. Mot. Ski. 1987, 64, 275–284. [Google Scholar] [CrossRef]
- Beauprez, S.A.; Blandin, Y.; Almécija, Y.; Bidet-Ildei, C. Physical and observational practices of unusual actions prime action verb processing. Brain Cogn. 2020, 138. [Google Scholar] [CrossRef]
- Newberry, K.M.; Bailey, H.R. Does semantic knowledge influence event segmentation and recall of text? Mem. Cogn. 2019, 47, 1173–1187. [Google Scholar] [CrossRef] [Green Version]
- Howard, S.J.; Johnson, J.; Pascual-Leone, J. Clarifying inhibitory control: Diversity and development of attentional inhibition. Cogn. Dev. 2014, 31, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Storm, B.C.; Bui, D.C. Retrieval-practice task affects relationship between working memory capacity and retrieval-induced forgetting. Memory 2015, 24, 1407–1418. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.C.; Bjork, E.L.; Bjork, R.A. Retrieval-induced forgetting: Evidence for a recall-specific mechanism. Psychon. Bull. Rev. 2000, 7, 522–530. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.C.; Bjork, R.A.; Bjork, E.L. Remembering can cause forgetting: Retrieval dynamics in long-term memory. J. Exp. Psychol. Learn. Mem. Cogn. 1994, 20, 1063–1087. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.C.; Zacks, R.T. Is retrieval-induced forgetting an inhibitory process? Am. J. Psychol. 2001, 114, 329–354. [Google Scholar] [CrossRef]
- Jola, C.; Abedian-Amiri, A.; Kuppuswamy, A.; Pollick, F.E.; Grosbras, M.-H. Motor simulation without motor expertise: Enhanced corticospinal excitability in visually experienced dance spectators. PLoS ONE 2012, 7, e33343. [Google Scholar] [CrossRef] [Green Version]
- Brainard, D. The psychophysics toolbox. Spat. Vis. 1997, 10, 433–436. [Google Scholar] [CrossRef] [Green Version]
- Speer, N.K.; Swallow, K.M.; Zacks, J.M. Activation of human motion processing areas during event perception. Cogn. Affect. Behav. Neurosci. 2003, 3, 335–345. [Google Scholar] [CrossRef] [Green Version]
- Knösche, T.R.; Neuhaus, C.; Haueisen, J.; Alter, K.; Maess, B.; Witte, O.W.; Friederici, A.D. Perception of phrase structure in music. Hum. Brain Mapp. 2005, 24, 259–273. [Google Scholar] [CrossRef]
- Hemeren, P.E.; Thill, S. Deriving motor primitives through action segmentation. Front. Psychol. 2011, 1, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Zacks, J.M.; Kumar, S.; Abrams, R.A.; Mehta, R. Using movement and intentions to understand human activity. Cognition 2009, 112, 201–216. [Google Scholar] [CrossRef]
- Zacks, J.M.; Speer, N.K.; Reynolds, J.R. Segmentation in Reading and Film Comprehension. J. Exp. Psychol. Gen. 2009, 138, 307–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calvo-Merino, B.; Glaser, D.E.; Grèzes, J.; Passingham, R.E.; Haggard, P. Action observation and acquired motor skills: An fMRI study with expert dancers. Cereb. Cortex 2005, 15, 1243–1249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calvo-Merino, B.; Grèzes, J.; Glaser, D.E.; Passingham, R.E.; Haggard, P. Seeing or doing? influence of visual and motor familiarity in action observation. Curr. Biol. 2006, 16, 1905–1910. [Google Scholar] [CrossRef]
