Effect of a Cross-Training and Resistance Exercise Routine on IL-15 in Adults with Type B Acute Lymphoblastic Leukemia during the Induction Phase: Randomized Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Anthropometry and Body Composition
2.2. Establishing IL-15
2.3. Exercise Intervention
2.4. Statistical Analysis
3. Results
3.1. Correlation of Physical Training with Clinical Outcomes in Adult Patients with ALL
3.2. Correlation of IL-15 with the Clinical Prognosis of Patients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schluns, K.S.; Stoklasek, T.; Lefrançois, L. The roles of interleukin-15 receptor alpha: Trans-presentation, receptor component, or both? Int. J. Biochem. Cell Biol. 2005, 37, 1567–1571. [Google Scholar] [CrossRef]
- Yang, Y.; Lundqvist, A. Immunomodulatory effects of IL-2 and IL-15; implications for cancer immunotherapy. Cancers 2020, 12, 3586. [Google Scholar] [CrossRef]
- Knudson, K.M.; Hodge, J.W.; Schlom, J.; Gameiro, S.R. Rationale for IL-15 superagonists in cancer immunotherapy. Expert Opin. Biol. Ther. 2020, 20, 705–709. [Google Scholar] [CrossRef]
- Waldmann, T.A. The biology of IL-15: Implications for cancer therapy and the treatment of autoimmune disorders. J. Investig. Dermatol. Symp. Proc. 2013, 16, S28–S30. [Google Scholar] [CrossRef]
- Yalcin, A.; Silay, K.; Balik, A.R.; Avcioğlu, G.; Aydin, A.S. The relationship between plasma interleukin-15 levels and sarcope-nia in outpatient older people. Aging Clin. Exp. Res. 2018, 30, 783–790. [Google Scholar] [CrossRef]
- Wu, S.; Fischer, L.; Gökbuget, N.; Schwartz, S.; Burmeister, T.; Notter, M.; Hoelzer, D.; Fuchs, H.; Blau, I.W.; Hofmann, W.K.; et al. Expression of interleukin 15 in primary adult acute lymphoblastic leukemia. Cancer 2010, 116, 387–392. [Google Scholar] [CrossRef]
- Paul, S.; Short, N.J. Central Nervous System Involvement in Adults with Acute Leukemia: Diagnosis, Prevention, and Management. Curr. Oncol. Rep. 2022, 24, 427–436. [Google Scholar] [CrossRef]
- Paul, S.; Kantarjian, H.; Jabbour, E.J. Adult Acute Lymphoblastic Leukemia. Mayo Clin. Proc. 2016, 91, 1645–1666. [Google Scholar] [CrossRef]
- Wu, S.; Fischer, L.; Burmeister, T.; Schwartz, S.; Notter, M.; Gökbuget, N.; Hoelzer, D.; Hofmann, W.-K.; Thiel, E. High Expression of IL-15 Correlates with Disease Recurrence of Adult B-Lineage Acute Lymphoblastic Leukemia. Blood 2008, 112, 4863. [Google Scholar] [CrossRef]
- Fiore, P.F.; di Matteo, S.; Tumino, N.; Mariotti, F.R.; Pietra, G.; Ottonello, S.; Negrini, S.; Bottazzi, B.; Moretta, L.; Mortier, E.; et al. Interleukin-15 and cancer: Some solved and many unsolved questions. J. Immunother. Cancer 2020, 8, e001428. [Google Scholar] [CrossRef] [PubMed]
- Kebelmann-Betzing, C.; Körner, G.; Badiali, L.; Buchwald, D.; Möricke, A.; Korte, A.; Köchling, J.; Wu, S.; Kappelmeier, D.; Oettel, K.; et al. Characterization of cytokine, growth factor receptor, costimulatory and adhesion molecule expression patterns of bone marrow blasts in relapsed childhood B cell precursor all. Cytokine 2001, 13, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Saenz, A.M.; Stapleton, S.; Hernandez, R.G.; Hale, G.A.; Goldenberg, N.A.; Schwartz, S.; Amankwah, E.K. Body Mass Index at Pediatric Leukemia Diagnosis and the Risks of Relapse and Mortality: Findings from a Single Institution and Meta-analysis. J. Obes. 2018, 2018, 7048078. [Google Scholar] [CrossRef] [PubMed]
- Orgel, E.; Genkinger, J.M.; Aggarwal, D.; Sung, L.; Nieder, M.; Ladas, E.J. Association of body mass index and survival in pediatric leukemia: A meta-analysis. Am. J. Clin. Nutr. 2016, 103, 808–817. [Google Scholar] [CrossRef] [PubMed]
- Orgel, E.; Tucci, J.; Alhushki, W.; Malvar, J.; Sposto, R.; Fu, C.H.; Freyer, D.R.; Abdel-Azim, H.; Mittelman, S.D. Obesity is associated with residual leukemia following induction therapy for childhood B-precursor acute lymphoblastic leukemia. Blood 2014, 124, 3932–3938. [Google Scholar] [CrossRef] [PubMed]
- Bryant, A.L.; Deal, A.M.; Battaglini, C.L.; Phillips, B.; Pergolotti, M.; Coffman, E.; Foster, M.C.; Wood, W.A.; Bailey, C.; Hackney, A.C.; et al. The Effects of Exercise on Patient-Reported Outcomes and Performance-Based Physical Function in Adults with Acute Leukemia Undergoing Induction Therapy: Exercise and Quality of Life in Acute Leukemia (EQUAL). Integr. Cancer Ther. 2017, 17, 263–270. [Google Scholar] [CrossRef]
