Heart Rate Variability, Blood Pressure and Peripheral Oxygen Saturation during Yoga Adham and Mahat Breathing Techniques without Retention in Adult Practitioners
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Experimental Design
2.3. Procedures and Data Treatment
2.4. Statistical Treatment
3. Results
3.1. Temperature and Humidity
3.2. Sex
3.3. Age
3.4. Breathing Frequency
3.5. Blood Pressure
3.6. Peripheral Oxygen Saturation
3.7. Heart Rate Variability
4. Discussion
4.1. Recommendations for Future Studies
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taylor, C.B. Depression, heart rate related variables and cardiovascular disease. Int. J. Psychophysiol. 2010, 78, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Thayer, J.F.; Yamamoto, S.S.; Brosschot, J.F. The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int. J. Cardiol. 2010, 141, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Vanderlei, L.C.M.; Pastre, C.M.; Hoshi, R.A.; Carvalho, T.D.D.; Godoy, M.F.D. Basic notions of heart rate variability and its clinical applicability. Braz. J. Cardiovasc. Surg. 2009, 24, 205–217. [Google Scholar] [CrossRef] [PubMed]
- Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology. Heart Rate Variability. Circulation 1996, 93, 1043–1065. [Google Scholar] [CrossRef]
- Lombardi, F.; Malliani, A.; Pagani, M.; Cerutti, S. Heart rate variability and its sympatho-vagal modulation. Cardiovasc. Res. 1996, 32, 208–216. [Google Scholar] [CrossRef]
- Reyes del Paso, G.A.; Langewitz, W.; Mulder, L.J.M.; van Roon, A.; Duschek, S. The utility of low frequency heart rate variability as an index of sympathetic cardiac tone: A review with emphasis on a reanalysis of previous studies. Psychophysiology 2013, 50, 477–487. [Google Scholar] [CrossRef]
- Pham, T.; Lau, Z.J.; Chen, S.H.A.; Makowski, D. Heart Rate Variability in Psychology: A Review of HRV Indices and an Analysis Tutorial. Sensors 2021, 21, 3998. [Google Scholar] [CrossRef]
- Guzik, P.; Piskorski, J.; Krauze, T.; Schneider, R.; Wesseling, K.H.; Wykretowicz, A.; Wysocki, H. Correlations between the Poincaré plot and conventional heart rate variability parameters assessed during paced breathing. J. Physiol. Sci. 2007, 57, 63–71. [Google Scholar] [CrossRef]
- Brennan, M.; Palaniswami, M.; Kamen, P. Do existing measures of Poincaré plot geometry reflect nonlinear features of heart rate variability? IEEE Trans. Biomed. Eng. 2001, 48, 1342–1347. [Google Scholar] [CrossRef]
- Ciccone, A.B.; Siedlik, J.A.; Wecht, J.M.; Deckert, J.A.; Nguyen, N.D.; Weir, J.P. Reminder: RMSSD and SD1 are identical heart rate variability metrics. Muscle Nerve 2017, 56, 674–678. [Google Scholar] [CrossRef]
- Hsu, C.-H.; Tsai, M.-Y.; Huang, G.-S.; Lin, T.-C.; Chen, K.-P.; Ho, S.-T.; Shyu, L.-Y.; Li, C.-Y. Poincaré plot indexes of heart rate variability detect dynamic autonomic modulation during general anesthesia induction. Acta Anaesthesiol. Taiwanica 2012, 50, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Brouwer, J.; van Veldhuisen, D.J.; Man In’t Veld, A.J.; Haaksma, J.; Dijk, W.A.; Visser, K.R.; Boomsma, F.; Dunselman, P.H.J.M.; Lie, K.I. Prognostic value of heart rate variability during long-term follow-up in patients with mild to moderate heart failure. J. Am. Coll. Cardiol. 1996, 28, 1183–1189. [Google Scholar] [CrossRef] [PubMed]
