Effects of Neuromuscular Training on Postural Balance and Physical Performance in Older Women: Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Randomization and Blinding
2.4. Outcomes
2.4.1. Postural Balance
2.4.2. Physical Performance
2.4.3. Muscle Strength
2.5. Interventions
2.5.1. Multicomponent Training Program
2.5.2. Neuromuscular Training Program
2.5.3. Control Group (CG)
2.6. Statistical Analysis
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Word Health Organiation. World Report on Ageing and Health. 2020. Available online: https://www.who.int/publications/i/item/9789241565042 (accessed on 26 August 2024).
- National Statistics Institute. Statistical Compendium, Chile. 2017. Available online: https://www.ine.gob.cl/estadisticas/sociales/demografia-y-vitales/demografia-y-migracion (accessed on 26 August 2024).
- Concha-Cisternas, Y.; Vargas-Vitoria, R.; Celis-Morales, C. Cambios morfofisiológicos y riesgo de caídas en el adulto mayor: Una revisión. Salud Uninorte 2020, 36, 450–470. [Google Scholar] [CrossRef]
- Petermann-Rocha, F.; Pell, J.P.; Celis-Morales, C.; Ho, F.K. Frailty, sarcopenia, cachexia and malnutrition as comorbid conditions and their associations with mortality: A prospective study from UK Biobank. J. Public Health 2022, 44, e172–e180. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed]
- Riemann, B.L.; Lephart, S.M. The sensorimotor system, part I: The physiologic basis of functional joint stability. J. Athl. Train. 2002, 37, 71–79. [Google Scholar]
- Ferlinc, A.; Fabiani, E.; Velnar, T.; Gradisnik, L. The importance and role of proprioception in the elderly: A short review. Mater. Socio Medica 2019, 31, 219–221. [Google Scholar] [CrossRef]
- Le Mouel, C.; Tisserand, R.; Robert, T.; Brette, R. Postural adjustments in anticipation of predictable perturbations allow elderly fallers to achieve a balance recovery performance equivalent to elderly non-fallers. Gait Posture 2019, 71, 131–137. [Google Scholar] [CrossRef]
- Anson, E.; Bigelow, R.T.; Swenor, B.; Deshpande, N.; Studenski, S.; Jeka, J.J.; Agrawal, Y. Loss of peripheral sensory function explains much of the increase in postural sway in healthy older adults. Front. Aging Neurosci. 2017, 9, 202. [Google Scholar] [CrossRef]
- Horak, F.B. Postural orientation and equilibrium: What do we need to know about neural control of balance to prevent falls? Age Ageing 2006, 35 (Suppl. S2), ii7–ii11. [Google Scholar] [CrossRef] [PubMed]
- Henry, M.; Baudry, S. Age-related changes in leg proprioception: Implications for postural control. J. Neurophysiol. 2019, 122, 525–538. [Google Scholar] [CrossRef]
- Lin, S.-I.; Woollacott, M.H. Postural muscle responses following changing balance threats in young, stable older, and unstable older adults. J. Mot. Behav. 2002, 34, 37–44. [Google Scholar] [CrossRef]
- Kim, A.Y.; Lee, J.K.; Kim, S.H.; Choi, J.; Song, J.J.; Chae, S.W. Is postural dysfunction related to sarcopenia? A population-based study. PLoS ONE 2020, 15, e0232135. [Google Scholar] [CrossRef] [PubMed]
- Fragala, M.S.; Cadore, E.L.; Dorgo, S.; Izquierdo, M.; Kraemer, W.J.; Peterson, M.D.; Ryan, E.D. Resistance training for older adults: Position statement from the national strength and conditioning association. J. Strength Cond. Res. 2019, 33, 2019–2052. [Google Scholar] [CrossRef] [PubMed]
- Lopez, P.; Pinto, R.S.; Radaelli, R.; Rech, A.; Grazioli, R.; Izquierdo, M.; Cadore, E.L. Benefits of resistance training in physically frail elderly: A systematic review. Aging Clin. Exp. Res. 2018, 30, 889–899. [Google Scholar] [CrossRef] [PubMed]
- García-Hermoso, A.; Ramirez-Vélez, R.; de Asteasu, M.L.S.; Martínez-Velilla, N.; Zambom-Ferraresi, F.; Valenzuela, P.L.; Lucia, A.; Izquierdo, M. Safety and effectiveness of long-term exercise interventions in older adults: A systematic review and meta-analysis of randomized controlled trials. Sports Med. 2020, 50, 1095–1106. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo, M. Multicomponent physical exercise program: Vivifrail. Nutr. Hosp. 2019, 36, 50–56. [Google Scholar] [CrossRef]
