Acute Effect of Fixed vs. Self-Selected Rest Interval Between Sets on Physiological and Performance-Related Responses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Design
2.3. Procedures
2.3.1. Physiological Variables
2.3.2. Mechanical Variables
2.3.3. Perceptual Variables
2.4. Trainig Sessions
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
6. Practical Applications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maestroni, L.; Read, P.; Bishop, C.; Papadopoulos, K.; Suchomel, T.J.; Comfort, P.; Turner, A. The Benefits of Strength Training on Musculoskeletal System Health: Practical Applications for Interdisciplinary Care. Sports Med. 2020, 50, 1431–1450. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, T.J.; Nimphius, S.; Bellon, C.R.; Stone, M.H. The Importance of Muscular Strength: Training Considerations. Sports Med. 2018, 48, 765–785. [Google Scholar] [CrossRef] [PubMed]
- Cunanan, A.J.; DeWeese, B.H.; Wagle, J.P.; Carroll, K.M.; Sausaman, R.; Hornsby, W.G.; Haff, G.G.; Triplett, N.T.; Pierce, K.C.; Stone, M.H. The General Adaptation Syndrome: A Foundation for the Concept of Periodization. Sports Med. 2018, 48, 787–797. [Google Scholar] [CrossRef] [PubMed]
- Stone, M.H.; Hornsby, W.G.; Haff, G.G.; Fry, A.C.; Suarez, D.G.; Liu, J.; Gonzalez-Rave, J.M.; Pierce, K.C. Periodization and Block Periodization in Sports: Emphasis on Strength-Power Training—A Provocative and Challenging Narrative. J. Strength Cond. Res. 2021, 35, 2351–2371. [Google Scholar] [CrossRef]
- Kraemer, W.J.; Adams, K.; Cafarelli, E.; Dudley, G.A.; Dooly, C.; Feigenbaum, M.S.; Fleck, S.J.; Franklin, B.; Fry, A.C.; Hoffman, J.R.; et al. American College of Sports Medicine Position Stand. Progression Models in Resistance Training for Healthy Adults. Med. Sci. Sports Exerc. 2002, 34, 364–380. [Google Scholar] [CrossRef]
- De Salles, B.F.; Simão, R.; Miranda, F.; Da Silva Novaes, J.; Lemos, A.; Willardson, J.M. Rest Interval between Sets in Strength Training. Sports Med. 2009, 39, 765–777. [Google Scholar] [CrossRef] [PubMed]
- Allen, D.G.; Lamb, G.D.; Westerblad, H. Skeletal Muscle Fatigue: Cellular Mechanisms. Physiol. Rev. 2008, 88, 287–332. [Google Scholar] [CrossRef]
- Sahlin, K. Muscle Energetics During Explosive Activities and Potential Effects of Nutrition and Training. Sports Med. 2014, 44, 167–173. [Google Scholar] [CrossRef]
- Zatsiorsky, V.M.; Kraemer, W.J.; Fry, A.C. Science and Practice of Strength Training; Human Kinetics: Champaign, IL, USA, 2020. [Google Scholar]
- Schoenfeld, B.J. The Mechanisms of Muscle Hypertrophy and Their Application to Resistance Training. J. Strength Cond. Res. 2010, 24, 2857–2872. [Google Scholar] [CrossRef]
- Deschenes, M.R. Adaptations of the Neuromuscular Junction to Exercise Training. Curr. Opin. Physiol. 2019, 10, 10–16. [Google Scholar] [CrossRef]
- Schoenfeld, B.J. Potential Mechanisms for a Role of Metabolic Stress in Hypertrophic Adaptations to Resistance Training. Sports Med. 2013, 43, 179–194. [Google Scholar] [CrossRef] [PubMed]