- Claudia, L.; Oscar, I.; Héctor, P.-G.; Marco, V.J. Poincaré plot indexes of heart rate variability capture dynamic adaptations after haemodialysis in chronic renal failure patients. Clin. Physiol. Funct. Imaging 2003, 23, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Chaddha, A.; Modaff, D.; Hooper-Lane, C.; Feldstein, D.A. Device and non-device-guided slow breathing to reduce blood pressure: A systematic review and meta-analysis. Complement. Ther. Med. 2019, 45, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Shao, R.; Man, I.S.C.; Lee, T.M.C. The Effect of Slow-Paced Breathing on Cardiovascular and Emotion Functions: A Meta-Analysis and Systematic Review. Mindfulness 2024, 15, 1–18. [Google Scholar] [CrossRef]
- Steffen, P.R.; Austin, T.; DeBarros, A.; Brown, T. The Impact of Resonance Frequency Breathing on Measures of Heart Rate Variability, Blood Pressure, and Mood. Front. Public Health 2017, 5, 222. [Google Scholar] [CrossRef]
- Laborde, S.; Allen, M.S.; Borges, U.; Dosseville, F.; Hosang, T.J.; Iskra, M.; Mosley, E.; Salvotti, C.; Spolverato, L.; Zammit, N.; et al. Effects of voluntary slow breathing on heart rate and heart rate variability: A systematic review and a meta-analysis. Neurosci. Biobehav. Rev. 2022, 138, 104711. [Google Scholar] [CrossRef]
- Vaschillo, E.G.; Vaschillo, B.; Lehrer, P.M. Characteristics of Resonance in Heart Rate Variability Stimulated by Biofeedback. Appl. Psychophysiol. Biofeedback 2006, 31, 129–142. [Google Scholar] [CrossRef]
- Lehrer, P.M.; Gevirtz, R. Heart rate variability biofeedback: How and why does it work? Front. Psychol. 2014, 5, 756. [Google Scholar] [CrossRef]
- Weinschenk, S.W.; Beise, R.D.; Lorenz, J. Heart rate variability (HRV) in deep breathing tests and 5-min short-term recordings: Agreement of ear photoplethysmography with ECG measurements, in 343 subjects. Eur. J. Appl. Physiol. 2016, 116, 1527–1535. [Google Scholar] [CrossRef]
- Hayano, J.; Mukai, S.; Sakakibara, M.; Okada, A.; Takata, K.; Fujinami, T. Effects of respiratory interval on vagal modulation of heart rate. Am. J. Physiol.-Heart Circ. Physiol. 1994, 267, H33–H40. [Google Scholar] [CrossRef]
- Zaccaro, A.; Piarulli, A.; Laurino, M.; Garbella, E.; Menicucci, D.; Neri, B.; Gemignani, A. How Breath-Control Can Change Your Life: A Systematic Review on Psycho-Physiological Correlates of Slow Breathing. Front. Hum. Neurosci. 2018, 12, 353. [Google Scholar] [CrossRef] [PubMed]
- Lehrer, P.M.; Vaschillo, E.; Vaschillo, B.; Lu, S.E.; Eckberg, D.L.; Edelberg, R.; Shih, W.J.; Lin, Y.; Kuusela, T.A.; Tahvanainen, K.U.; et al. Heart rate variability biofeedback increases baroreflex gain and peak expiratory flow. Psychosom. Med. 2003, 65, 796–805. [Google Scholar] [CrossRef] [PubMed]
- Van Diest, I.; Verstappen, K.; Aubert, A.E.; Widjaja, D.; Vansteenwegen, D.; Vlemincx, E. Inhalation/Exhalation Ratio Modulates the Effect of Slow Breathing on Heart Rate Variability and Relaxation. Appl. Psychophysiol. Biofeedback 2014, 39, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Pitzalis, M.V.; Mastropasqua, F.; Massari, F.; Passantino, A.; Colombo, R.; Mannarini, A.; Forleo, C.; Rizzon, P. Effect of respiratory rate on the relationships between RR interval and systolic blood pressure fluctuations: A frequency-dependent phenomenon. Cardiovasc. Res. 1998, 38, 332–339. [Google Scholar] [CrossRef]