- Cross, E.S.; Kraemer, D.J.M.; Hamilton, A.F.D.C.; Kelley, W.M.; Grafton, S.T. Sensitivity of the action observation network to physical and observational learning. Cereb. Cortex 2009, 19, 315–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zacks, J.M.; Swallow, K.M.; Vettel, J.M.; McAvoy, M.P. Visual motion and the neural correlates of event perception. Brain Res. 2006, 1076, 150–162. [Google Scholar] [CrossRef]
- Reynolds, J.R.; Zacks, J.M.; Braver, T.S. A computational model of event segmentation from perceptual prediction. Cogn. Sci. 2007, 31, 613–643. [Google Scholar] [CrossRef]
- Zacks, J.M.; Kurby, C.A.; Eisenberg, M.L.; Haroutunian, N. Prediction error associated with the perceptual segmentation of naturalistic events. J. Cogn. Neurosci. 2011, 23, 4057–4066. [Google Scholar] [CrossRef] [Green Version]
- Faber, M.; Gennari, S.P. In search of lost time: Reconstructing the unfolding of events from memory. Cognition 2015, 143, 193–202. [Google Scholar] [CrossRef]
- Besson, M.; Chobert, J.; Marie, C. Transfer of training between music and speech: Common processing, attention, and memory. Front. Psychol. 2011, 2, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Ericsson, K.A.; Patel, V.; Kintsch, W. How experts’ adaptations to representative task demands account for the expertise effect in memory recall: Comment on Vicente and Wang (1998). Psychol. Rev. 2000, 107, 578–592. [Google Scholar] [CrossRef]
- Vicente, K.J.; Wang, J.H. An ecological theory of expertise effects in memory recall. Psychol. Rev. 1998, 105, 33–57. [Google Scholar] [CrossRef] [PubMed]
- Chan, A.S.; Ho, Y.-C.; Cheung, M.-C. Music training improves verbal memory. Nature 1998, 396. [Google Scholar] [CrossRef] [PubMed]
- Dittinger, E.; Barbaroux, M.; D’Imperio, M.; Jäncke, L.; Elmer, S.; Besson, M. professional music training and novel word learning: From faster semantic encoding to longer-lasting word representations. J. Cogn. Neurosci. 2016, 28, 1584–1602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, Y.-C.; Cheung, M.-C.; Chan, A.S. Music training improves verbal but not visual memory: Cross-sectional and longitudinal explorations in children. Neuropsychology 2003, 17, 439–450. [Google Scholar] [CrossRef] [Green Version]
- Moreno, S.; Bialystok, E.; Barac, R.; Schellenberg, E.G.; Cepeda, N.J.; Chau, T. Short-Term music training enhances verbal intelligence and executive function. Psychol. Sci. 2011, 22, 1425–1433. [Google Scholar] [CrossRef]
- François, C.; Jaillet, F.; Takerkart, S.; Schön, D. Faster sound stream segmentation in musicians than in nonmusicians. PLoS ONE 2014, 9, e101340. [Google Scholar]
- Deakin, J.M.; Allard, F. Skilled memory in expert figure skaters. Mem. Cogn. 1991, 19, 79–86. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, J.P.; Masters, R.S.W.; Eves, F.F. The role of working memory in motor learning and performance. Conscious. Cogn. 2003, 12, 376–402. [Google Scholar] [CrossRef]
- Moreau, D. Motor expertise modulates movement processing in working memory. Acta Psychol. 2013, 142, 356–361. [Google Scholar] [CrossRef]
- Lyons, I.M.; Mattarella-Micke, A.; Cieslak, M.; Nusbaum, H.C.; Small, S.L.; Beilock, S.L. The role of personal experience in the neural processing of action-related language. Brain Lang. 2010, 112, 214–222. [Google Scholar] [CrossRef]