- Nogueira, A.C.; de Resende Neto, A.G.; Santos, J.C.A.; da Silva Chaves, L.M.; Azevêdo, L.M.; Teixeira, C.V.L.S.; Senna, G.W.; Da Silva-Grigoletto, M.E. Effects of a multicomponent training protocol on functional fitness and quality of life of physically active older women. Motricidade 2017, 13, 86–93. [Google Scholar] [CrossRef]
- Concha-Cisternas, Y.; Contreras-Reyes, S.; Monjes, B.; Recabal, B.; Guzmán-Muñoz, E. Efectos de un programa multicomponente sobre la fragilidad y calidad de vida de adultos mayores institucionalizados. Rev. Cubana. Med. Milit. 2020, 49, e758. [Google Scholar]
- Ribeiro, F.; Oliveira, J. Aging effects on joint proprioception: The role of physical activity in proprioception preserva-tion. Eur. Rev. Aging Phys. Act. 2007, 4, 71–76. [Google Scholar] [CrossRef]
- Silva, D.; Bastos, V.H.; Sanchez, M.D.; Nunes, M.K.G.; Orsini, M.; Ribeiro, P.; Velasques, B.; Teixeira, S.S. Effects of vestibular rehabilitation in the elderly: A systematic review. Aging Clin. Exp. Res. 2016, 28, 599–606. [Google Scholar] [CrossRef]
- Silva-Moya, G.; Méndez-Rebolledo, G.; Valdes-Badilla, P.; Gómez-Álvarez, N.; Guzmán-Muñoz, E. Effects of neuromuscular training on psychomotor development and active joint position sense in school children. J. Mot. Behav. 2021, 54, 57–66. [Google Scholar] [CrossRef]
- Espejo-Antúnez, L.; Pérez-Mármol, J.M.; Cardero-Durán, M.d.L.; Toledo-Marhuenda, J.V.; Albornoz-Cabello, M. The Effect of Proprioceptive Exercises on Balance and Physical Function in Institutionalized Older Adults: A Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2020, 101, 1780–1788. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Muñoz, G.E.; Daigre-Prieto, M.; Soto-Santander, K.; Concha-Cisternas, Y.; Méndez-Rebolledo, G.; Sazo-Rodríguez, S.; Valdés-Badilla, P. Efectos de un entrenamiento neuromuscular sobre el control postural de voleibolistas universitarios con inestabilidad funcional de tobillo: Estudio piloto. Arch. Med. Deporte 2019, 36, 283–287. [Google Scholar]
- Orellana, K.V.; Vásquez, M.L.; Rebolledo, G.M.; Muñoz, E.E.G. Efectos de un entrenamiento neuromuscular sobre el equilibrio postural dinámico y propiocepción en basquetbolistas juveniles con inestabilidad funcional de tobillo. Retos 2022, 44, 1104–1112. [Google Scholar] [CrossRef]
- Ahmad, I.; Noohu, M.M.; Verma, S.; Singla, D.; Hussain, M.E. Effect of sensorimotor training on balance measures and proprioception among middle and older age adults with diabetic peripheral neuropathy. Gait Posture 2019, 74, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Sazo-Rodríguez, S.; Méndez-Rebolledo, G.; Guzmán-Muñoz, E.; Rubio-Palma, P. The effects of progressive neuromuscular training on postural balance and functionality in elderly patients with knee osteoarthritis: A pilot study. J. Phys. Ther. Sci. 2017, 29, 1229–1235. [Google Scholar] [CrossRef]
- Turner, L.; Shamseer, L.; Altman, D.G.; Weeks, L.; Peters, J.; Kober, T.; Dias, S.; Schulz, K.F.; Plint, A.C.; Moher, D. Consolidated standards of reporting trials (CONSORT) and the completeness of reporting of randomised controlled trials (RCTs) published in medical journals. Cochrane Database Syst. Rev. 2012, 2013, MR000030. [Google Scholar] [CrossRef]
- Kang, H. Sample size determination and power analysis using the G*Power software. J. Educ. Eval. Health Prof. 2021, 18, 17. [Google Scholar] [CrossRef]
- Ministry of Health (MINSAL). Ministry of Health. Manual of Application of the Preventive Medicine Examination for the Elderly, Health Program for the Elderly. Available online: https://diprece.minsal.cl/wrdprss_minsal/wp-content/uploads/2015/05/instructivo-de-control-de-salud-empam.pdf (accessed on 26 August 2024).