- Parati, G.; Malfatto, G.; Boarin, S.; Branzi, G.; Caldara, G.; Giglio, A.; Bilo, G.; Ongaro, G.; Alter, A.; Gavish, B.; et al. Device-Guided Paced Breathing in the Home Setting. Circ. Heart Fail. 2008, 1, 178–183. [Google Scholar] [CrossRef]
- Bernardi, L.; Spadacini, G.; Bellwon, J.; Hajric, R.; Roskamm, H.; Frey, A.W. Effect of breathing rate on oxygen saturation and exercise performance in chronic heart failure. Lancet 1998, 351, 1308–1311. [Google Scholar] [CrossRef]
- Harada, D.; Asanoi, H.; Takagawa, J.; Ishise, H.; Ueno, H.; Oda, Y.; Goso, Y.; Joho, S.; Inoue, H. Slow and deep respiration suppresses steady-state sympathetic nerve activity in patients with chronic heart failure: From modeling to clinical application. Am. J. Physiol.-Heart Circ. Physiol. 2014, 307, H1159–H1168. [Google Scholar] [CrossRef]
- Benson, H.; Marzetta, B.; Rosner, B.; Klemchuk, H. Decreased blood-pressure in pharmacologically treated hypertensive patients who regularly elicited the relaxation response. Lancet 1974, 303, 289–291. [Google Scholar] [CrossRef]
- Patel, C. 12-month follow-up of yoga and bio-feedback in the management of hypertension. Lancet 1975, 305, 62–64. [Google Scholar] [CrossRef]
- Patel, C.; North, W.R.S. Randomised controlled trial of yoga and bio-feedback in management of hypertension. Lancet 1975, 306, 93–95. [Google Scholar] [CrossRef] [PubMed]
- Irvine, M.J.; Johnston, D.W.; Jenner, D.A.; Marie, G.V. Relaxation and stress management in the treatment of essential hypertension. J. Psychosom. Res. 1986, 30, 437–450. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, A.; Cohen, M. Yoga and heart rate variability: A comprehensive review of the literature. Int. J. Yoga 2016, 9, 97–113. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, A.; Cohen, M. Yoga and hypertension: A systematic review. Altern. Ther. Health Med. 2014, 20, 32–59. [Google Scholar]
- Modesti, P.A.; Ferrari, A.; Bazzini, C.; Costanzo, G.; Simonetti, I.; Taddei, S.; Biggeri, A.; Parati, G.; Gensini, G.F.; Sirigatti, S. Psychological predictors of the antihypertensive effects of music-guided slow breathing. J. Hypertens. 2010, 28, 1097–1103. [Google Scholar] [CrossRef] [PubMed]
- Jerath, R.; Edry, J.W.; Barnes, V.A.; Jerath, V. Physiology of long pranayamic breathing: Neural respiratory elements may provide a mechanism that explains how slow deep breathing shifts the autonomic nervous system. Med. Hypotheses 2006, 67, 566–571. [Google Scholar] [CrossRef]
- Iyengar, B.K.S. Light on Pranayama: The Yogic Art of Breathing; Crossroad: London, UK, 1981. [Google Scholar]
- Taimni, I.K. The Science of Yoga; The Theosophical Publishing House: Wheaton, IL, USA, 2010. [Google Scholar]
- Van Lysebeth, A. Pranayama. A Dinâmica da Respiração; Centro do Livro Brasileiro: Lisboa, Portugal, 1978. [Google Scholar]
- Saraswati, S.S. Asana Pranayama Mudra Bandha; Bihar School of Yoga: Munger, India, 2008. [Google Scholar]
- Sharpe, E.; Lacombe, A.; Sadowski, A.; Phipps, J.; Heer, R.; Rajurkar, S.; Hanes, D.; Jindal, R.D.; Bradley, R. Investigating components of pranayama for effects on heart rate variability. J. Psychosom. Res. 2021, 148, 110569. [Google Scholar] [CrossRef]
