Task-Irrelevant Features in Visual Working Memory Influence Covert Attention: Evidence from a Partial Report Task
Abstract
:1. Introduction
2. Experiment 1
2.1. Materials and Methods
2.1.1. Participants
2.1.2. Apparatus and Stimuli
2.1.3. Procedure
2.1.4. Design
2.1.5. Analysis
2.2. Results
2.3. Discussion
3. Experiment 2
3.1. Materials and Methods
3.1.1. Participants, Materials, and Procedure
3.1.2. Design and Analysis
3.2. Results
3.3. Discussion
4. General Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kiyonaga, A.; Egner, T. Working memory as internal attention: Toward an integrative account of internal and external selection processes. Psychon. Bull. Rev. 2013, 20, 228–242. [Google Scholar] [CrossRef] [PubMed]
- Olivers, C.N.L.; Peters, J.; Houtkamp, R.; Roelfsema, P.R. Different states in visual working memory: When it guides attention and when it does not. Trends Cogn. Sci. 2011, 15, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Theeuwes, J.; Belopolsky, A.; Olivers, C.N.L. Interactions between working memory, attention and eye movements. Acta Psychol. 2009, 132, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Oberauer, K. Design for a working memory. In Advances in Research and Theory; Ross, B.H., Ed.; Elsevier Academic: San Diego, CA, USA, 2009; Volume 51, pp. 45–100. [Google Scholar]
- Desimone, R.; Duncan, J.S. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 1995, 18, 193–222. [Google Scholar] [CrossRef] [PubMed]
- Bundesen, C. A theory of visual attention. Psychol. Rev. 1990, 97, 523–547. [Google Scholar] [CrossRef] [PubMed]
- Soto, D.; Humphreys, G.W.; Heinke, D. Working memory can guide pop-out search. Vis. Res. 2006, 46, 1010–1018. [Google Scholar] [CrossRef] [PubMed]
- Soto, D.; Humphreys, G.W. Automatic selection of irrelevant object features through working memory. Exp. Psychol. 2009, 56, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Soto, D.; Heinke, D.; Humphreys, G.W.; Blanco, M.J. Early, involuntary top-down guidance of attention from working memory. J. Exp. Psychol. Hum. Percept. Perform. 2005, 31, 248–261. [Google Scholar] [CrossRef] [PubMed]
- Downing, P.E. Interactions between visual working memory and selective attention. Psychol. Sci. 2000, 11, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Olivers, C.N.L. What drives memory-driven attentional capture? The effects of memory type, display type, and search type. J. Exp. Psychol. Hum. Percept. Perform. 2009, 35, 1275–1291. [Google Scholar] [CrossRef] [PubMed]
- Pashler, H.; Shiu, L.P. Do images involuntarily trigger search? A test of Pillsbury’s hypothesis. Psychon. Bull. Rev. 1999, 6, 445–448. [Google Scholar] [CrossRef] [PubMed]
- Soto, D.; Humphreys, G.W. Stressing the mind: The effect of cognitive load and articulatory suppression on attentional guidance from working memory. Percept. Psychophys. 2008, 70, 924–934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Downing, P.E.; Dodds, C.M. Competition in visual working memory for control of search. Vis. Cogn. 2004, 11, 689–703. [Google Scholar] [CrossRef]
- Woodman, G.F.; Luck, S.J. Do the contents of visual working memory automatically influence attentional selection during visual search? J. Exp. Psychol. Hum. Percept. Perform. 2007, 33, 363–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sala, J.B.; Courtney, S.M. Flexible working memory representation of the relationship between an object and its location as revealed by interactions with attention. Atten. Percept. Psychophys. 2009, 71, 1525–1533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olivers, C.N.L.; Meijer, F.; Theeuwes, J. Feature-based memory-driven attentional capture: Visual working memory content affects visual attention. J. Exp. Psychol. Hum. Percept. Perform. 2006, 32, 1243–1265. [Google Scholar] [CrossRef] [PubMed]