- Willardson, J.M.; Burkett, L.N. The Effect of Different Rest Intervals between Sets on Volume Components and Strength Gains. J. Strength Cond. Res. 2008, 22, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J.; Schoenfeld, B.J.; Skrepnik, M.; Davies, T.B.; Mikulic, P. Effects of Rest Interval Duration in Resistance Training on Measures of Muscular Strength: A Systematic Review. Sports Med. 2018, 48, 137–151. [Google Scholar] [CrossRef]
- Simão, R.; Polito, M.; de Salles, B.F.; Marinho, D.A.; Garrido, N.D.; Junior, E.R.T.S.; Willardson, J.M. Acute and Long-Term Comparison of Fixed vs. Self-Selected Rest Interval between Sets on Upper-Body Strength. J. Strength Cond. Res. 2022, 36, 540–544. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Feng, S.; Peng, R.; Li, H. The Role of Velocity-Based Training (VBT) in Enhancing Athletic Performance in Trained Individuals: A Meta-Analysis of Controlled Trials. Int. J. Environ. Res. Public Health 2022, 19, 9252. [Google Scholar] [CrossRef]
- Sánchez-Medina, L.; Pallarés, J.; Pérez, C.; Morán-Navarro, R.; González-Badillo, J. Estimation of Relative Load From Bar Velocity in the Full Back Squat Exercise. Sports Med. Int. Open 2017, 1, E80–E88. [Google Scholar] [CrossRef]
- Włodarczyk, M.; Adamus, P.; Zieliński, J.; Kantanista, A. Effects of Velocity-Based Training on Strength and Power in Elite Athletes—A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 5257. [Google Scholar] [CrossRef]
- Sanchez-Medina, L.; González-Badillo, J.J. Velocity Loss as an Indicator of Neuromuscular Fatigue during Resistance Training. Med. Sci. Sports Exerc. 2011, 43, 1725–1734. [Google Scholar] [CrossRef]
- González-Hernández, J.M.; Jimenez-Reyes, P.; Janicijevic, D.; Tufano, J.J.; Marquez, G.; Garcia-Ramos, A. Effect of Different Interset Rest Intervals on Mean Velocity during the Squat and Bench Press Exercises. Sports Biomech. 2023, 22, 834–847. [Google Scholar] [CrossRef]
- Gómez-Carmona, C.D.; Bastida-Castillo, A.; Rojas-Valverde, D.; de la Cruz Sánchez, E.; García-Rubio, J.; Ibáñez, S.J.; Pino-Ortega, J. Lower-Limb Dynamics of Muscle Oxygen Saturation during the Back-Squat Exercise: Effects of Training Load and Effort Level. J. Strength Cond. Res. 2020, 34, 1227–1236. [Google Scholar] [CrossRef]
- Miranda-Fuentes, C.; Chirosa-Ríos, L.J.; Guisado-Requena, I.M.; Delgado-Floody, P.; Jerez-Mayorga, D. Changes in Muscle Oxygen Saturation Measured Using Wireless Near-Infrared Spectroscopy in Resistance Training: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 4293. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Han, I. Tomography-based Multi-distance Near-infrared Spectroscopy for Measuring Muscle Oxygen Saturation in Real-time. Electron. Lett. 2019, 55, 731–733. [Google Scholar] [CrossRef]
- Lin, T.-Y.; Chen, J.-J.J.; Lin, L.L.; Yang, W.-T.O.; Chen, M.-Y.; Tsai, Y.-C. Effects of Multicomponent Exercise Training on Muscle Oxygenation in Young and Older Adults. J. Exerc. Sci. Fit. 2023, 21, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Junior, E.R.T.S.; de Salles, B.F.; Dias, I.; Ribeiro, A.S.; Simão, R.; Willardson, J.M. Classification and Determination Model of Resistance Training Status. Strength Cond. J. 2021, 43, 77–86. [Google Scholar] [CrossRef]