- van Lysebeth, A. J’apprends le Yoga; Flammarion: Paris, France, 1968. [Google Scholar]
- Lalitha, S.; Maheshkumar, K.; Shobana, R.; Deepika, C. Immediate effect of Kapalbhathi pranayama on short term heart rate variability (HRV) in healthy volunteers. J. Complement. Integr. Med. 2021, 18, 155–158. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Giles, D.; Draper, N.; Neil, W. Validity of the Polar V800 heart rate monitor to measure RR intervals at rest. Eur. J. Appl. Physiol. 2016, 116, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Gilgen-Ammann, R.; Schweizer, T.; Wyss, T. RR interval signal quality of a heart rate monitor and an ECG Holter at rest and during exercise. Eur. J. Appl. Physiol. 2019, 119, 1525–1532. [Google Scholar] [CrossRef] [PubMed]
- Sandercock, G.; Gladwell, V.; Dawson, S.; Nunan, D.; Brodie, D.; Beneke, R. Association between RR interval and high-frequency heart rate variability acquired during short-term, resting recordings with free and paced breathing. Physiol. Meas. 2008, 29, 795. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Liñares, L.; Lado, M.J.; Vila, X.A.; Méndez, A.J.; Cuesta, P. gHRV: Heart rate variability analysis made easy. Comput. Methods Programs Biomed. 2014, 116, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Germano, G.; Psimenos, A.; Sarullo, F.; Venditti, A.; Pecchioli, V.; Asmar, R. Validation of four automatic devices for self-measurement of blood pressure according to the International Protocol: The Pic Indolor Personal Check, Comfort Check, My Check and Travel Check. Blood Press. 2009, 18, 15–23. [Google Scholar] [CrossRef]
- O’Brien, E.; Pickering, T.; Asmar, R.; Myers, M.; Parati, G.; Staessen, J.; Mengden, T.; Imai, Y.; Waeber, B.; Palatini, P.; et al. Working Group on Blood Pressure Monitoring of the European Society of Hypertension International Protocol for validation of blood pressure measuring devices in adults. Blood Press. Monit. 2002, 7, 3–17. [Google Scholar] [CrossRef]
- WHO. Integrated Management of Childhood Illness: Caring for Newborns and Children in the Community; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- Singhi, S.; Bhalla, A.K.; Bhandari, A.; Narang, A. Counting respiratory rate in infants under 2 months: Comparison between observation and auscultation. Ann. Trop. Paediatr. 2003, 23, 135–138. [Google Scholar] [CrossRef]
- ISO 9001:2015(en); Quality Management Systems—Requirements. ISO: Geneva, Switzerland, 2015. Available online: https://www.iso.org/obp/ui#iso:std:iso:9001:ed-5:v1:en (accessed on 23 September 2024).
- ISO 13485:2016(en); Medical Devices—Quality Management Systems—Requirements for Regulatory Purposes. ISO: Geneva, Switzerland, 2016. Available online: https://www.iso.org/obp/ui#iso:std:iso:13485:ed-3:v1:en (accessed on 23 September 2024).
- Vila, J.; Palacios, F.; Presedo, J.; Fernandez-Delgado, M.; Felix, P.; Barro, S. Time-frequency analysis of heart-rate variability. IEEE Eng. Med. Biol. Mag. 1997, 16, 119–126. [Google Scholar] [CrossRef]
- Port, S.; Demer, L.; Jennrich, R.; Walter, D.; Garfinkel, A. Systolic blood pressure and mortality. Lancet 2000, 355, 175–180. [Google Scholar] [CrossRef]