- Jiménez, D.; Lavados, M.; Rojas, P.; Henríquez, C.; Silva, F.; Guillón, M. Evaluación del minimental abreviado de la evaluación funcional del adulto mayor (EFAM) como screening para la detección de demencia en la atención primaria. Rev. Médica De Chile 2017, 145, 862–868. [Google Scholar] [CrossRef]
- Pan American Health Organization (PAHO). Part 1: Clinical Assessment Modules. Module 5: Nutritional Assessment of the Elderly. 2003. Available online: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/ENT/valoracion-nutricional-persona-adulta-mayor.pdf (accessed on 26 August 2024).
- Guzmán-Muñoz, E.; Mendez-Rebolledo, G.; Núñez-Espinosa, C.; Valdés-Badilla, P.; Monsalves-Álvarez, M.; Delgado-Floody, P.; Herrera-Valenzuela, T. Anthropometric profile and physical activity level as predictors of postural balance in overweight and obese children. Behav. Sci. 2023, 13, 73. [Google Scholar] [CrossRef]
- Beaudart, C.; Rolland, Y.; Cruz-Jentoft, A.J.; Bauer, J.M.; Sieber, C.; Cooper, C.; Al-Daghri, N.; Araujo de Carvalho, I.; Bautmans, I.; Bernabei, R.; et al. Assessment of muscle function and physical performance in daily clinical practice: A position paper endorsed by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO). Calcif. Tissue Int. 2019, 105, 1–14. [Google Scholar] [CrossRef]
- Martínez-Monje, F.; Cortés-Gálvez, J.M.; Cartagena-Perez, Y.; Leal-Hernández, M. Valoración funcional del anciano en atención primaria mediante el test «SPPB». Rev. Esp. Geriatr. Gerontol. (Ed. Impr.) 2018, 53, 59–60. [Google Scholar] [CrossRef] [PubMed]
- Bergland, A.; Strand, B.H. Norwegian reference values for the short physical performance battery (SPPB): The tromsø study. BMC Geriatr. 2019, 19, 216. [Google Scholar] [CrossRef] [PubMed]
- Romero-Dapueto, C.; Mahn, J.; Cavada, G.; Daza, R.; Ulloa, V.; Antúnez, M. Estandarización de la fuerza de prensión manual en adultos chilenos sanos mayores de 20 años. Rev. Medica Chile 2019, 147, 741–750. [Google Scholar] [CrossRef]
- Ministry of Health. Departamento de Epidemiología. Department of Epidemiology. Survey National Health 2016–2017. Available online: https://www.chilelibredetabaco.cl/wp-content/uploads/2010/10/ENS_2016_17_primeros_resultados.pdf (accessed on 29 August 2018).
- Izquierdo, M.; Casas-Herrero, A.; Martínez-Velilla, N.; Alonso-Bouzón, C.; Rodríguez-Mañas, L. Un ejemplo de cooperación para la implementación de programas relacionados con el desarrollo de ejercicio en ancianos frágiles: Programa europeo Erasmus + «Vivifrail». Rev. Esp. Geriatr. Gerontol. (Ed. Impr.) 2017, 52, 110–111. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Silva, K.N.; Imoto, A.M.; Almeida, G.J.; Atallah, N.; Peccin, M.S.; Trevisani, V.F.M. Balance training (proprioceptive training) for patients with rheumatoid arthritis. Cochrane Database Syst. Rev. 2010, 15, CD007648. [Google Scholar] [CrossRef]
- Rezaeipour, M.; Apanasenko, G.L. Acute improvement of postural steadiness through neuromuscular and proprioceptive training in sedentary older females. Middle East J. Rehabil. Health 2020, 7, 104894. [Google Scholar] [CrossRef]
