Attention Distribution While Detecting Conflicts between Converging Objects: An Eye-Tracking Study
Abstract
:1. Introduction
1.1. The Effect of Conflict Angle on Conflict Detection Performance
1.2. The Potential of Eye-Tracking in Conflict Detection Research
1.3. Study Aims
2. Methods
2.1. Participants
2.2. Participants’ Task
2.3. Apparatus
2.4. Independent Variables
2.5. Design of the Stimuli
2.6. Dependent Variables
2.7. Statistical Analyses
3. Results
3.1. Continuous Versus Discrete Stimuli
3.2. Effect of Conflict Angle on Conflict Detection Performance
3.3. Effect of Conflict Angle on Self-Reported Difficulty (Conflict and Non-Conflict Scenarios Combined)
3.4. Effect of Conflict Angle on Eye Movements (Conflict and Non-Conflict Scenarios Combined)
3.5. Scenario-Specific Effects
4. Discussion
4.1. Effects of Conflict Angle
4.2. Effects of Update Rate
4.3. Limitations
5. Conclusions
Data Availability Statement
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Hancock, P.A.; Manser, M.P. Time-to-contact. In Occupational Injury: Risk, Prevention and Intervention; Feyer, A., Williamson, A., Eds.; Taylor & Francis: Bristol, CO, USA, 1998; pp. 44–58. [Google Scholar]
- Tresilian, J.R. Perceptual and cognitive processes in time-to-contact estimation: Analysis of prediction-motion and relative judgment tasks. Percept. Psychophys. 1995, 57, 231–245. [Google Scholar] [CrossRef] [PubMed]
- Loft, S.; Bolland, S.; Humphreys, M.S.; Neal, A. A theory and model of conflict detection in air traffic control: Incorporating environmental constraints. J. Exp. Psychol. Appl. 2009, 15, 106–124. [Google Scholar] [CrossRef]
- Matton, N.; Gotteland, J.; Granger, G.; Durand, N. Impact of ATCO training and expertise on dynamic spatial abilities. In Proceedings of the 20th International Symposium on Aviation Psychology, Dayton, OH, USA, 7–10 May 2019; pp. 385–390. Available online: https://corescholar.libraries.wright.edu/isap_2019/65 (accessed on 18 July 2020).
- Gibson, J.J. Motion Picture Testing and Research; Armed Forces Aviation Psychology Program Research Reports; Report No. 7; Government Printing Office: Washington, DC, USA, 1947.
- Rains, L.; Logg, E.; Walsh, D. Asteroids. Computer Software; Atari: Sunnyvale, CA, USA, 1979. [Google Scholar]
- Foina, A.G.; Sengupta, R.; Lerchi, P.; Liu, Z.; Krainer, C. Drones in smart cities: Overcoming barriers through air traffic control research. In Proceedings of the 2015 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS), Cancun, Mexico, 23–25 November 2015; pp. 351–359. [Google Scholar] [CrossRef]
- d’Orey, P.M.; Hosseini, A.; Azevedo, J.; Diermeyer, F.; Ferreira, M.; Lienkamp, M. Hail-a-Drone: Enabling teleoperated taxi fleets. In Proceedings of the 2016 IEEE Intelligent Vehicles Symposium (IV), Gotenburg, Sweden, 19–22 June 2016; pp. 774–781. [Google Scholar] [CrossRef]
- Nakamura, A.; Ota, J.; Arai, T. Human-supervised multiple mobile robot system. IEEE Trans. Robot. Autom. 2002, 18, 728–743. [Google Scholar] [CrossRef]
- Kimball, K.A. Estimation of intersection of two converging targets as a function of speed and angle of target movement. Percept. Mot. Ski. 1970, 30, 303–310. [Google Scholar] [CrossRef]
- Law, D.; Pellegrino, J.; Mitchell, S.; Fischer, S.; McDonald, T.; Hunt, E. Perceptual and cognitive factors governing performance in comparative arrival-time judgements. J. Exp. Psychol. Hum. Percept. Perform. 1993, 19, 1183–1199. [Google Scholar] [CrossRef] [PubMed]
- Kimball, K.A. Differential velocity and time prediction of motion. Percept. Mot. Ski. 1973, 36, 935–945. [Google Scholar] [CrossRef] [PubMed]