- Palisson, J.; Roussel-Baclet, C.; Maillet, D.; Belin, C.; Ankri, J.; Narme, P. Music enhances verbal episodic memory in Alzheimer’s disease. J. Clin. Exp. Neuropsychol. 2015, 37, 503–517. [Google Scholar] [CrossRef] [PubMed]
- Bearss, K.A.; McDonald, K.C.; Bar, R.J.; DeSouza, J.F.X. Improvements in balance and gait speed after a 12 week dance intervention for parkinson’s disease. Adv. Integr. Med. 2017, 4, 10–13. [Google Scholar] [CrossRef]
- Jola, C.; Grosbras, M.-H. In the here and now: Enhanced motor corticospinal excitability in novices when watching live compared to video recorded dance. Cogn. Neurosci. 2013, 4, 90–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Battig, W.F.; Montague, W.E. Category norms for verbal items in 56 categories: A replication and extension of the Connecticut Category Norms. J. Exp. Psychol. Monogr. 1969, 80, 1–46. [Google Scholar] [CrossRef]
Group | Event Segmentation | Retrieval-Induced Forgetting | ||||
---|---|---|---|---|---|---|
n (Female) | Age, M (SD) | Years of Experience, M (SD) | n (Female) | Age, M (SD) | Years of Experience, M (SD) | |
Ballet | 19 (19) | 21.8 (7.6) | 12.8 (5.1) | 19 (19) | 21.8 (7.6) | 12.8 (5.1) |
Bharatanatyam | 16 (16) | 20.4 (5.9) | 11.7 (7.4) | 15 (15) | 20.5 (6.1) | 12.2 (7.5) |
Dance * | 17 (15) | 24.1 (7.5) | 11.4 (5.5) | 17 (14) | 23.8 (7.5) | 11.6 (5.4) |
Musician | 20 (13) | 21.9 (10.1) | 10.9 (4.5) | 20 (13) | 21.9 (10.1) | 10.9 (4.5) |
Athlete * | 20 (12) | 20.1 (3.0) | 9.9 (3.4) | 19 (10) | 20.1 (3.0) | 9.6 (3.1) |
Non-Expert * | 20 (13) | 21.7 (7.0) | 3.1 (2.2) | 16 (11) | 21.3 (7.6) | 3.1 (2.4) |
Total | 112 (88) | 21.63 (7.1) | 9.85 (5.8) | 106 (82) | 21.6 (7.3) | 10.1 (5.7) |
Condition | Bin | Movement |
---|---|---|
Ballet | 30 | Concluding a set of four spins |
8, 12 | Raise arm, leg, turn head (to left and right, respectively) | |
16 | Change direction and pace of movement | |
22, 23 | Stop, change direction of movement, and begin set of four spins | |
5, 10 | Large step or leap to the side | |
Bharatanatyam | 21 | Step backward, change direction, raise hand, cross leg |
54 | Pause after stepping forward, raise arm, nod head and hand | |
6–8 | Leap to the side while moving arm above head | |
25 | Change direction, step, lift arms | |
33, 11 | Bow down with head, upper body, and arm | |
Acting | 40–43 | Crouched, tap knee with hands |
45 | Stop knee tapping sequence and raise arms | |
5 | Turn head, raise arms | |
37, 55–58 | Crouched, tap knee with hands | |
59 | Stop knee tapping sequence and raise arms |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Nota, P.M.; Olshansky, M.P.; DeSouza, J.F.X. Expert Event Segmentation of Dance Is Genre-Specific and Primes Verbal Memory. Vision 2020, 4, 35. https://doi.org/10.3390/vision4030035
Di Nota PM, Olshansky MP, DeSouza JFX. Expert Event Segmentation of Dance Is Genre-Specific and Primes Verbal Memory. Vision. 2020; 4(3):35. https://doi.org/10.3390/vision4030035
Chicago/Turabian StyleDi Nota, Paula M., Michael P. Olshansky, and Joseph F.X. DeSouza. 2020. "Expert Event Segmentation of Dance Is Genre-Specific and Primes Verbal Memory" Vision 4, no. 3: 35. https://doi.org/10.3390/vision4030035
APA StyleDi Nota, P. M., Olshansky, M. P., & DeSouza, J. F. X. (2020). Expert Event Segmentation of Dance Is Genre-Specific and Primes Verbal Memory. Vision, 4(3), 35. https://doi.org/10.3390/vision4030035