- Martínez-Cava, A.; Hernández-Belmonte, A.; Courel-Ibáñez, J.; Morán-Navarro, R.; González-Badillo, J.J.; Pallarés, J.G. Reliability of Technologies to Measure the Barbell Velocity: Implications for Monitoring Resistance Training. PLoS ONE 2020, 15, e0232465. [Google Scholar]
- Banyard, H.G.; Nosaka, K.; Haff, G.G. Reliability and Validity of the Load–Velocity Relationship to Predict the 1RM Back Squat. J. Strength Cond. Res. 2017, 31, 1897–1904. [Google Scholar] [CrossRef]
- Robertson, R.J.; Goss, F.L.; Rutkowski, J.; Lenz, B.; Dixon, C.; Timmer, J.; Frazee, K.; Dube, J.; Andreacci, J. Concurrent Validation of the OMNI Perceived Exertion Scale for Resistance Exercise. Med. Sci. Sports Exerc. 2003, 35, 333–341. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: Oxfordshire, UK, 2013. [Google Scholar]
- Ibbott, P.; Ball, N.; Welvaert, M.; Thompson, K.G. Variability and Impact of Self-Selected Interset Rest Periods During Experienced Strength Training. Percept. Mot. Skills 2019, 126, 546–558. [Google Scholar] [CrossRef]
- Pareja-Blanco, F.; Alcazar, J.; Sánchez-Valdepeñas, J.; Cornejo-Daza, P.J.; Piqueras-Sanchiz, F.; Mora-Vela, R.; Sánchez-Moreno, M.; Bachero-Mena, B.; Ortega-Becerra, M.; Alegre, L.M. Velocity Loss as a Critical Variable Determining the Adaptations to Strength Training. Med. Sci. Sports Exerc. 2020, 52, 1752–1762. [Google Scholar] [CrossRef]
- Galiano, C.; Pareja-Blanco, F.; de Mora, J.H.; de Villarreal, E.S. Low-Velocity Loss Induces Similar Strength Gains to Moderate-Velocity Loss during Resistance Training. J. Strength Cond. Res. 2022, 36, 340–345. [Google Scholar] [CrossRef]
- Davis, P.R.; Yakel, J.P.; Anderson, D.J. Muscle Oxygen Demands of the Vastus Lateralis in Back and Front Squats. Int. J. Exerc. Sci. 2020, 13, 734. [Google Scholar] [PubMed]
- Timón, R.; Ponce-González, J.G.; González-Montesinos, J.L.; Olcina, G.; Pérez-Pérez, A.; Castro-Piñero, J. Inertial Flywheel Resistance Training and Muscle Oxygen Saturation. J. Sports Med. Phys. Fit. 2018, 58, 1618–1624. [Google Scholar] [CrossRef] [PubMed]
- Perrey, S.; Ferrari, M. Muscle Oximetry in Sports Science: A Systematic Review. Sports Med. 2018, 48, 597–616. [Google Scholar] [CrossRef] [PubMed]
- Grassi, B.; Rossiter, H.B.; Zoladz, J.A. Skeletal Muscle Fatigue and Decreased Efficiency: Two Sides of the Same Coin? Exerc. Sport Sci. Rev. 2015, 43, 75–83. [Google Scholar] [CrossRef]
- De Salles, B.F.; Polito, M.D.; Goessler, K.F.; Mannarino, P.; Matta, T.T.; Simão, R. Effects of Fixed vs. Self-Suggested Rest between Sets in Upper and Lower Body Exercises Performance. Eur. J. Sport Sci. 2016, 16, 927–931. [Google Scholar] [CrossRef]
- Schoenfeld, B.J.; Pope, Z.K.; Benik, F.M.; Hester, G.M.; Sellers, J.; Nooner, J.L.; Schnaiter, J.A.; Bond-Williams, K.E.; Carter, A.S.; Ross, C.L.; et al. Longer Interset Rest Periods Enhance Muscle Strength and Hypertrophy in Resistance-Trained Men. J. Strength Cond. Res. 2016, 30, 1805–1812. [Google Scholar] [CrossRef]