- Low, D.C.; Walsh, G.S.; Arkesteijn, M. Effectiveness of exercise interventions to improve postural control in older adults: A systematic review and meta-analyses of centre of pressure measurements. Sports Med. 2017, 47, 101–112. [Google Scholar] [CrossRef]
- Song, C.H.; Petrofsky, J.S.; Lee, S.W.; Lee, K.J.; Yim, J.E. Effects of an exercise program on balance and trunk proprioception in older adults with diabetic neuropathies. Diabetes Technol. Ther. 2011, 13, 803–811. [Google Scholar] [CrossRef]
- Błaszczyk, J. Sway ratio—A new measure for quantifying postural stability. Acta Neurobiol. Exp. 2008, 68, 51–57. [Google Scholar] [CrossRef]
- Pluchino, A.; Lee, S.Y.; Asfour, S.; Roos, B.A.; Signorile, J.F. Pilot study comparing changes in postural control after training using a video game balance board program and 2 standard activity-based balance intervention programs. Arch. Phys. Med. Rehabil. 2012, 93, 1138–1146. [Google Scholar] [CrossRef]
- Nagy, E.; Feher-Kiss, A.; Barnai, M.; Domján-Preszner, A.; Angyan, L.; Horvath, G. Postural control in elderly subjects participating in balance training. Eur. J. Appl. Physiol. 2007, 100, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Labata-Lezaun, N.; González-Rueda, V.; Llurda-Almuzara, L.; López-De-Celis, C.; Rodríguez-Sanz, J.; Bosch-Savater, J.; Pérez-Bellmunt, A. Effectiveness of multicomponent training on physical performance in older adults: A systematic review and meta-analysis. Arch. Gerontol. Geriatr. 2022, 104, 104838. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Huang, W.Y.; Zhao, Y. Efficacy of exercise on muscle function and physical performance in older adults with sarcopenia: An updated systematic review and meta-analysis. Int. J. Environ. Res. Public Health 2022, 19, 8212. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, A.K.; Griebler, E.M.; da Silva, W.A.; Sant’helena, D.P.; da Silva, P.C.; Possamai, V.D.; Martins, V.F. Does a multicomponent exercise program improve physical fitness in older adults? Findings From a 5-Year Longitudinal Study. J. Aging Phys. Act. 2021, 29, 814–821. [Google Scholar] [CrossRef]
- Arrieta, H.; Rezola-Pardo, C.; Zarrazquin, I.; Echeverria, I.; Yanguas, J.J.; Iturburu, M.; Gil, S.M.; Rodriguez-Larrad, A.; Irazusta, J. A multicomponent exercise program improves physical function in long-term nursing home residents: A randomized controlled trial. Exp. Gerontol. 2018, 103, 94–100. [Google Scholar] [CrossRef]
- Concha-Cisternas, Y.; Castro-Piñero, J.; Leiva-Ordóñez, A.M.; Valdés-Badilla, P.; Celis-Morales, C.; Guzmán-Muñoz, E. Effects of neuromuscular training on physical performance in older people: A systematic review. Life 2023, 13, 869. [Google Scholar] [CrossRef]
- Ahmad, I.; Verma, S.; Noohu, M.M.; Shareef, M.Y.; Hussain, M.E. Sensorimotor and gait training improves proprioception, nerve function, and muscular activation in patients with diabetic peripheral neuropathy: A randomized control trial. J. Musculoskelet. Neuronal Interact. 2020, 20, 234–248. [Google Scholar]
- Resende, N.A.; Santos, M.S.; Silva, R.J.S.; de Santana, J.M.; Da Silva-Grigoletto, M.E. Effects of different neuromuscular training protocols on the functional capacity of elderly women. Rev. Bras. 2018, 24, 140–144. [Google Scholar] [CrossRef]