- Kapidžić, A.; Platiša, M.M.; Bojić, T.; Kalauzi, A. Nonlinear properties of cardiac rhythm and respiratory signal under paced breathing in young and middle-aged healthy subjects. Med. Eng. Phys. 2014, 36, 1577–1584. [Google Scholar] [CrossRef]
- Bertisch, S.M.; Hamner, J.; Taylor, J.A. Slow Yogic Breathing and Long-Term Cardiac Autonomic Adaptations: A Pilot Study. J. Altern. Complement. Med. 2017, 23, 722–729. [Google Scholar] [CrossRef] [PubMed]
- Fumoto, M.; Sato-Suzuki, I.; Seki, Y.; Mohri, Y.; Arita, H. Appearance of high-frequency alpha band with disappearance of low-frequency alpha band in EEG is produced during voluntary abdominal breathing in an eyes-closed condition. Neurosci. Res. 2004, 50, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Lehrer, P.; Sasaki, Y.; Saito, Y. Zazen and cardiac variability. Psychosom. Med. 1999, 61, 812–821. [Google Scholar] [CrossRef] [PubMed]
- Lehrer, P.; Vaschillo, E.; Trost, Z.; France, C.R. Effects of rhythmical muscle tension at 0.1Hz on cardiovascular resonance and the baroreflex. Biol. Psychol. 2009, 81, 24–30. [Google Scholar] [CrossRef]
- Grossman, E.; Grossman, A.; Schein, M.H.; Zimlichman, R.; Gavish, B. Breathing-control lowers blood pressure. J. Hum. Hypertens. 2001, 15, 263–269. [Google Scholar] [CrossRef]
- Bernardi, N.F.; Bordino, M.; Bianchi, L.; Bernardi, L. Acute fall and long-term rise in oxygen saturation in response to meditation. Psychophysiology 2017, 54, 1951–1966. [Google Scholar] [CrossRef]
- Bernardi, L.; Porta, C.; Spicuzza, L.; Bellwon, J.; Spadacini, G.; Frey, A.W.; Yeung, L.Y.C.; Sanderson, J.E.; Pedretti, R.; Tramarin, R. Slow Breathing Increases Arterial Baroreflex Sensitivity in Patients with Chronic Heart Failure. Circulation 2002, 105, 143–145. [Google Scholar] [CrossRef]
- Hayano, J.; Yasuma, F.; Okada, A.; Mukai, S.; Fujinami, T. Respiratory Sinus Arrhythmia. Circulation 1996, 94, 842–847. [Google Scholar] [CrossRef]
- Bhogal, A.S.; Mani, A.R. Pattern Analysis of Oxygen Saturation Variability in Healthy Individuals: Entropy of Pulse Oximetry Signals Carries Information about Mean Oxygen Saturation. Front. Physiol. 2017, 8. [Google Scholar] [CrossRef]
- Garavaglia, L.; Gulich, D.; Defeo, M.M.; Thomas Mailland, J.; Irurzun, I.M. The effect of age on the heart rate variability of healthy subjects. PLoS ONE 2021, 16, e0255894. [Google Scholar] [CrossRef]
- Kornet, L.; Hoeks, A.P.G.; Janssen, B.J.A.; Houben, A.J.; De Leeuw, P.W.; Reneman, R.S. Neural activity of the cardiac baroreflex decreases with age in normotensive and hypertensive subjects. J. Hypertens. 2005, 23. [Google Scholar] [CrossRef] [PubMed]
- Sinha, M.; Sinha, R.; Ghate, J.; Sarnik, G. Impact of Altered Breathing Patterns on Interaction of EEG and Heart Rate Variability. Ann. Neurosci. 2020, 27, 67–74. [Google Scholar] [CrossRef]
- Leor-Librach, R.J.; Eliash, S.; Kaplinsky, E.; Bobrovsky, B.Z. Very low-frequency heart rate variability wave amplitude and sympathetic stimulation-characterization and modeling. IEEE Trans. Biomed. Eng. 2003, 50, 797–803. [Google Scholar] [CrossRef] [PubMed]
