Longitudinal Associations Between Physical Activity and Sedentary Time and Cardiorespiratory and Muscular Fitness in Preschoolers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Assessment of Physical Activity
2.3. Assessment of Physical Fitness
2.4. Statistical Analysis
3. Results
3.1. Characteristics of the Study Population at Baseline
3.2. Associations of VPA, MVPA, TPA, and ST in Preschool with CRF in School
3.3. Associations of VPA, MVPA, TPA, and ST in Preschool with Muscular Fitness in School
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ortega, F.B.; Ruiz, J.R.; Castillo, M.J.; Sjöström, M. Physical fitness in childhood and adolescence: A powerful marker of health. Int. J. Obes. 2008, 32, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Lang, J.J.; Belanger, K.; Poitras, V.; Janssen, I.; Tomkinson, G.R.; Tremblay, M.S. Systematic review of the relationship between 20 m shuttle run performance and health indicators among children and youth. J. Sci. Med. Sport 2018, 21, 383–397. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, J.R.; Castro-Piñero, J.; Artero, E.G.; Ortega, F.B.; Sjöström, M.; Suni, J.; Castillo, M.J. Predictive validity of health-related fitness in youth: A systematic review. Br. J. Sports Med. 2009, 43, 909–923. [Google Scholar] [CrossRef] [PubMed]
- Manzano-Carrasco, S.; Garcia-Unanue, J.; Haapala, E.A.; Felipe, J.L.; Gallardo, L.; Lopez-Fernandez, J. Relationships of BMI, muscle-to-fat ratio, and handgrip strength-to-BMI ratio to physical fitness in Spanish children and adolescents. Eur. J. Pediatr. 2023, 182, 2345–2357. [Google Scholar] [CrossRef]
- Jung, H.W.; Lee, J.; Kim, J. Handgrip strength is associated with metabolic syndrome and insulin resistance in children and adolescents: Analysis of Korea National Health and Nutrition Examination Survey 2014–2018. J. Obes. Metab. Syndr. 2022, 31, 334–344. [Google Scholar] [CrossRef]
- Castro-Piñero, J.; Perez-Bey, A.; Cuenca-Garcia, M.; Cabanas-Sanchez, V.; Gómez-Martínez, S.; Veiga, O.L.; Marcos, A.; Ruiz, J.R. UP&DOWN Study Group. Muscle fitness cut points for early assessment of cardiovascular risk in children and adolescents. J. Pediatr. 2019, 206, 134–141.e3. [Google Scholar] [CrossRef]
- Ramírez-Vélez, R.; Tordecilla-Sanders, A.; Correa-Bautista, J.E.; Peterson, M.D.; Garcia-Hermoso, A. Handgrip strength and ideal cardiovascular health among Colombian children and adolescents. J. Pediatr. 2016, 179, 82–89.e1. [Google Scholar] [CrossRef]
- Gómez-Bruton, A.; Marín-Puyalto, J.; Muñiz-Pardos, B.; Lozano-Berges, G.; Cadenas-Sanchez, C.; Matute-Llorente, A.; Gómez-Cabello, A.; Moreno, L.A.; Gonzalez-Agüero, A.; Casajus, J.A.; et al. Association between physical fitness and bone strength and structure in 3- to 5-year-old children. Sports Health A Multidiscip. Approach 2020, 12, 431–440. [Google Scholar] [CrossRef]
- Rodriguez-Ayllon, M.; Cadenas-Sanchez, C.; Esteban-Cornejo, I.; Migueles, J.H.; Mora-Gonzalez, J.; Henriksson, P.; Martín-Matillas, M.; Mena-Molina, A.; Molina-García, P.; Estévez-López, F.; et al. Physical fitness and psychological health in overweight/obese children: A cross-sectional study from the ActiveBrains project. J. Sci. Med. Sport 2018, 21, 179–184. [Google Scholar] [CrossRef]