- Del Vecchio, A.; Casolo, A.; Negro, F.; Scorcelletti, M.; Bazzucchi, I.; Enoka, R.; Felici, F.; Farina, D. The increase in muscle force after 4 weeks of strength training is mediated by adaptations in motor unit recruitment and rate coding. J. Physiol. 2019, 597, 1873–1887. [Google Scholar] [CrossRef]
- Jones, E.J.; Chiou, S.; Atherton, P.J.; Phillips, B.E.; Piasecki, M. Ageing and exercise-induced motor unit remodelling. J. Physiol. 2022, 600, 1839–1849. [Google Scholar] [CrossRef]
- Hortobágyi, T.; Maffiuletti, N.A. Neural adaptations to electrical stimulation strength training. Eur. J. Appl. Physiol. 2011, 111, 2439–2449. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, W.; Liu, T.; Zhang, D. Association of grip strength with risk of all-cause mortality, cardiovascular diseases, and cancer in community-dwelling populations: A meta-analysis of prospective cohort studies. J. Am. Med. Dir. Assoc. 2017, 18, 551.e17–551.e35. [Google Scholar] [CrossRef] [PubMed]
- Concha-Cisternas, Y.; Petermann-Rocha, F.; Castro-Piñero, J.; Parra, S.; Albala, C.; Wyngard, V.V.D.; Vasquez, J.; Cigarroa, I.; Celis-Morales, C. Fuerza de prensión manual. Un sencillo, pero fuerte predictor de salud en población adulta y personas mayores. Rev. Med. Chile 2022, 150, 1075–1086. [Google Scholar] [CrossRef] [PubMed]
NMG | MCG | CG | |
---|---|---|---|
(n = 16) | (n = 16) | (n = 16) | |
Age (years) | 71.9 (68.5–75.4) | 72.6 (70.0–75.5) | 71.2 (67.5–74.4) |
Body weight (kg) | 66.8 (62.5–70.8) | 72.4 (65.4–78.8) | 70.1 (65.1–76.2) |
Height (m) | 1.49 (1.47–1.51) | 1.53 (1.49–1.57) | 1.50 (1.47–1.53) |
BMI (kg/m2) | 29.5 (28.1–31.3) | 30.3 (28.2–33.3) | 31.0 (28.1–33.5) |
COP Variables | Group | Pre-Intervention | Post-Intervention | Time × Group p Value | Time × Group F Value | ηp2 |
---|---|---|---|---|---|---|
Area with OE (cm2) | NMG | 0.011 (0.007–0.015) | 0.011 (0.008–0.015) | 0.970 | 0.02995 | 0.001 |
MCG | 0.012 (0.008–0.016) | 0.011 (0.007–0.016) | ||||
CG | 0.011 (0.007–0.016) | 0.010 (0.006–0.015) | ||||
Mean radius with OE (cm) | NMG | 0.051 (0.044–0.057) | 0.050 (0.039–0.061) | 0.368 | 0.051 | 0.031 |
MCG | 0.054 (0.044–0.064) | 0.058 (0.046–0.070) | ||||
CG | 0.053 (0.045–0.061) | 0.059 (0.048–0.070) | ||||
Mean velocity with OE (cm/s) | NMG | 0.237 (0.231–0.244) | 0.227 (0.206–0.248) | 0.399 | 0.9614 | 0.041 |
MCG | 0.245 (0.228–0.261) | 0.235 (0.226–0.243) | ||||
CG | 0.237 (0.231–0.244) | 0.242 (0.260–0.224) | ||||
AP velocity with OE (cm/s) | NMG | 0.451 (0.398–0.504) | 0.378 (0.337–0.420) | 0.087 | 2.757 | 0.111 |
MCG | 0.484 (0.417–0.551) | 0.469 (0.403–0.535) | ||||
CG | 0.449 (0.370–0.529) | 0.445 (0.353–0.537) | ||||
ML velocity with OE (cm/s) | NMG | 0.296 (0.267–0.324) | 0.272 (0.242–0.320) | 0.365 | 1.059 | 0.045 |
MCG | 0.306 (0.279–0.332) | 0.291 (0.246–0.336) | ||||
CG | 0.298 (0.249–0.346) | 0.297 (0.251–0.342) | ||||
Area with CE (cm2) | NMG | 0.016 (0.012–0.020) | 0.012 (0.008–0.015) | 0.088 | 2.746 | 0.081 |
MCG | 0.015 (0.010–0.019) | 0.013 (0.008–0.017) | ||||
CG | 0.016 (0.011–0.021) | 0.016 (0.012–0.021) | ||||
Mean radius with CE (cm) | NMG | 0.065 (0.054–0.075) | 0.050 (0.042–0.059) | 0.017 | 0.984 | 0.184 |
MCG | 0.062 (0.050–0.074) | 0.055 (0.044–0.066) | ||||
