Factors Influencing Pseudo-Accommodation—The Difference between Subjectively Reported Range of Clear Focus and Objectively Measured Accommodation Range
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wold, J.E.; Hu, A.; Chen, S.; Glasser, A. Subjective and objective measurement of human accommodative amplitude. J. Cataract Refract. Surg. 2003, 29, 1878–1888. [Google Scholar] [CrossRef]
- Ostrin, L.A.; Glasser, A. Accommodation measurements in a prepresbyopic and presbyopic population. J. Cataract Refract. Surg. 2004, 30, 1435–1444. [Google Scholar] [CrossRef] [PubMed]
- Glasser, A. Accommodation: Mechanism and measurement. Ophthal. Clin. North Am. 2006, 19, 1–12. [Google Scholar]
- López-Gil, N.; Martin, J.; Liu, T.; Bradley, A.; Díaz-Muñoz, D.; Thibos, L.N. Retinal image quality during accommodation. Ophthal. Physl. Opt. 2013, 33, 497–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcos, S.; Moreno, E.; Navarro, R. The depth-of-field of the human eye from objective and subjective measurements. Vis. Res. 1999, 39, 2039–2049. [Google Scholar] [CrossRef]
- Wang, B.; Ciuffreda, K.J. Depth-of-focus of the human eye: Theory and clinical implications. Surv. Ophthal. 2006, 51, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Wolffsohn, J.S.; Hunt, O.A.; Naroo, S.A.; Gilmartin, B.; Shah, S.; Cunliffe, I.A.; Benson, M.T.; Mantry, S. Objective accommodative amplitude and dynamics with the 1CU accomodative intraocular lens. Investig. Ophthalmol. Vis. Sci. 2006, 47, 1230–1235. [Google Scholar] [CrossRef]
- Vasudevan, B.; Ciuffreda, K.J.; Wang, B. Subjective and objective depth-of-focus. J. Mod. Opt. 2007, 54, 1307–1316. [Google Scholar] [CrossRef]
- Win-Hall, D.M.; Glasser, A. Objective accommodation measurements in pseudophakic subjects using an autorefractor and an aberrometer. J. Cataract Refract. Surg. 2009, 35, 282–290. [Google Scholar] [CrossRef] [Green Version]
- Wolffsohn, J.S.; Davies, L.N.; Gupta, N.; Naroo, S.A.; Gibson, G.A.; Mihashi, T.; Shah, S. Mechanism of Action of the Tetraflex Accommodative Intraocular Lens. J. Refract. Surg. 2010, 26, 858–862. [Google Scholar] [CrossRef] [Green Version]
- Cleary, G.; Spalton, D.J.; Marshall, J. Pilot study of new focus-shift accommodating intraocular lens. J. Cataract Refract. Surg. 2010, 36, 762–770. [Google Scholar] [CrossRef] [PubMed]
- Nawa, Y.; Ueda, T.; Nakatsuka, M.; Tsuji, H.; Marutani, H.; Hara, Y.; Uozato, H. Accommodation obtained per 1.0 mm forward movement of a posterior chamber intraocular lens. J. Cataract Refract. Surg. 2003, 29, 2069–2072. [Google Scholar] [CrossRef]
- Lesiewska-Junk, H.; Kałużny, J. Intraocular lens movement and accommodation in eyes of young patients. J. Cataract Refract. Surg. 2000, 26, 562–565. [Google Scholar] [CrossRef]
- Schor, C.M.; Alexander, J.; Stevenson, S. Negative feedback-control model of proximal convergence and accommodation. Ophthal. Physl. Opt. 1992, 12, 307–318. [Google Scholar] [CrossRef]