- Kerzel, D.; Witzel, C. The allocation of resources in visual working memory and multiple attentional templates. J. Exp. Psychol. Hum. Percept. Perform. 2019, 45, 645–658. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, P.S.; Ooi, M.M.; Egner, T.; Woldorff, M.G. Neural dynamics of cognitive control over working memory capture of attention. J. Cogn. Neurosci. 2019, 31, 1079–1090. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Cho, Y.S. Memory-based attentional capture by colour and shape contents in visual working memory. Vis. Cogn. 2016, 24, 51–62. [Google Scholar] [CrossRef]
- Woodman, G.F.; Carlisle, N.B.; Reinhart, R.M.G. Where do we store the memory representations that guide attention? J. Vis. 2013, 13, 1. [Google Scholar] [CrossRef] [PubMed]
- Luck, S.J.; Vogel, E.K. The capacity of visual working memory for features and conjunctions. Nature 1997, 390, 279–281. [Google Scholar] [CrossRef] [PubMed]
- Luck, S.J.; Vogel, E.K. Visual working memory capacity: From psychophysics and neurobiology to individual differences. Trends Cogn. Sci. 2013, 17, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Kahneman, D.; Treisman, A.; Gibbs, B.J. The reviewing of object files: Object-specific integration of information. Cogn. Psychol. 1992, 24, 175–219. [Google Scholar] [CrossRef]
- Schneider, W.X. Selective visual processing across competition episodes: A theory of task-driven visual attention and working memory. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Tang, N.; Wu, F.; Shui, R.; Gao, Z. Robust object-based encoding in visual working memory. J. Vis. 2013, 13, 1. [Google Scholar] [PubMed]
- Marshall, L.; Bays, P.M. Obligatory encoding of task-irrelevant features depletes working memory resources. J. Vis. 2013, 13, 21. [Google Scholar] [CrossRef] [PubMed]
- O’Craven, K.M.; Downing, P.E.; Kanwisher, N. fMRI evidence for objects as the units of attentional selection. Nature 1999, 401, 584–587. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Yu, S.; Zhu, C.; Shui, R.; Weng, X.; Li, P.; Shen, M. Object-based encoding in visual working memory: Evidence from memory-driven attentional capture. Sci. Rep. 2016, 6, 22822. [Google Scholar] [CrossRef]
- Hollingworth, A.; Hwang, S. The relationship between visual working memory and attention: Retention of precise colour information in the absence of effects on perceptual selection. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2013, 368. [Google Scholar] [CrossRef]
- Hollingworth, A.; Beck, V.M. Memory-based attention capture when multiple items are maintained in visual working memory. J. Exp. Psychol. Hum. Percept. Perform. 2016, 42, 911–917. [Google Scholar] [CrossRef]
- Van Moorselaar, D.; Theeuwes, J.; Olivers, C.N.L. In competition for the attentional template: Can multiple items within visual working memory guide attention? J. Exp. Psychol. Hum. Percept. Perform. 2014, 40, 1450–1464. [Google Scholar] [CrossRef] [PubMed]
- Scholz, A.; Klichowicz, A.; Krems, J.F. Covert shifts of attention can account for the functional role of “eye movements to nothing”. Mem. Cogn. 2018, 46, 230–243. [Google Scholar] [CrossRef] [PubMed]
- Smyth, M.M.; Scholey, K.A. Interference in immediate spatial memory. Mem. Cogn. 1994, 22, 1–13. [Google Scholar] [CrossRef]
- Smyth, M.M. Interference with rehearsal in spatial working memory in the absence of eye movements. Q. J. Exp. Psychol. 1996, 49A, 940–949. [Google Scholar] [CrossRef] [PubMed]