- Gil-Cosano, J.J.; Gracia-Marco, L.; Ubago-Guisado, E.; Migueles, J.H.; Mora-Gonzalez, J.; Escolano-Margarit, M.V.; Gómez-Vida, J.; Maldonado, J.; Ortega, F.B. Muscular fitness mediates the association between 25-hydroxyvitamin D and areal bone mineral density in children with overweight/obesity. Nutrients 2019, 11, 2760. [Google Scholar] [CrossRef]
- Gil-Cosano, J.J.; Gracia-Marco, L.; Ubago-Guisado, E.; Labayen, I.; Adelantado-Renau, M.; Cadenas-Sanchez, C.; Mora-Gonzalez, J.; Plaza-Florido, A.; Aguilera, C.M.; Gómez-Vida, J.; et al. Inflammatory markers and bone mass in children with overweight/obesity: The role of muscular fitness. Pediatr. Res. 2020, 87, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Kao, S.C.; Westfall, D.R.; Parks, A.C.; Pontifex, M.B.; Hillman, C.H. Muscular and aerobic fitness, working memory, and academic achievement in children. Med. Sci. Sports Exerc. 2017, 49, 500–508. [Google Scholar] [CrossRef] [PubMed]
- Bürgi, F.; Meyer, U.; Granacher, U.; Schindler, C.; Marques-Vidal, P.; Kriemler, S.; Puder, J.J. Relationship of physical activity with motor skills, aerobic fitness and body fat in preschool children: A cross-sectional and longitudinal study (Ballabeina). Int. J. Obes. 2011, 35, 937–944. [Google Scholar] [CrossRef] [PubMed]
- Leppänen, M.H.; Nyström, C.D.; Henriksson, P.; Pomeroy, J.; Ruiz, J.R.; Ortega, F.B.; Cadenas-Sánchez, C.; Löf, M. Physical activity intensity, sedentary behavior, body composition and physical fitness in 4-year-old children: Results from the ministop trial. Int. J. Obes. 2016, 40, 1126–1133. [Google Scholar] [CrossRef]
- Riso, E.-M.; Toplaan, L.; Viira, P.; Vaiksaar, S.; Jürimäe, J. Physical fitness and physical activity of 6–7-year-old children according to weight status and sports participation. PLoS ONE 2019, 14, e0218901. [Google Scholar] [CrossRef]
- Leppänen, M.H.; Henriksson, P.; Nyström, D.C.; Henriksson, H.; Ortega, F.B.; Pomeroy, J.; Ruiz, J.R.; Cadenas-Sánchez, C.; Löf, M. Longitudinal physical activity, body composition, and physical fitness in preschoolers. Med. Sci. Sports Exerc. 2017, 49, 2078–2085. [Google Scholar] [CrossRef]
- Pagels, P.; Boldemann, C.; Raustorp, A. Comparison of pedometer and accelerometer measures of physical activity during preschool time on 3- to 5-year-old children. Acta Paediatr. 2011, 100, 116–120. [Google Scholar] [CrossRef]
- Barbosa, S.C.; Coledam, D.H.; Stabelini Neto, A.; Elias, R.G.; Oliveira, A.R. School environment, sedentary behavior and physical activity in preschool children. Rev. Paul. Pediatr. 2016, 34, 301–308. [Google Scholar] [CrossRef]
- Tanaka, C.; Hikihara, Y.; Ohkawara, K.; Tanaka, S. Locomotive and non-locomotive activity as determined by triaxial accelerometry and physical fitness in Japanese preschool children. Pediatr. Exerc. Sci. 2012, 24, 420–434. [Google Scholar] [CrossRef]
- Mrozkowiak, M.; Kaiser, A. Physical fitness in preschool children. J. Educ. Health Sport 2021, 11, 132–142. [Google Scholar] [CrossRef]
- Román, P.L.; del Castillo, R.M.; Zurita, M.L.; Sánchez, J.S.; García-Pinillos, F.; López, D.M. Physical fitness in preschool children: Association with sex, age and weight status. Child. Care Health Dev. 2017, 43, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Reisberg, K.; Riso, E.M.; Jürimäe, J. Associations between physical activity, body composition, and physical fitness in the transition from preschool to school. Scand. J. Med. Sci. Sports 2020, 30, 2251–2263. [Google Scholar] [CrossRef]