- Richter, H.O.; Lee, J.T.; Pardo, J.V. Neuroanatomical correlates of the near response: Voluntary modulation of accommodation/vergence in the human visual system. Eur. J. Neurosci. 2000, 12, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Legge, G.E.; Mullen, K.T.; Woo, G.C.; Campbell, F.W. Tolerance to visual defocus. J. Opt. Soc. Am. A 1987, 4, 851–863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kline, D.W.; Buck, K.; Sell, Y.; Bolan, T.L.; Dewar, R.E. Older observers’ tolerance of optical blur: Age differences in the identification of defocused text signs. Hum. Factors 1999, 41, 356–364. [Google Scholar] [CrossRef] [PubMed]
- Jung, G.H.; Kline, D.W. Resolution of blur in the older eye: Neural compensation in addition to optics? J. Vis. 2010, 10, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Campbell, F.W. The depth of field of the human eye. Opt. Acta 1957, 4, 157–164. [Google Scholar] [CrossRef]
- Hess, R.F.; Pointer, J.S.; Watt, R.J. How are spatial filters used in fovea and parafovea? J. Opt. Soc. Am. A 1989, 6, 329–339. [Google Scholar] [CrossRef]
- Ciuffreda, K.J.; Wang, B.; Vasudevan, B. Conceptual model of human blur perception. Vis. Res. 2007, 47, 1245–1252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Ciuffreda, K.J. Depth-of-focus of the human eye in the near retinal periphery. Vis. Res. 2004, 44, 1115–1125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thibos, L.N.; Bradley, A.; Liu, T.; López-Gil, N. Spherical aberration and the sign of defocus. Optom. Vis. Sci. 2013, 90, 1284–1291. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Williams, D.R. Aberrations and retinal image quality of the normal human eye. J. Opt. Soc. Am. 1997, 14, 2873–2883. [Google Scholar] [CrossRef]
- He, J.C.; Burns, S.A.; Marcos, S. Monochromatic aberrations in the accommodated human eye. Vis. Res. 2000, 40, 41–48. [Google Scholar] [CrossRef]
- McLellan, J.; Marcos, S.; Prieto, P.; Burns, S.A. Imperfect optics may be the eye’s defence against chromatic blur. Nature 2002, 417, 174–176. [Google Scholar] [CrossRef] [PubMed]
- Charman, W.N. Wavefront technology:Past, present and future. Contact Lens Anterior Eye 2005, 28, 75–92. [Google Scholar] [CrossRef]
- Artal, P.; Berrio, E.; Guirao, A.; Piers, P. Contribution of the cornea and internal surfaces to the change of ocular aberrations with age. J. Opt. Soc. Am. 2002, 19, 137–143. [Google Scholar] [CrossRef]
- Holladay, J.T.; Piers, P.; Koranyi, G.; van der Mooren, M.; Norrby, S. A New Intraocular Lens Design to Reduce Spherical Aberration of Pseudophakic Eyes. J. Refract. Surg. 2002, 18, 683–691. [Google Scholar]
- Artal, P.; Chen, L.; Fernandez, E.J.; Singer, B.; Manzanera, S.; Williams, D.R. Neural compensation for the eye’s optical aberrations. J.Vis. 2004, 4, 281–287. [Google Scholar] [CrossRef]
- Li, Y.-J.; Choi, J.; Kim, H.; YU, S.-Y.; Joo, C.-K. Changes in ocular wavefront aberrations and retinal image quality with objective accommodation. J. Cataract Refract. Surg. 2011, 37, 835–841. [Google Scholar] [CrossRef] [PubMed]
- Faria-Ribeiro, M.; Belsue, R.N.; López-Gil, N.; González-Méijome, J.M. Morphology, topography, and optics of the orthokeratology cornea. J. Biomed. Opt. 2016, 21, 075011. [Google Scholar] [CrossRef] [PubMed]
- Kruger, P.B.; Mathews, S.; Aggarwala, K.R.; Sanchez, N. Chromatic aberration and ocular focus: Fincham revisited. Vis. Res. 1993, 33, 1397–1411. [Google Scholar] [CrossRef]