- Kromenacker, B.W.; Sanova, A.A.; Marcus, F.I.; Allen, J.J.B.; Lane, R.D. Vagal Mediation of Low-Frequency Heart Rate Variability During Slow Yogic Breathing. Psychosom. Med. 2018, 80, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Vaschillo, E.; Lehrer, P.; Rishe, N.; Konstantinov, M. Heart Rate Variability Biofeedback as a Method for Assessing Baroreflex Function: A Preliminary Study of Resonance in the Cardiovascular System. Appl. Psychophysiol. Biofeedback 2002, 27, 1–27. [Google Scholar] [CrossRef]
- Berntson, G.G.; Bigger, J.T., Jr.; Eckberg, D.L.; Grossman, P.; Kaufmann, P.G.; Malik, M.; Nagaraja, H.N.; Porges, S.W.; Saul, J.P.; Stone, P.H.; et al. Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology 1997, 34, 623–648. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, F.; Meehan, Z.M. An Undergraduate Program with Heart: Thirty Years of Truman HRV Research. Appl. Psychophysiol. Biofeedback 2022, 47, 317–326. [Google Scholar] [CrossRef]
- Wheat, A.L.; Larkin, K.T. Biofeedback of Heart Rate Variability and Related Physiology: A Critical Review. Appl. Psychophysiol. Biofeedback 2010, 35, 229–242. [Google Scholar] [CrossRef]
- Natarajan, A. Heart rate variability during mindful breathing meditation. Front. Physiol. 2023, 13. [Google Scholar] [CrossRef]
- Guzik, P.; Piskorski, J.; Krauze, T.; Schneider, R.; Ing, D.; Wesseling, K.; Wykretowicz, A.; Wysocki, H. The influence of changing respiratory rate on HRV is portrayed by descriptors of Poincaré plot analysis. Folia Cardiol 2005, 12, 17–20. [Google Scholar]
- Hoshi, R.A.; Pastre, C.M.; Vanderlei, L.C.M.; Godoy, M.F. Poincaré plot indexes of heart rate variability: Relationships with other nonlinear variables. Auton. Neurosci. Basic Clin. 2013, 177, 271–274. [Google Scholar] [CrossRef] [PubMed]
- Streeter, C.C.; Gerbarg, P.L.; Saper, R.B.; Ciraulo, D.A.; Brown, R.P. Effects of yoga on the autonomic nervous system, gamma-aminobutyric-acid, and allostasis in epilepsy, depression, and post-traumatic stress disorder. Med. Hypotheses 2012, 78, 571–579. [Google Scholar] [CrossRef] [PubMed]
Ag | Sex | Pract | Tab | Hyp | Heart | Diab | Chol | Apnea | Var | Arth | Psych | Resp | Horm |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
43 | male | 12 | X | X | X | ||||||||
72 | male | 4 | X | X | |||||||||
58 | male | 240 | X | ||||||||||
37 | male | 120 | X | ||||||||||
73 | male | 24 | X | ||||||||||
76 | female | 360 | X | ||||||||||
52 | female | 3 | X | ||||||||||
62 | female | 120 | X | ||||||||||
42 | female | 18 | X | ||||||||||
63 | female | 240 | X | ||||||||||
59 | female | 72 | X | X | |||||||||
59 | female | 60 | X | X | |||||||||
35 | female | 75 | X | ||||||||||
56 | female | 72 | X | ||||||||||
57 | female | 60 | X | X | |||||||||
60 | female | 768 | X | X | |||||||||
67 | female | 72 | X | X | |||||||||
68 | female | 96 | X | X | |||||||||
43 | female | 48 | X | ||||||||||
55 | female | 24 | X | ||||||||||
43 | female | 72 | X | ||||||||||
41 | female | 48 | X | ||||||||||
67 | female | 60 | X | ||||||||||
75 | female | 156 | X | X | X | X | X | X | |||||
54 | female | 26 | X | ||||||||||
56 | female | 72 | X | X | |||||||||
Health Problem Frequency n (%) | 7 (15.6%) | 8 (17.8%) | 3 (6.7%) | 1 (2.2%) | 3 (6.7%) | 1 (2.2%) | 1 (2.2%) | 1 (2.2%) | 7 (15.6%) | 5 (11.1%) | 4 (8.9%) |
Variables | Condition | rho | p | Inferior CI | Superior CI |
---|---|---|---|---|---|