- Goessler, K.F.; Polito, M.D. Effect of Fixed and Self-Suggested Rest Intervals between Sets of Resistance Exercise on Post-Exercise Cardiovascular Behavior. Rev. Bras. Cineantropometria Desempenho Hum. 2013, 15, 467–475. [Google Scholar]
Parameters | SR (Mean ± Sd) | FR (Mean ± Sd) |
---|---|---|
Age (years) | 26.71 ± 3.94 | 25.67 ± 4.22 |
Height (m) | 1.75 ± 5.12 | 1.75 ± 6.62 |
Weight (kg) | 81.84 ± 5.77 | 76.20 ± 7.16 |
Body mass Index | 26.77 ± 1.30 | 24.92 ± 2.49 |
Lean body mass (kg) | 65.56 ± 5.12 | 63.23 ± 3.18 |
Fat mass (%) | 15.69 ± 4.16 | 13.08 ± 5.63 |
Bone Mass (kg) | 3.40 ± 0.24 | 3.36 ± 0.28 |
Set 1 | p | d | Set 2 | p | d | Set 3 | p | d | Set 4 | p | d | Set 5 | p | d | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MPV (m/s) | SR | 0.49 ± 0.11 | 0.64 | −0.32 | 0.49 ± 0.13 | 0.34 | −0.38 | 0.51 ± 0.12 | 0.37 | −0.21 | 0.52 ± 0.16 | 0.28 | 0.29 | 0.52 ± 0.14 | 0.26 | 0.40 |
FR | 0.52 ± 0.08 | 0.53 ± 0.08 | 0.53 ± 0.07 | 0.48 ± 0.12 | 0.47 ± 0.11 |
Set 1 | p | d | Set 2 | p | d | Set 3 | p | d | Set 4 | p | d | Set 5 | p | d | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Velocity loss (%) | SR | −0.83 ± 11.90 | 0.42 | 0.46 | −16.03 ± 24.59 | 0.64 | −0.29 | −11.49 ± 14.25 | 0.81 | −0.14 | −21.37 ± 21.85 | 0.50 | −0.38 | −19.08 ± 10.38 | 0.56 | 0.04 |
FR | −6.57 ± 13.21 | −10.83 ± 11.24 | −9.76 ± 10.45 | −12.97 ± 22.33 | −19.57 ± 11.40 |
Set 1 | p | d | Set 2 | p | d | Set 3 | p | d | Set 4 | p | d | Set 5 | p | d | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SmO2 (%) | SR | 64.87 ± 13.67 | 0.44 | 0.35 | 66.30 ± 13.77 | 0.40 | 0.35 | 66.12 ± 16.62 | 0.79 | 0.16 | 68.57 ± 13.82 | 0.72 | 0.37 | 62.20 ± 13.53 | 0.32 | 0.77 |
FR | 61.64 ± 4.81 | 62.98 ± 6.21 | 64.31 ± 5.75 | 64.88 ± 5.89 | 54.74 ± 5.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alonso-Aubin, D.A.; Hernández-Lougedo, J.; Cavero-Haro, A.; Martínez-Guardado, I. Acute Effect of Fixed vs. Self-Selected Rest Interval Between Sets on Physiological and Performance-Related Responses. J. Funct. Morphol. Kinesiol. 2024, 9, 200. https://doi.org/10.3390/jfmk9040200
Alonso-Aubin DA, Hernández-Lougedo J, Cavero-Haro A, Martínez-Guardado I. Acute Effect of Fixed vs. Self-Selected Rest Interval Between Sets on Physiological and Performance-Related Responses. Journal of Functional Morphology and Kinesiology. 2024; 9(4):200. https://doi.org/10.3390/jfmk9040200
Chicago/Turabian StyleAlonso-Aubin, Diego A., Juan Hernández-Lougedo, Alberto Cavero-Haro, and Ismael Martínez-Guardado. 2024. "Acute Effect of Fixed vs. Self-Selected Rest Interval Between Sets on Physiological and Performance-Related Responses" Journal of Functional Morphology and Kinesiology 9, no. 4: 200. https://doi.org/10.3390/jfmk9040200
APA StyleAlonso-Aubin, D. A., Hernández-Lougedo, J., Cavero-Haro, A., & Martínez-Guardado, I. (2024). Acute Effect of Fixed vs. Self-Selected Rest Interval Between Sets on Physiological and Performance-Related Responses. Journal of Functional Morphology and Kinesiology, 9(4), 200. https://doi.org/10.3390/jfmk9040200