- Ciuffreda, K.J.; Wang, B.; Vasudevan, B. Depth-of-focus: Control system implications. Comput. Biol. Med. 2007, 37, 919–923. [Google Scholar] [CrossRef] [PubMed]
- Cufflin, M.P.; Mankowska, A.; Mallen, E.A. Effect of blur adaptation on blur sensitivity and discrimination in emmetropes and myopes. Investig. Ophthalmol. Vis. Sci. 2007, 48, 2932–2939. [Google Scholar] [CrossRef] [PubMed]
- Atchison, D.A.; Charman, W.N.; Woods, R.L. Subjective depth-of-focus of the eye. Optom. Vis. Sci. 1997, 74, 511–520. [Google Scholar] [CrossRef] [PubMed]
- Atchison, D.A.; Capper, E.J.; McCabe, K.L. Critical subjective measurement of amplitude of accommodation. Optom. Vis. Sci. 1994, 71, 699–706. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Ciuffreda, K.J.; Vasudevan, B. Effect of blur adaptation on blur sensitivity in myopes. Vis. Res. 2006, 46, 3634–3641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, D.G.; Powers, M.K.; Banks, M.S. Depth of focus, eye size and visual acuity. Vis. Res. 1980, 20, 827–835. [Google Scholar] [CrossRef] [Green Version]
- Nakazawa, M.; Ohtsuki, K. Apparent accommodation in pseudophakic eyes after implantation of posterior chamber intraocular lenses: Optical analysis. Investig. Ophthalmol. Vis. Sci. 1984, 25, 1458–1460. [Google Scholar] [CrossRef]
- Ronchi, L.; Molesini, G. Depth of focus in peripheral vision. Ophthal. Res. 1975, 7, 152–157. [Google Scholar] [CrossRef]
- Macsai, M.S.; Padnick-Silver, L.; Fontes, B.M. Visual outcomes after accommodating intraocular lens implantation. J. Cataract Refract. Surg. 2006, 32, 628–633. [Google Scholar] [CrossRef] [PubMed]
- Yi, F.; Iskander, D.R.; Collins, M. Depth of focus and visual acuity with primary and secondary spherical aberration. Vis. Res. 2011, 51, 1648–1658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Augusteyn, R.C.; Mohamed, A.; Nankivil, D.; Veerendranath, P.; Arrieta, E.; Taneja, M.; Manns, F.; Ho, A.; Parel, J.-M. Age-dependence of the optomechanical responses of ex vivo human lenses from India and the USA, and the force required to produce these in a lens stretcher: The similarity to in vivo disaccommodation. Vis. Res. 2011, 51, 1667–1678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolffsohn, J.S.; Sheppard, A.L.; Vakani, S.; Davies, L.N. Accommodative amplitude required for sustained near work. Ophthal. Physl. Opt. 2011, 31, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, A.L.; Bashir, A.; Wolffsohn, J.S.; Davies, L.M. Accommodating intraocular lenses: A review of design concepts, usage and assessment methods. Clin. Exp. Optom. 2010, 6, 441–452. [Google Scholar] [CrossRef] [PubMed]
- Takakura, A.; Iyer, P.; Adams, J.R.; Pepin, S.M. Functional assessment of accommodating intraocular lenses versus monofocal intraocular lenses in cataract surgery: Metaanalysis. J. Cataract Refract. Surg. 2010, 36, 380–388. [Google Scholar] [CrossRef]
- Chen, A.-H.; O’Leary, A.P.D.J. Validity and repeatability of the modified push-up method for measuring the amplitude of accommodation. Clin. Exp. Optom. 1998, 81, 63–71. [Google Scholar] [CrossRef]
- Gupta, N.; Naroo, S.A.; Wolffsohn, J.S. Is randomisation necessary for measuring defocus curves in pre-presbyopes? Contact Lens Anterior Eye 2007, 30, 119–124. [Google Scholar] [CrossRef]