- Fossdal, T.S.; Kippe, K.; Handegård, B.H.; Lagestad, P. “Oh oobe doo, I wanna be like you” associations between physical activity of preschool staff and preschool children. PLoS ONE 2018, 13, e0208001. [Google Scholar] [CrossRef] [PubMed]
- Migueles, J.H.; Cadenas-Sánchez, C.; Ekelund, U.; Delisle Nyström, C.; Mora-Gonzalez, J.; Löf, M.; Labayen, I.; Ruiz, J.R.; Ortega, F.B. Accelerometer data collection and processing criteria to assess physical activity and other outcomes: A systematic review and practical considerations. Sports Med. 2017, 47, 1821–1845. [Google Scholar] [CrossRef] [PubMed]
- Esliger, D.W.; Copeland, J.L.; Barnes, J.D.; Tremblay, M.S. Standardizing and optimizing the use of accelerometer data for free-living physical activity monitoring. J. Phys. Act. Health 2005, 2, 366–383. [Google Scholar] [CrossRef]
- Steele, R.M.; van Sluijs, E.M.; Cassidy, A.; Griffin, S.J.; Ekelund, U. Targeting sedentary time or moderate-and vigorous-intensity activity: Independent relations with adiposity in a population-based sample of 10-y-old British children. Am. J. Clin. Nutr. 2009, 90, 1185–1192. [Google Scholar] [CrossRef]
- Riso, E.-M.; Mägi, K.; Vaiksaar, S.; Toplaan, L.; Jürimäe, J. Conceptual skills and verbal abilities were better in children aged six to seven years who were from more highly educated families and attended sports clubs. Acta Paediatr. 2019, 108, 1624–1631. [Google Scholar] [CrossRef]
- Migueles, H.; Cadenas-Sánchez, C.; Esteban-Cornejo, I.; Torres-Lopez, L.V.; Aadland, E.; Chastin, S.F.M.; Erickson, K.I.; Catena, A.; Ortega, F.B. Associations of objectively-assessed physical activity and sedentary time with hippocampal gray matter volume in children with overweight/obesity. J. Clin. Med. 2020, 9, 1080. [Google Scholar] [CrossRef]
- Martinez-Gomez, D.; Ruiz, J.R.; Ortega, F.B.; Casajús, J.A.; Veiga, O.L.; Widhalm, K.; Manios, Y.; Béghin, L.; González-Gross, M.; Kafatos, A.; et al. Recommended levels and intensities of physical activity to avoid low-cardiorespiratory fitness in European adolescents: The HELENA study. Am. J. Hum. Biol. 2010, 22, 750–756. [Google Scholar] [CrossRef]
- Kettner, S.; Kobel, S.; Fischbach, N.; Drenowatz, C.; Dreyhaupt, J.; Wirt, T.; Koch, B.; Steinacker, J.M. Objectively determined physical activity levels of primary school children in south-west Germany. BMC Public Health 2013, 13, 895. [Google Scholar] [CrossRef]
- Lee, E.Y.; Hesketh, K.D.; Rhodes, R.E.; Rinaldi, C.M.; Spence, J.C.; Carson, V. Role of parental and environmental characteristics in toddlers’ physical activity and screen time: Bayesian analysis of structural equation models. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 17. [Google Scholar] [CrossRef] [PubMed]
- Léger, L.A.; Mercier, D.; Gadoury, C.; Lambert, J. The multistage 20 metre shuttle run test for aerobic fitness. J. Sports Sci. 1988, 6, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Welk, G.J.; Meredith, M.D. Fitnessgram®/Activitygram® Reference Guide; The Cooper Institute: Dallas, TX, USA, 2008. [Google Scholar]