- Foerster, R.M.; Schneider, W.X. Involuntary top-down control by search-irrelevant features: Visual working memory biases attention in an object-based manner. Cognition 2018, 172, 37–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deubel, H.; Schneider, W.X. Saccade target selection and object recognition: Evidence for a common attentional mechanism. Vis. Res. 1996, 36, 1827–1837. [Google Scholar] [CrossRef] [Green Version]
- Kyllingsbæk, S.; Bundesen, C. Parallel processing in a multifeature whole-report paradigm. J. Exp. Psychol. Hum. Percept. Perform. 2007, 33, 64–82. [Google Scholar] [CrossRef] [PubMed]
- Carbone, E.; Schneider, W.X. The control of stimulus-driven saccades is subject not to central, but to visual attention limitations. Atten. Percept. Psychophys. 2010, 72, 2168–2175. [Google Scholar] [CrossRef] [PubMed]
- Wischnewski, M.; Belardinelli, A.; Schneider, W.X.; Steil, J.J. Where to look next? Combining static and dynamic proto-objects in a TVA-based model of visual attention. Cogn. Comput. 2010, 2, 326–343. [Google Scholar] [CrossRef]
- Bundesen, C.; Habekost, T. Theory of Visual Attention (TVA). In The Oxford Handbook of Attention; Kastner, S., Nobre, K., Eds.; Oxford University Press: Oxford, UK, 2014; pp. 1095–1121. ISBN 978-0-19-967511-1. [Google Scholar]
- Duncan, J.; Humphreys, G.W. Visual search and stimulus similarity. Psychol. Rev. 1989, 96, 433–458. [Google Scholar] [CrossRef]
- Jonikaitis, D.; Deubel, H. Independent allocation of attention to eye and hand targets in coordinated eye-hand movements. Psychol. Sci. 2011, 22, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Prinzmetal, W.; McCool, C.; Park, S. Attention: Reaction time and accuracy reveal different mechanisms. J. Exp. Psychol. Gen. 2005, 134, 73–92. [Google Scholar] [CrossRef] [PubMed]
- Kerzel, D.; Zarian, L.; Souto, D. Involuntary cueing effects on accuracy measures: Stimulus and task dependence. J. Vis. 2009, 9, 16. [Google Scholar] [CrossRef] [PubMed]
- Hanning, N.M.; Deubel, H. Independent effects of eye and hand movements on visual working memory. Front. Syst. Neurosci. 2018, 12, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Hanning, N.M.; Aagten-Murphy, D.; Deubel, H. Independent selection of eye and hand targets suggests effector-specific attentional mechanisms. Sci. Rep. 2018, 8, 9434. [Google Scholar] [CrossRef] [PubMed]
- Schneider, W.X.; Deubel, H. Selection-for-perception and selection-for-spatial-motor-action are coupled by visual attention: A review of recent findings and new evidence from stimulus-driven saccade. In Attention and Performance XIX; Hommel, B., Prinz, W., Eds.; Oxford University Press: Oxford, UK, 2002; p. 20. [Google Scholar]
- Konkle, T.; Brady, T.F.; Alvarez, G.A.; Oliva, A. Conceptual distinctiveness supports detailed visual long-term memory for real-world objects. J. Exp. Psychol. Gen. 2010, 139, 558–578. [Google Scholar] [CrossRef] [PubMed]
- Han, S.W.; Kim, M.-S. Do the contents of working memory capture attention? Yes, but cognitive control matters. J. Exp. Psychol. Hum. Percept. Perform. 2009, 35, 1292–1302. [Google Scholar] [CrossRef] [PubMed]
- Arita, J.T.; Carlisle, N.B.; Woodman, G.F. Templates for rejection: Configuring attention to ignore task-irrelevant features. J. Exp. Psychol. Hum. Percept. Perform. 2012, 38, 580–584. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, J.M. Guided Search 4.0. In Integrated Models of Cognitive Systems; Gray, W.D., Ed.; Oxford University Press: Oxford, UK, 2007; pp. 99–119. ISBN 9780199847457. [Google Scholar]
- Itti, L.; Koch, C. Computational modelling of visual attention. Natature Rev. Neurosci. 2001, 2, 194–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fecteau, J.H.; Munoz, D.P. Salience, relevance, and firing: A priority map for target selection. Trends Cogn. Sci. 2006, 10, 382–390. [Google Scholar] [CrossRef]