age—bcpm | Baseline | −0.197 | 0.195 | −0.471 | 0.112 |
Abdominal | −0.359 | 0.016 * | −0.596 | −0.064 | |
Complete | −0.035 | 0.819 | −0.333 | 0.269 | |
age—syst | Baseline | 0.406 | 0.006 * | 0.119 | 0.631 |
Abdominal | 0.338 | 0.023 * | 0.04 | 0.58 | |
Complete | 0.414 | 0.005 * | 0.128 | 0.636 | |
age—diast | Baseline | 0.225 | 0.138 | −0.082 | 0.493 |
Abdominal | 0.341 | 0.022 * | 0.044 | 0.583 | |
Complete | 0.363 | 0.014 * | 0.069 | 0.599 | |
age—SpO2 | Baseline | −0.554 | <0.001 * | −0.737 | −0.296 |
Abdominal | −0.384 | 0.011 * | −0.619 | −0.086 | |
Complete | −0.287 | 0.062 | −0.547 | 0.024 |
Variable | Condition | Min | Max | Mean | Error | SD |
---|---|---|---|---|---|---|
bcpm * | Baseline ᵝᵓ | 3.50 | 22.83 | 11.86 | 0.60 | 4.01 |
Abdominal ᵝᵟ | 1.50 | 14.75 | 4.88 | 0.35 | 2.37 | |
Complete ᵓᵟ | 1.62 | 10.91 | 3.65 | 0.27 | 1.82 | |
syst * | Baseline | 84.62 | 140.77 | 110.34 | 2.05 | 13.73 |
Abdominal | 84.31 | 149.83 | 107.61 | 2.19 | 14.71 | |
Complete | 85.77 | 144.09 | 107.78 | 2.02 | 13.56 | |
diast | Baseline | 46.69 | 85.46 | 66.88 | 1.12 | 7.53 |
Abdominal | 48.00 | 94.75 | 67.05 | 1.33 | 8.89 | |
Complete | 50.62 | 89.75 | 66.99 | 1.27 | 8.52 | |
SpO2 * | Baseline ᵝᵓ | 93.52 | 98.78 | 96.81 | 0.19 | 1.26 |
Abdominal ᵝ | 95.19 | 98.98 | 97.67 | 0.14 | 0.91 | |
Complete ᵓ | 95.45 | 98.99 | 97.59 | 0.15 | 1.01 |
Subjects/Condition | Baseline | Abdominal | Complete |
---|---|---|---|
Female. 62 years old | 135.38/71.31(7.08) | 149.83/84.00(2.05) | 144.09/79.75(2.00) |
Female. 66 years old | 140.77/85.46(11.92) | 144.67/94.75(3.27) | 142.18/89.75(2.45) |
Condition | Variables | rho | p | Inferior CI | Superior CI |
---|---|---|---|---|---|
Baseline | mean | 0.067 | 0.662 | −0.240 | 0.361 |
sd | −0.480 | <0.001 * | −0.682 | −0.208 | |
RR interval | −0.077 | 0.614 | −0.370 | 0.230 | |
SDNN | −0.448 | 0.002 * | −0.660 | −0.169 | |
pNN50 | −0.525 | <0.001 * | −0.714 | −0.265 | |
rMSSD | −0.471 | 0.001 * | −0.676 | −0.197 | |
hrvi | −0.497 | <0.001 * | −0.695 | −0.230 | |
Abdominal | mean | 0.154 | 0.314 | −0.155 | 0.435 |
sd | −0.318 | 0.033 * | −0.566 | −0.019 | |
RR interval | −0.153 | 0.316 | −0.434 | 0.156 | |
SDNN | −0.375 | 0.011 * | −0.608 | −0.083 | |
pNN50 | −0.498 | <0.001 * | −0.695 | −0.231 | |
rMSSD | −0.442 | 0.002 * | −0.656 | −0.162 | |
hrvi | −0.313 | 0.036 * | −0.562 | −0.013 | |
Complete | mean | 0.075 | 0.626 | −0.232 | 0.368 |
sd | −0.222 | 0.143 | −0.491 | 0.085 | |
RR interval | −0.089 | 0.560 | −0.381 | 0.218 | |
SDNN | −0.301 | 0.045 * | −0.553 | 0.001 | |
pNN50 | −0.432 | 0.003 * | −0.649 | −0.150 | |
rMSSD | −0.312 | 0.037 * | −0.561 | −0.012 | |
hrvi | −0.250 | 0.098 | −0.513 | 0.056 |
Variable | Condition | Min | Max | Mean | Error | SD |
---|---|---|---|---|---|---|
sd * | Baseline ᵝᵓ | 1.11 | 7.59 | 3.29 | 0.22 | 1.47 |
Abdominal ᵝᵟ | 1.71 | 7.63 | 3.67 | 0.20 | 1.35 | |
Complete ᵓᵟ | 1.63 | 8.74 | 4.25 | 0.25 | 1.67 | |
pNN50 | Baseline | 0.00 | 93.00 | 12.27 | 2.82 | 18.91 |
Abdominal | 0.00 | 43.41 | 9.86 | 1.82 | 12.23 | |
Complete | 0.00 | 47.71 | 8.48 | 1.68 | 11.29 | |
rMSSD | Baseline | 5.39 | 198.17 | 33.61 | 4.86 | 32.62 |
Abdominal | 7.53 | 156.24 | 32.23 | 3.83 | 25.67 | |
Complete | 9.00 | 171.14 | 32.15 | 4.17 | 27.95 | |
HRVi * | Baseline ᵝᵓ | 3.71 | 26.89 | 11.36 | 0.74 | 4.97 |