- Gupta, N.; Wolffsohn, J.S.; Naroo, S.A. Optimizing measurement of subjective amplitude of accommodation with defocus curves. J. Cataract Refract. Surg. 2008, 34, 1329–1338. [Google Scholar] [CrossRef] [Green Version]
- Pieh, S.; Kellner, C.; Hanselmayer, G.; Lackner, B.; Schmidinger, G.; Walkow, T.; Sticker, M.; Weghaupt, H.; Fercher, A.F.; Skorpik, C. Comparison of visual acuities at different distances and defocus curves. J. Cataract Refract. Surg. 2002, 28, 1964–1967. [Google Scholar] [CrossRef]
- Webster, M.A.; Georgeson, M.A.; Webster, S.M. Neural adjustments to image blur. Nat. Neurosci. 2002, 5, 839–840. [Google Scholar] [CrossRef] [PubMed]
- Sawides, L.; de Gracia, P.; Dorronsoro, C.; Webster, M.A.; Marcos, S. Vision Is Adapted to the Natural Level of Blur Present in the Retinal Image. PloS ONE 2011, 6, e27031. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, U.K.; Sheppard, A.L.; Shah, S.; Dua, H.S.; Mihashi, T.; Yamaguchi, T.; Wolffsohn, J.S. Design and validity of a miniaturized open-field aberrometer. J. Cataract Refract. Surg. 2013, 39, 36–40. [Google Scholar] [CrossRef]
- Jakel, F.; Wichmann, F.A. Spatial four-alternative forced-choice method is the preferred psychophysical method for naive observers. J. Vis. 2006, 6, 1307–1322. [Google Scholar] [CrossRef] [PubMed]
- Hammett, S.T.; Georgeson, M.A.; Gorea, A. Motion blur and motion sharpening: Temporal smear and local contrast non-linearity. Vis. Res. 1998, 38, 2099–2108. [Google Scholar] [CrossRef]
- Iskander, D.R. Computational aspects of the visual Strehl ratio. Optom. Vis. Sci. 2006, 83, 57–59. [Google Scholar] [CrossRef]
- Luo, X.; Kymes, S.M.; Gordon, M.O.; Bassnett, S. Lens fluorescence and accommodative amplitude in pre-presbyopic and presbyopic subjects. Exp. Eye Res. 2007, 84, 1013–1017. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.; Himebaugh, N.L.; Kollbaum, P.S.; Thibos, L.N.; Bradley, A. Validation of a clinical Shack-Hartmann aberrometer. Optom. Vis. Sci. 2003, 80, 587–595. [Google Scholar] [CrossRef]
- Yi, F.; Iskander, D.R.; Collins, M.J. Estimation of the depth of focus from wavefront measurements. J. Vis. 2010, 10, 1–9. [Google Scholar] [CrossRef] [Green Version]
- López-Alcón, D.; Marín-Franch, I.; Fernández-Sánchez, V.; López-Gil, N. Optical factors influencing the amplitude of accommodation. Vis. Res. 2017, 141, 16–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suryakumar, R.; Meyers, J.P.; Irving, E.L.; Bobier, W.R. Vergence accommodation and monocular closed loop blur accommodation have similar dynamic characteristics. Vis. Res. 2007, 47, 327–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maiello, G.; Walker, L.; Bex, P.J.; Vera-Diaz, F.A. Blur perception throughout the visual field in myopia and emmetropia. J. Vis. 2017, 17, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Harb, E.; Thorn, F.; Troilo, D. Characteristics of accommodative behavior during sustained reading in emmetropes and myopes. Vis. Res. 2006, 46, 2582–2592. [Google Scholar] [CrossRef] [PubMed]