CG | 0.067 (0.054–0.079) | 0.067 (0.055–0.078) | ||||
Mean velocity With CE (cm/s) | NMG | 0.275 (0.253–0.297) | 0.249 (0.223–0.275) | 0.500 | 0.716 | 0.031 |
MCG | 0.266 (0.247–0.285) | 0.252 (0.242–0.261) | ||||
CG | 0.265 (0.251–0.279) | 0.256 (0.233–0.280) | ||||
AP velocity with CE (cm/s) | NMG | 0.811 (0.630–0.992) | 0.511 (0.424–0.597) | 0.001 | 10.010 | 0.312 |
MCG | 0.809 (0.652–0.966) | 0.570 (0.461–0.678) | ||||
CG | 0.767 (0.552–0.983) | 0.801 (0.626–0.977) | ||||
ML velocity with CE (cm/s) | NMG | 0.411 (0.331–0.492) | 0.307 (0.263–0.351) | 0.027 | 4.307 | 0.163 |
MCG | 0.407 (0.333–0.482) | 0.296 (0.269–0.322) | ||||
CG | 0.395 (0.308–0.482) | 0.411 (0.309–0.513) |
Physical Performance and Muscle Strength | Group | Pre-Intervention | Post-Intervention | Time × Group p Value | Time × Group F Value | ηp2 |
---|---|---|---|---|---|---|
Total SPPB score | NMG | 9.50 (8.62–10.37) | 11.5 (10.9–12.9) | <0.001 | 11.49 | 0.343 |
MCG | 9.73 (8.85–10.6) | 10.9 (10.4–11.4) | ||||
CG | 9.92 (8.98–10.8) | 9.92 (9.01–10.8) | ||||
Balance score | NMG | 3.33 (2.91–3.75) | 3.94 (3.82–4.06) | 0.148 | 2.099 | 0.087 |
MCG | 3.20 (2.60–3.79) | 3.66 (3.26–4.06) | ||||
CG | 3.28 (2.80–3.76) | 3.35 (2.87–3.84) | ||||
Gait speed score | NMG | 3.16 (2.64–3.68) | 3.77 (3.56–3.99) | 0.012 | 5.513 | 0.198 |
MCG | 3.73 (3.48–3.98) | 3.93 (3.79–4.07) | ||||
CG | 3.71 (3.44–3.98) | 3.57 (3.27–3.86) | ||||
5× Sit-to-stand chair score | NMG | 2.72 (2.16–3.28) | 3.77 (3.50–4.05) | 0.010 | 5.731 | 0.206 |
MCG | 2.80 (2.27–3.32) | 3.33 (3.06–3.60) | ||||
CG | 2.92 (2.31–3.54) | 3.00 (2.40–3.59) | ||||
Hand grip (kg) | NMG | 20.3 (18.0–22.7) | 22.0 (19.9–24.2) | 0.061 | 3.216 | 0.127 |
MCG | 21.9 (17.9–26.0) | 24.6 (19.7–29.6) | ||||
CG | 20.5 (17.5–23.4) | 20.7 (18.1–23.2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Concha-Cisternas, Y.; Castro-Piñero, J.; Vásquez-Muñoz, M.; Molina-Márquez, I.; Vásquez-Gómez, J.; Guzmán-Muñoz, E. Effects of Neuromuscular Training on Postural Balance and Physical Performance in Older Women: Randomized Controlled Trial. J. Funct. Morphol. Kinesiol. 2024, 9, 195. https://doi.org/10.3390/jfmk9040195
Concha-Cisternas Y, Castro-Piñero J, Vásquez-Muñoz M, Molina-Márquez I, Vásquez-Gómez J, Guzmán-Muñoz E. Effects of Neuromuscular Training on Postural Balance and Physical Performance in Older Women: Randomized Controlled Trial. Journal of Functional Morphology and Kinesiology. 2024; 9(4):195. https://doi.org/10.3390/jfmk9040195
Chicago/Turabian StyleConcha-Cisternas, Yeny, José Castro-Piñero, Manuel Vásquez-Muñoz, Iván Molina-Márquez, Jaime Vásquez-Gómez, and Eduardo Guzmán-Muñoz. 2024. "Effects of Neuromuscular Training on Postural Balance and Physical Performance in Older Women: Randomized Controlled Trial" Journal of Functional Morphology and Kinesiology 9, no. 4: 195. https://doi.org/10.3390/jfmk9040195
APA StyleConcha-Cisternas, Y., Castro-Piñero, J., Vásquez-Muñoz, M., Molina-Márquez, I., Vásquez-Gómez, J., & Guzmán-Muñoz, E. (2024). Effects of Neuromuscular Training on Postural Balance and Physical Performance in Older Women: Randomized Controlled Trial. Journal of Functional Morphology and Kinesiology, 9(4), 195. https://doi.org/10.3390/jfmk9040195