- Neal, A.; Kwantes, P.J. An evidence accumulation model for conflict detection performance in a simulated air traffic control task. Hum. Factors 2009, 51, 164–180. [Google Scholar] [CrossRef]
- Wyndemere. An Evaluation of Air Traffic Control Complexity; Final report, contract number NAS 2-14284; Wyndemere: Boulder, CO, USA, 1996. [Google Scholar]
- Mackintosh, M.-A.; Dunbar, M.; Lozito, S.; Cashion, P.; Mcgann, A.; Dulchinos, V.; Van Gent, R. Self-separation from the air and ground perspective. In Proceedings of the 2nd USA/Europe Air Traffic Management R&D Seminar, Orlando, FL, USA, 1–4 December 1998. [Google Scholar]
- Pompanon, C.; Raufaste, É. Extrapolation of the intersection of two trajectories on a 2D display: Evidence of biases. In Proceedings of the 2007 International Symposium on Aviation Psychology, Dayton, OH, USA, 23–26 April 2007; pp. 530–536. [Google Scholar]
- Marchitto, M.; Benedetto, S.; Baccino, T.; Cañas, J.J. Air traffic control: Ocular metrics reflect cognitive complexity. Int. J. Ind. Ergon. 2016, 54, 120–130. [Google Scholar] [CrossRef]
- Xu, X.; Rantanen, E.A. Conflict detection in air traffic control: A task analysis, a literature review, and a need for further research. In Proceedings of the 12th International Symposium on Aviation Psychology, Dayton, OH, USA, 14–17 April 2003; pp. 1289–1295. [Google Scholar]
- Just, M.A.; Carpenter, P.A. A theory of reading: From eye fixations to comprehension. Psychol. Rev. 1980, 87, 329–354. [Google Scholar] [CrossRef]
- Hunter, A.C.; Parush, A. Using eye movements to uncover conflict detection strategies. Proc. Hum. Factors Ergon. Soc. 2009, 3, 1729–1733. [Google Scholar] [CrossRef]
- Pompanon, C.; Raufaste, É. The intervention trigger model: Computational modelling of air traffic control. Proc. Annu. Meet. Cogn. Sci. Soc. 2009, 31, 2262–2267. [Google Scholar]
- Chen, J.Y.C.; Thropp, J.E. Review of low frame rate effects on human performance. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2007, 37, 1063–1076. [Google Scholar] [CrossRef]
- Van Erp, J.B.F.; Padmos, P. Image parameters for driving with indirect viewing systems. Ergonomics 2003, 46, 1471–1499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, L.C.; Wickens, C.D. Display dimensionality, conflict geometry, and time pressure effects on conflict detection and resolution performance using cockpit displays of traffic information. Int. J. Aviat. Psychol. 2006, 16, 321–342. [Google Scholar] [CrossRef]
- Rantanen, E.M.; Nunes, A. Hierarchical conflict detection in air traffic control. Int. J. Aviat. Psychol. 2005, 15, 339–362. [Google Scholar] [CrossRef]
- Eisma, Y.B.; Cabrall, C.D.D.; De Winter, J.C.F. Visual sampling processes revisited: Replicating and extending Senders (1983) using modern eye-tracking equipment. IEEE Trans. Hum. Mach. Syst. 2018, 48, 526–540. [Google Scholar] [CrossRef] [Green Version]
- Underwood, G.; Crundall, D.; Chapman, P. Driving simulator validation with hazard perception. Transp. Res. Part F Traffic Psychol. Behav. 2011, 14, 435–446. [Google Scholar] [CrossRef]
- Holmqvist, K.; Nyström, M.; Andersson, R.; Dewhurst, R.; Jarodzka, H.; Van de Weijer, J. Eye Tracking: A Comprehensive Guide to Methods and Measures; OUP: Oxford, UK, 2011. [Google Scholar]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G * Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Abdi, H. Signal detection theory (SDT). In Encyclopedia of Measurement and Statistics; Sage: Thousands Oaks, CA, USA, 2007; pp. 886–889. Available online: https://wwwpub.utdallas.edu/~herve/abdi-SDT_2009.pdf (accessed on 18 July 2020).