Abdominal ᵝᵟ | 7.36 | 27.50 | 13.09 | 0.71 | 4.73 | |
Complete ᵓᵟ | 6.90 | 26.89 | 14.12 | 0.70 | 4.70 | |
SDNN * | Baseline ᵝᵓ | 12.23 | 180.39 | 48.25 | 4.51 | 30.26 |
Abdominal ᵝ | 23.22 | 179.15 | 53.82 | 4.20 | 28.17 | |
Complete ᵓ | 22.44 | 178.96 | 58.94 | 4.24 | 28.46 | |
SD1 | Baseline | 3.82 | 140.23 | 23.78 | 3.44 | 23.08 |
Abdominal | 5.33 | 110.57 | 22.81 | 2.71 | 18.17 | |
Complete | 6.54 | 121.11 | 23.13 | 2.93 | 19.62 | |
SD2 * | Baseline ᵝᵓ | 16.73 | 213.32 | 63.38 | 5.52 | 37.03 |
Abdominal ᵝᵟ | 31.85 | 228.16 | 72.24 | 5.40 | 36.21 | |
Complete ᵓᵟ | 31.07 | 221.85 | 79.68 | 5.36 | 35.98 | |
SD1/SD2 * | Baseline ᵝᵓ | 0.09 | 0.72 | 0.35 | 0.02 | 0.13 |
Abdominal ᵝᵟ | 0.13 | 0.5 | 0.30 | 0.02 | 0.11 | |
Complete ᵓᵟ | 0.12 | 0.55 | 0.27 | 0.01 | 0.09 |
Variable | Condition | Min | Max | Mean | Error | SD |
---|---|---|---|---|---|---|
VLF * | Baseline | 3.73 | 586.97 | 121.66 | 180.75 | 125.80 |
Abdominal | 20.67 | 4874.80 | 319.65 | 122.25 | 820.06 | |
Complete | 23.28 | 4066.98 | 524.80 | 100.94 | 677.10 | |
LF * | Baseline | 13.35 | 10,074.27 | 598.30 | 238.31 | 1598.63 |
Abdominal | 67.23 | 7546.51 | 1033.90 | 206.61 | 1385.95 | |
Complete | 34.88 | 7194.92 | 942.31 | 184.97 | 1240.82 | |
HF | Baseline | 2.21 | 4460.16 | 295.43 | 107.57 | 721.62 |
Abdominal | 5.68 | 1816.51 | 158.08 | 42.86 | 287.54 | |
Complete | 8.21 | 2106.15 | 184.19 | 55.77 | 374.09 | |
LF/HF * | Baseline | 0.26 | 13.35 | 3.6 | 0.44 | 2.98 |
Abdominal | 1.62 | 50.61 | 12.3 | 1.67 | 11.23 | |
Complete | 2.42 | 43.38 | 12.3 | 1.41 | 9.43 | |
LFn * | Baseline | 0.14 | 0.84 | 0.51 | 0.03 | 0.17 |
Abdominal | 0.27 | 0.91 | 0.70 | 0.03 | 0.17 | |
Complete | 0.19 | 0.87 | 0.54 | 0.03 | 0.21 | |
HFn * | Baseline | 0.06 | 0.68 | 0.26 | 0.02 | 0.17 |
Abdominal | 0.01 | 0.32 | 0.10 | 0.01 | 0.07 | |
Complete | 0.01 | 0.25 | 0.08 | 0.01 | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Catela, D.; Santos, J.; Oliveira, J.; Franco, S.; Mercê, C. Heart Rate Variability, Blood Pressure and Peripheral Oxygen Saturation during Yoga Adham and Mahat Breathing Techniques without Retention in Adult Practitioners. J. Funct. Morphol. Kinesiol. 2024, 9, 184. https://doi.org/10.3390/jfmk9040184
Catela D, Santos J, Oliveira J, Franco S, Mercê C. Heart Rate Variability, Blood Pressure and Peripheral Oxygen Saturation during Yoga Adham and Mahat Breathing Techniques without Retention in Adult Practitioners. Journal of Functional Morphology and Kinesiology. 2024; 9(4):184. https://doi.org/10.3390/jfmk9040184
Chicago/Turabian StyleCatela, David, Júlia Santos, Joana Oliveira, Susana Franco, and Cristiana Mercê. 2024. "Heart Rate Variability, Blood Pressure and Peripheral Oxygen Saturation during Yoga Adham and Mahat Breathing Techniques without Retention in Adult Practitioners" Journal of Functional Morphology and Kinesiology 9, no. 4: 184. https://doi.org/10.3390/jfmk9040184
APA StyleCatela, D., Santos, J., Oliveira, J., Franco, S., & Mercê, C. (2024). Heart Rate Variability, Blood Pressure and Peripheral Oxygen Saturation during Yoga Adham and Mahat Breathing Techniques without Retention in Adult Practitioners. Journal of Functional Morphology and Kinesiology, 9(4), 184. https://doi.org/10.3390/jfmk9040184