- European Council. Eurofit. In Handbook for the Eurofit Tests of Physical Fitness, 1st ed.; Council of Europe: Rome, Italy, 1988. [Google Scholar]
- Henriksson, P.; Leppänen, M.H.; Henriksson, H.; Nyström, C.D.; Cadenas-Sánchez, C.; Ek, A.; Ruiz, J.R.; Ortega, F.B.; Löf, M. Physical fitness in relation to later body composition in pre-school children. J. Sci. Med. Sport 2019, 22, 574–579. [Google Scholar] [CrossRef] [PubMed]
- Kolimechkov, S.; Castro-Piñero, J.; Petrov, L.; Alexandrova, A. The effect of elbow position on the handgrip strength test in children: Validity and reliability of TKK 5101 and DynX dynamometers. Pedagog. Phys. Cult. Sports 2020, 24, 240–247. [Google Scholar] [CrossRef]
- Migueles, J.H.; Nyström, C.D.; Dumuid, D.; Leppänen, M.H.; Henriksson, P.; Löf, M. Longitudinal associations of movement behaviours with body composition and physical fitness from 4 to 9 years of age: Structural equation and mediation analysis with compositional data. Int. J. Behav. Nutr. Phys. Act. 2023, 20, 11. [Google Scholar] [CrossRef]
- Haapala, E.A.; Lintu, N.; Väistö, J.; Tompuri, T.; Soininen, S.; Viitasalo, A.; Eloranta, A.M.; Venäläinen, T.; Sääkslahti, A.; Laitinen, T.; et al. Longitudinal associations of fitness, motor competence, and adiposity with cognition. Med. Sci. Sports Exerc. 2019, 51, 465–471. [Google Scholar] [CrossRef]
- Booth, J.N.; Tomporowski, P.D.; Boyle, J.M.; Ness, A.R.; Joinson, C.; Leary, S.D.; Reilly, J.J. Associations between executive attention and objectively measured physical activity in adolescence: Findings from ALSPAC, a UK cohort. Ment. Health Phys. Act. 2013, 6, 212–219. [Google Scholar] [CrossRef]
- España-Romero, V.; Mitchell, J.A.; Dowda, M.; O’Neill, J.R.; Pate, R.R. Objectively measured sedentary time, physical activity and markers of body fat in preschool children. Pediatr. Exerc. Sci. 2013, 25, 154–163. [Google Scholar] [CrossRef]
- Moore, L.L.; Nguyen, U.S.; Rothman, K.J.; Cupples, L.A.; Ellison, R.C. Preschool physical activity level and change in body fatness in young children. The Framingham Children’s Study. Am. J. Epidemiol. 1995, 142, 982–988. [Google Scholar] [CrossRef]
- Syväoja, H.J.; Tammelin, T.H.; Ahonen, T.; Kankaanpää, A.; Kantomaa, M.T. The associations of objectively measured physical activity and sedentary time with cognitive functions in school-aged children. PLoS ONE 2014, 9, e103559. [Google Scholar] [CrossRef]
- Aggio, D.; Smith, L.; Fisher, A.; Hamer, M. Context-specific associations of physical activity and sedentary behavior with cognition in children. Am. J. Epidemiol. 2016, 183, 1075–1082. [Google Scholar] [CrossRef] [PubMed]
- Wickel, E.E. Sedentary time, physical activity, and executive function in a longitudinal study of youth. J. Phys. Act. Health 2017, 14, 222–228. [Google Scholar] [CrossRef]
- Potter, M.; Spence, J.C.; Boulé, N.; Stearns, J.A.; Carson, V. Behavior tracking and 3-year longitudinal associations between physical activity, screen time, and fitness among young children. Pediatr. Exerc. Sci. 2018, 30, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Ek, A.; Sandborg, J.; Nyström, C.D.; Lindqvist, A.K.; Rutberg, S.; Löf, M. Physical activity and mobile phone apps in the preschool age: Perceptions of teachers and parents. JMIR Mhealth Uhealth 2019, 7, e12512. [Google Scholar] [CrossRef] [PubMed]