- Pashler, H. Target-distractor discriminability in visual search. Percept. Psychophys. 1987, 41, 285–292. [Google Scholar] [CrossRef] [Green Version]
- Foerster, R.M.; Schneider, W.X. The role of target-distractor similarity for oculomotor capture by search-irrelevant features in visual working memory. Atten. Percept. Psychophys 2019. submitted. [Google Scholar]
- Foerster, R.M.; Schneider, W.X. Involuntarily attentional biases by visual working memory: Target-distractor similarity of search-irrelevant features matters. Perception 2019, 48, 95. [Google Scholar]
- Kiss, M.; Grubert, A.; Eimer, M. Top-down task sets for combined features: Behavioral and electrophysiological evidence for two stages in attentional object selection. Atten. Percept. Psychophys. 2013, 75, 216–228. [Google Scholar] [CrossRef] [PubMed]
- Eimer, M.; Grubert, A. The gradual emergence of spatially selective target processing in visual search: From feature-specific to object-based attentional control. J. Exp. Psychol. Hum. Percept. Perform. 2014, 40, 1819–1831. [Google Scholar] [CrossRef] [PubMed]
- Berggren, N.; Eimer, M. Object-based target templates guide attention during visual search. J. Exp. Psychol. Hum. Percept. Perform. 2018, 44, 1368–1382. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Soto, D.; Humphreys, G.W. Electrophysiological evidence for attentional guidance by the contents of working memory. Eur. J. Neurosci. 2009, 30, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Soto, D.; Humphreys, G.W.; Rotshtein, P. Dissociating the neural mechanisms of memory-based guidance of visual selection. Proc. Natl. Acad. Sci. USA 2007, 104, 17186–17191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soto, D.; Greene, C.M.; Kiyonaga, A.; Rosenthal, C.R.; Egner, T. A parieto-medial temporal pathway for the strategic control over working memory biases in human visual attention. J. Neurosci. 2012, 32, 17563–17571. [Google Scholar] [CrossRef]
- Shibuya, H.; Bundesen, C. Visual selection from multielement displays: Measuring and modeling effects of exposure duration. J. Exp. Psychol. Hum. Percept. Perform. 1988, 14, 591–600. [Google Scholar] [CrossRef]
- Feldmann-Wüstefeld, T.; Vogel, E.K. Neural evidence for the contribution of active suppression during working memory filtering. Cereb. Cortex 2019, 29, 529–543. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zhang, J.X.; Huang, S.; Kong, L.; Wang, S. Effects of load on the guidance of visual attention from working memory. Vis. Res. 2011, 51, 2356–2361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Color-Match Condition | Target Letter Report | Distractor Letter Report |
---|---|---|
target | 73 (17) | 18 (14) |
distractor | 59 (19) | 29 (17) |
both | 67 (18) | 23 (15) |
no | 65 (17) | 24 (14) |
Color-Match Condition | Target Letter Report | Distractor Letter Report |
---|---|---|
distractor | 57 (18) | 29 (15) |
no | 61 (18) | 26 (14) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foerster, R.M.; Schneider, W.X. Task-Irrelevant Features in Visual Working Memory Influence Covert Attention: Evidence from a Partial Report Task. Vision 2019, 3, 42. https://doi.org/10.3390/vision3030042
Foerster RM, Schneider WX. Task-Irrelevant Features in Visual Working Memory Influence Covert Attention: Evidence from a Partial Report Task. Vision. 2019; 3(3):42. https://doi.org/10.3390/vision3030042
Chicago/Turabian StyleFoerster, Rebecca M., and Werner X. Schneider. 2019. "Task-Irrelevant Features in Visual Working Memory Influence Covert Attention: Evidence from a Partial Report Task" Vision 3, no. 3: 42. https://doi.org/10.3390/vision3030042