- Gilden, D.L. On the origins of dynamical awareness. Psychol. Rev. 1991, 98, 554–568. [Google Scholar] [CrossRef]
- Ke, S.R.; Lam, J.; Pai, D.K.; Spering, M. Directional asymmetries in human smooth pursuit eye movements. Investig. Ophthalmol. Vis. Sci. 2013, 54, 4409–4421. [Google Scholar] [CrossRef] [Green Version]
- Wickens, C.D. Visual attention control, scanning, and information sampling. In Applied Attention Theory; Wickens, C.D., McCarley, J.S., Eds.; CRC Press: Boca Raton, FL, USA, 2008; pp. 41–61. [Google Scholar] [CrossRef]
- Fitts, P.M.; Jones, R.E.; Milton, J.L. Eye movements of aircraft pilots during instrument-landing approaches. Aeronaut. Eng. Rev. 1950, 9, 1–6. [Google Scholar]
- Remington, R.W.; Johnston, J.C.; Ruthruff, E.; Gold, M.; Romera, M. Visual search in complex displays: Factors affecting conflict detection by air traffic controllers. Hum. Factors 2000, 42, 349–366. [Google Scholar] [CrossRef]
- Li, W.C.; Kearney, P.; Braithwaite, G.; Lin, J.J.H. How much is too much on monitoring tasks? Visual scan patterns of single air traffic controller performing multiple remote tower operations. Int. J. Ind. Ergon. 2018, 67, 135–144. [Google Scholar] [CrossRef]
- Metzger, U.; Parasuraman, R. Effects of automated conflict cuing and traffic density on air traffic controller performance and visual attention in a datalink environment. Int. J. Aviat. Psychol. 2006, 16, 343–362. [Google Scholar] [CrossRef]
- Willems, B.; Allen, R.C.; Stein, E.S. Air Traffic Control Specialist Visual Scanning II: Task Load, Visual Noise, and Intrusions Into Controlled Airspace; Technical Report; Federal Aviation Administration, William J. Hughes Technical Center: Washington, DC, USA, 1999; Available online: https://apps.dtic.mil/dtic/tr/fulltext/u2/a372988.pdf (accessed on 18 July 2020).
- Finkelman, J.M.; Kirschner, C. An information-processing interpretation of air traffic control stress. Hum. Factors 1980, 22, 561–567. [Google Scholar] [CrossRef]
- Zeier, H.; Brauchli, P.; Joller-Jemelka, H.I. Effects of work demands on immunoglobulin A and cortisol in air traffic controllers. Biol. Psychol. 1996, 42, 413–423. [Google Scholar] [CrossRef]
- Bisseret, A. Application of signal detection theory to decision making in supervisory control: The effect of the operator’s experience. Ergonomics 1981, 24, 81–84. [Google Scholar] [CrossRef]
- Van Meeuwen, L.W.; Jarodzka, H.; Brand-Gruwel, S.; Kirschner, P.A.; De Bock, J.J.P.R.; Van Merriënboer, J.J.G. Identification of effective visual problem solving strategies in a complex visual domain. Learn. Instr. 2014, 32, 10–21. [Google Scholar] [CrossRef]
- Hilburn, B. Cognitive Complexity in Air Traffic Control: A Literature Review. Ph.D. Thesis, Center for Human Performance Research, Sacramento, CA, USA, 2004. Available online: https://www.eurocontrol.int/cognitive-complexity-air-traffic-control-literature-review (accessed on 18 July 2020).