- Mačak, D.; Popović, B.; Babić, N.; Cadenas-Sanchez, C.; Madić, D.M.; Trajković, N. The effects of daily physical activity intervention on physical fitness in preschool children. J. Sports Sci. 2022, 40, 146–155. [Google Scholar] [CrossRef]
- García-Hermoso, A.; Izquierdo, M.; Ramírez-Vélez, R. Tracking of physical fitness levels from childhood and adolescence to adulthood: A systematic review and meta-analysis. Transl. Pediatr. 2022, 11, 474–486. [Google Scholar] [CrossRef]
- Rasmussen, F.; Lambrechtsen, J.; Siersted, H.C.; Hansen, H.S.; Hansen, N.C. Low physical fitness in childhood is associated with the development of asthma in young adulthood: The Odense schoolchild study. Eur. Respir. J. 2000, 16, 866–870. [Google Scholar] [CrossRef]
- Hansen, B.H.; Børtnes, I.; Hildebrand, M.; Holme, I.; Kolle, E.; Anderssen, S.A. Validity of the ActiGraph GT1M during walking and cycling. J. Sports Sci. 2014, 32, 510–516. [Google Scholar] [CrossRef]
- Harrison, F.; Atkin, A.J.; van Sluijs, E.M.F.; Jones, A.P. Seasonality in swimming and cycling: Exploring a limitation of accelerometer based studies. Prev. Med. Rep. 2017, 7, 16–19. [Google Scholar] [CrossRef]
- Drollette, E.S.; Scudder, M.R.; Raine, L.B.; Moore, R.D.; Pontifex, M.B.; Erickson, K.I.; Hillman, C.H. The sexual dimorphic association of cardiorespiratory fitness to working memory in children. Dev. Sci. 2016, 19, 90–108. [Google Scholar] [CrossRef]
- Haapala, E.A.; Lintu, N.; Eloranta, A.M.; Venäläinen, T.; Poikkeus, A.M.; Ahonen, T.; Lindi, V.; Lakka, T.A. Mediating effects of motor performance, cardiorespiratory fitness, physical activity, and sedentary behaviour on the associations of adiposity and other cardiometabolic risk factors with academic achievement in children. J. Sports Sci. 2018, 36, 2296–2303. [Google Scholar] [CrossRef] [PubMed]
- Oberer, N.; Gashaj, V.; Roebers, C.M. Executive functions, visual-motor coordination, physical fitness and academic achievement: Longitudinal relations in typically developing children. Hum. Mov. Sci. 2018, 58, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Flores, P.; Coelho, E.; Mourão-Carvalhal, I.; Forte, P. Relationships between math skills, motor skills, physical activity, and obesity in typically developing preschool children. Behav. Sci. 2023, 13, 1000. [Google Scholar] [CrossRef] [PubMed]
Variable | Boys | Girls | p |
---|---|---|---|
Age (years) 1 | 7 (1) | 6 (1) | 0.240 |
Height (cm) | 127 (5.4) | 124 (6.4) | <0.001 |
Weight (kg) 1 | 26 (6) | 23.5 (6) | 0.010 |
Physical activity | |||
VPA (min/day) 1 | 18 (12.7) | 13.5 (12.3) | 0.042 |
MVPA (min/day) 1 | 62.9 (29.4) | 57.6 (29.2) | 0.003 |
TPA (min/day) | 382 (59.2) | 359 (41.5) | 0.001 |
ST (min/day) 1 | 382 (71.9) | 400 (77.4) | 0.237 |
Physical fitness test | |||
20 m shuttle run (laps) 1 | 17.5 (18) | 17 (11) | 0.383 |
Handgrip strength (kg) 1 | 11.5 (3) | 9.9 (2.6) | 0.007 |
Standing long jump (cm) | 122 (18.7) | 116 (15.3) | 0.061 |
Muscular fitness z-score | −0.08 (0.6) | −0.09 (0.5) | 0.797 |
Physical Fitness in School | ||||||||
---|---|---|---|---|---|---|---|---|
CRF | Muscular Fitness | |||||||
Boys (n = 41) | Girls (n = 36) | Boys (n = 41) | Girls (n = 36) | |||||