- Garner, W.H.; Garner, M.H. Protein Disulfide Levels and Lens Elasticity Modulation: Applications for Presbyopia. Investig. Ophthalmol. Vis. Sci. 2016, 57, 2851–2863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Range of Clear Vision | Refractive Error | Tolerance to Blur | Ocular Aberrations | Age | Pupil Size | DoF Modelling | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Objective | Difference | Higher order | Average spherical | 50% (max accom) | 80% (max accom) | |||||||
Range of Clear Vision | Subjective | Pearson Correlation | 0.910 ** | 0.237 | 0.126 | 0.021 | −0.009 | 0.003 | 0.743 ** | 0.305 * | −0.311 * | −0.319 * |
Sig. (2-tailed) | 0.000 | 0.101 | 0.389 | 0.905 | 0.949 | 0.984 | 0.000 | 0.035 | 0.031 | 0.027 | ||
Objective | Pearson Correlation | −0.187 | 0.095 | −0.015 | 0.011 | 0.047 | 0.612 ** | 0.292 * | −0.299 * | −0.300 * | ||
Sig. (2-tailed) | 0.199 | 0.517 | 0.932 | 0.941 | 0.752 | 0.000 | 0.044 | 0.039 | 0.038 | |||
Difference | Pearson Correlation | 0.076 | 0.086 | −0.048 | −0.100 | 0.325 * | 0.032 | −0.030 | −0.044 | |||
Sig. (2-tailed) | 0.603 | 0.625 | 0.745 | 0.497 | 0.023 | 0.828 | 0.841 | 0.765 | ||||
Refractive Error | Pearson Correlation | −0.202 | 0.086 | 0.069 | 0.268 | 0.023 | 0.018 | 0.029 | ||||
Sig. (2-tailed) | 0.244 | 0.555 | 0.643 | 0.063 | 0.879 | 0.904 | 0.843 | |||||
Tolerance to blur | Pearson Correlation | 0.008 | −0.186 | −0.136 | 0.203 | −0.260 | −0.265 | |||||
Sig. (2-tailed) | 0.964 | 0.293 | 0.437 | 0.249 | 0.137 | 0.130 | ||||||
Ocular Aberrations | Higher order | Pearson Correlation | 0.460 ** | −0.042 | 0.117 | −0.026 | −0.045 | |||||
Sig. (2-tailed) | 0.001 | 0.774 | 0.429 | 0.863 | 0.760 | |||||||
Average spherical | Pearson Correlation | −0.053 | −0.021 | −0.015 | 0.001 | |||||||
Sig. (2-tailed) | 0.719 | 0.889 | 0.919 | 0.993 | ||||||||
Age | Pearson Correlation | −0.042 | 0.000 | 0.002 | ||||||||
Sig. (2-tailed) | 0.776 | 0.998 | 0.987 | |||||||||
Pupil size | Pearson Correlation | −0.885 ** | −0.898 ** | |||||||||
Sig. (2-tailed) | 0.000 | 0.000 | ||||||||||
DoF modelling | 50% (max accom) | Pearson Correlation | 0.995 ** | |||||||||
Sig. (2-tailed) | 0.000 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhallu, S.K.; Sheppard, A.L.; Drew, T.; Mihashi, T.; Zapata-Díaz, J.F.; Radhakrishnan, H.; Iskander, D.R.; Wolffsohn, J.S. Factors Influencing Pseudo-Accommodation—The Difference between Subjectively Reported Range of Clear Focus and Objectively Measured Accommodation Range. Vision 2019, 3, 34. https://doi.org/10.3390/vision3030034
Dhallu SK, Sheppard AL, Drew T, Mihashi T, Zapata-Díaz JF, Radhakrishnan H, Iskander DR, Wolffsohn JS. Factors Influencing Pseudo-Accommodation—The Difference between Subjectively Reported Range of Clear Focus and Objectively Measured Accommodation Range. Vision. 2019; 3(3):34. https://doi.org/10.3390/vision3030034
Chicago/Turabian StyleDhallu, Sandeep K., Amy L. Sheppard, Tom Drew, Toshifumi Mihashi, Juan F. Zapata-Díaz, Hema Radhakrishnan, D. Robert Iskander, and James S. Wolffsohn. 2019. "Factors Influencing Pseudo-Accommodation—The Difference between Subjectively Reported Range of Clear Focus and Objectively Measured Accommodation Range" Vision 3, no. 3: 34. https://doi.org/10.3390/vision3030034