Scenario Number | Conflict Angle (deg) | Dot 1 Heading (deg) | Dot 2 Heading (deg) | Dot 1 Coordinate (x, y in pixels) | Dot 2 Start Coordinate (x, y in pixels) | Conflict | Relative Distance to CP at Start (Dot 1/Dot 2) | Dot 2 Passing Dot 1 | ||
---|---|---|---|---|---|---|---|---|---|---|
1 | 30 | 270 | 300 | 1440 | 480 | 1375 | 723 | Yes | 1 | |
2 | 30 | 225 | 195 | 1299 | 141 | 1081 | 15 | Yes | 1 | |
3 | 30 | 180 | 150 | 960 | 0 | 717 | 65 | Yes | 1 | |
4 | 30 | 270 | 240 | 1440 | 480 | 1431 | 225 | No | 0.89 | Behind |
5 | 30 | 225 | 195 | 1299 | 141 | 1113 | −34 | No | 0.89 | Behind |
6 | 30 | 180 | 150 | 960 | 0 | 705 | 9 | No | 0.89 | Behind |
7 | 100 | 270 | 10 | 1440 | 480 | 874 | 955 | Yes | 1 | |
8 | 100 | 225 | 125 | 1299 | 141 | 563 | 205 | Yes | 1 | |
9 | 100 | 180 | 280 | 960 | 0 | 1435 | 566 | Yes | 1 | |
10 | 100 | 270 | 10 | 1440 | 480 | 840 | 909 | No | 1.08 | In front |
11 | 100 | 225 | 325 | 1299 | 141 | 1178 | 868 | No | 1.08 | In front |
12 | 100 | 180 | 280 | 960 | 0 | 1389 | 600 | No | 1.08 | In front |
13 | 150 | 270 | 120 | 1440 | 480 | 541 | 239 | Yes | 1 | |
14 | 150 | 225 | 75 | 1299 | 141 | 493 | 606 | Yes | 1 | |
15 | 150 | 180 | 330 | 960 | 0 | 1201 | 899 | Yes | 1 | |
16 | 150 | 270 | 60 | 1440 | 480 | 529 | 664 | No | 1.03 | In front |
17 | 150 | 225 | 75 | 1299 | 141 | 468 | 554 | No | 0.97 | Behind |
18 | 150 | 180 | 330 | 960 | 0 | 1144 | 911 | No | 1.03 | In front |
Continuous Stimuli | Discrete Stimuli | |||||||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | t(34) | p | Cohen’s d | Cohen’s dz | |
Fixation rate (Hz) | 1.145 | 0.298 | 0.993 | 0.280 | 6.66 | <0.001 | 0.53 | 1.13 |
Mean fixation duration (ms) | 813 | 235 | 905 | 269 | −4.40 | <0.001 | −0.36 | −0.74 |
Mean saccade amplitude (pixels) | 182 | 31 | 179 | 33 | 1.47 | 0.151 | 0.10 | 0.25 |
Mean fixation amplitude (pixels) | 36 | 12 | 35 | 13 | 0.83 | 0.411 | 0.08 | 0.14 |
Performance score (%) | 70.8 | 5.59 | 68.3 | 5.56 | 2.09 | 0.044 | 0.46 | 0.35 |
Self-reported difficulty (0–10) | 5.30 | 1.28 | 5.43 | 1.24 | –1.31 | 0.198 | −0.11 | −0.22 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eisma, Y.B.; Looijestijn, A.E.; de Winter, J.C.F. Attention Distribution While Detecting Conflicts between Converging Objects: An Eye-Tracking Study. Vision 2020, 4, 34. https://doi.org/10.3390/vision4030034
Eisma YB, Looijestijn AE, de Winter JCF. Attention Distribution While Detecting Conflicts between Converging Objects: An Eye-Tracking Study. Vision. 2020; 4(3):34. https://doi.org/10.3390/vision4030034
Chicago/Turabian StyleEisma, Yke Bauke, Anouk E. Looijestijn, and Joost C. F. de Winter. 2020. "Attention Distribution While Detecting Conflicts between Converging Objects: An Eye-Tracking Study" Vision 4, no. 3: 34. https://doi.org/10.3390/vision4030034
APA StyleEisma, Y. B., Looijestijn, A. E., & de Winter, J. C. F. (2020). Attention Distribution While Detecting Conflicts between Converging Objects: An Eye-Tracking Study. Vision, 4(3), 34. https://doi.org/10.3390/vision4030034