Variables in Preschool | β | p | β | p | β | p | β | p |
Unadjusted | ||||||||
VPA | 0.250 | 0.084 | 0.325 | 0.038 | 0.345 | 0.015 | 0.295 | 0.061 |
Adjusted | ||||||||
VPA | 0.130 | 0.367 | 0.139 | 0.449 | −0.044 | 0.731 | −0.011 | 0.947 |
Age | −0.136 | 0.349 | −0.159 | 0.390 | −0.209 | 0.104 | 0.140 | 0.357 |
Physical fitness * | 0.560 | <0.001 | 0.240 | 0.237 | 0.618 | <0.001 | 0.642 | 0.001 |
Education | 0.044 | 0.757 | 0.202 | 0.293 | 0.194 | 0.132 | 0.096 | 0.528 |
AWT | 0.110 | 0.472 | 0.024 | 0.899 | 0.124 | 0.374 | −0.091 | 0.569 |
Unadjusted | ||||||||
MVPA | 0.186 | 0.200 | 0.307 | 0.051 | 0.346 | 0.015 | 0.230 | 0.148 |
Adjusted | ||||||||
MVPA | 0.075 | 0.608 | 0.175 | 0.336 | −0.078 | 0.547 | −0.071 | 0.664 |
Age | −0.146 | 0.324 | −0.164 | 0.371 | −0.217 | 0.093 | 0.135 | 0.369 |
Physical fitness * | 0.570 | <0.001 | 0.245 | 0.214 | 0.628 | <0.001 | 0.677 | 0.001 |
Education | 0.057 | 0.692 | 0.197 | 0.301 | 0.198 | 0.121 | 0.088 | 0.566 |
AWT | 0.119 | 0.443 | 0.045 | 0.810 | 0.132 | 0.346 | −0.120 | 0.473 |
Unadjusted | ||||||||
TPA | 0.130 | 0.373 | 0.169 | 0.290 | 0.336 | 0.018 | 0.252 | 0.112 |
Adjusted | ||||||||
TPA | 0.139 | 0.352 | 0.134 | 0.451 | −0.159 | 0.246 | −0.063 | 0.694 |
Age | −0.131 | 0.372 | −0.171 | 0.353 | −0.242 | 0.064 | 0.133 | 0.376 |
Physical fitness * | 0.586 | <0.001 | 0.292 | 0.136 | 0.649 | <0.001 | 0.674 | 0.001 |
Education | 0.060 | 0.670 | 0.156 | 0.436 | 0.191 | 0.124 | 0.099 | 0.512 |
AWT | 0.073 | 0.655 | −0.018 | 0.921 | 0.173 | 0.231 | −0.092 | 0.539 |
Unadjusted | ||||||||
ST | 0.111 | 0.448 | −0.171 | 0.286 | 0.126 | 0.390 | −0.038 | 0.812 |
Adjusted | ||||||||
ST | −0.217 | 0.352 | −0.378 | 0.451 | 0.246 | 0.246 | 0.182 | 0.694 |
Age | −0.131 | 0.372 | −0.171 | 0.353 | −0.242 | 0.064 | 0.133 | 0.376 |
Physical fitness * | 0.586 | <0.001 | 0.292 | 0.136 | 0.649 | <0.001 | 0.674 | 0.001 |
Education | 0.060 | 0.670 | 0.156 | 0.436 | 0.191 | 0.124 | 0.099 | 0.512 |
AWT | 0.299 | 0.190 | 0.341 | 0.490 | −0.082 | 0.707 | −0.264 | 0.578 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reisberg, K.; Riso, E.-M.; Animägi, L.; Jürimäe, J. Longitudinal Associations Between Physical Activity and Sedentary Time and Cardiorespiratory and Muscular Fitness in Preschoolers. J. Funct. Morphol. Kinesiol. 2024, 9, 199. https://doi.org/10.3390/jfmk9040199
Reisberg K, Riso E-M, Animägi L, Jürimäe J. Longitudinal Associations Between Physical Activity and Sedentary Time and Cardiorespiratory and Muscular Fitness in Preschoolers. Journal of Functional Morphology and Kinesiology. 2024; 9(4):199. https://doi.org/10.3390/jfmk9040199
Chicago/Turabian StyleReisberg, Kirkke, Eva-Maria Riso, Liina Animägi, and Jaak Jürimäe. 2024. "Longitudinal Associations Between Physical Activity and Sedentary Time and Cardiorespiratory and Muscular Fitness in Preschoolers" Journal of Functional Morphology and Kinesiology 9, no. 4: 199. https://doi.org/10.3390/jfmk9040199
APA StyleReisberg, K., Riso, E. -M., Animägi, L., & Jürimäe, J. (2024). Longitudinal Associations Between Physical Activity and Sedentary Time and Cardiorespiratory and Muscular Fitness in Preschoolers. Journal of Functional Morphology and Kinesiology, 9(4), 199. https://doi.org/10.3390/jfmk9040199