- Wehrle, A.; Kneis, S.; Dickhuth, H.-H.; Gollhofer, A.; Bertz, H. Endurance and resistance training in patients with acute leukemia undergoing induction chemotherapy—A randomized pilot study. Support. Care Cancer 2019, 27, 1071–1079. [Google Scholar] [CrossRef]
- Kurz, E.; Hirsch, C.A.; Dalton, T.; Shadaloey, S.A.; Khodadadi-Jamayran, A.; Miller, G.; Pareek, S.; Rajaei, H.; Mohindroo, C.; Baydogan, S.; et al. Exercise-induced engagement of the IL-15/IL-15Rα axis promotes anti-tumor immunity in pancreatic cancer. Cancer Cell 2022, 40, 720–737.e5. [Google Scholar] [CrossRef]
- Huang, Q.; Wu, M.; Wu, X.; Zhang, Y.; Xia, Y. Muscle-to-tumor crosstalk: The effect of exercise-induced myokine on cancer progression. Biochim. Biophys. Acta Rev. Cancer 2022, 1877, 188761. [Google Scholar] [CrossRef]
- Alibhai, S.M.H.; Durbano, S.; Breunis, H.; Brandwein, J.M.; Timilshina, N.; Tomlinson, G.A.; Oh, P.I.; Culos-Reed, S.N. A phase II exercise randomized controlled trial for patients with acute myeloid leukemia undergoing induction chemotherapy. Leuk. Res. 2015, 39, 1178–1186. [Google Scholar] [CrossRef]
- Coombs, A.; Schilperoort, H.; Sargent, B. The effect of exercise and motor interventions on physical activity and motor outcomes during and after medical intervention for children and adolescents with acute lymphoblastic leukemia: A systematic review. Crit. Rev. Oncol./Hematol. 2020, 152, 103004. [Google Scholar] [CrossRef]
- Simioni, C.; Zauli, G.; Martelli, A.M.; Vitale, M.; Ultimo, S.; Milani, D.; Neri, L.M. Physical training interventions for children and teenagers affected by acute lymphoblastic leukemia and related treatment impairments. Oncotarget 2018, 9, 17199–17209. [Google Scholar] [CrossRef] [PubMed]
- Sindaco, P.; Pandey, H.; Isabelle, C.; Chakravarti, N.; Brammer, J.E.; Porcu, P.; Mishra, A. The role of interleukin-15 in the development and treatment of hematological malignancies. Front. Immunol. 2023, 14, 1141208. [Google Scholar] [CrossRef] [PubMed]
- Wadai, G.M.A. Evaluation of Serum Interleukin-15 in Acute Lymphoid and Myeloid Leukemia Patients. Arch. Razi Inst. 2022, 77, 1895–1899. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.P.; Bate, J.; Brooks, R.; Chisholm, J.; Clarke, S.C.; Dixon, E.; Faust, S.N.; Galanopoulou, A.; Heath, P.T.; Maishman, T.; et al. Immune reconstitution in children following chemotherapy for acute leukemia. eJHaem 2020, 1, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Pietras, W.; Chaber, R.; Pela, H.; Trybucka, K.; Chybicka, A. The recovery of immune system parameters in children following lymphoblastic leukemia therapy—Preliminary report. Adv. Clin. Exp. Med. 2014, 23, 97–102. [Google Scholar] [CrossRef]
- Pérez-López, A.; Valadés, D.; Vázquez Martínez, C.; de Cos Blanco, A.I.; Bujan, J.; García-Honduvilla, N. Serum IL-15 and IL-15Rα levels are decreased in lean and obese physically active humans. Scand. J. Med. Sci. Sports 2017, 28, 1113–1120. [Google Scholar] [CrossRef]
- Park, K.M.; Park, S.C.; Kang, S. Effects of resistance exercise on adipokine factors and body composition in pre- and postmenopausal women. J. Exerc. Rehabil. 2019, 15, 676–682. [Google Scholar] [CrossRef]
- Micielska, K.; Gmiat, A.; Zychowska, M.; Kozlowska, M.; Walentukiewicz, A.; Lysak-Radomska, A.; Jaworska, J.; Rodziewicz, E.; Duda-Biernacka, B.; Ziemann, E. The beneficial effects of 15 units of high-intensity circuit training in women is modified by age, baseline insulin resistance and physical capacity. Diabetes Res. Clin. Pract. 2019, 152, 156–165. [Google Scholar] [CrossRef]
- Quinn, L.S.; Anderson, B.G.; Strait-Bodey, L.; Stroud, A.M.; Argilés, J.M.; Loro, E.; Seifert, E.L.; Moffat, C.; Romero, F.; Mishra, M.K.; et al. Oversecretion of interleukin-15 from skeletal muscle reduces adiposity. Am. J. Physiol. Metab. 2009, 296, E191–E202. [Google Scholar] [CrossRef]
- Quinn, L.S.; Strait-Bodey, L.; Anderson, B.G.; Argilés, J.M.; Havel, P.J. Interleukin-15 stimulates adiponectin secretion by 3T3-L1 adipocytes: Evidence for a skeletal muscle-to-fat signaling pathway. Cell Biol. Int. 2005, 29, 449–457. [Google Scholar] [CrossRef]
- Christiansen, T.; Paulsen, S.K.; Bruun, J.M.; Pedersen, S.B.; Richelsen, B.; Jung, D.Y.; Ko, H.J.; Lichtman, E.I.; Lee, E.; Lawton, E.; et al. Exercise training versus diet-induced weight-loss on metabolic risk factors and inflammatory markers in obese subjects: A 12-week randomized intervention study. Am. J. Physiol. Metab. 2010, 298, E824–E831. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, J.; Zheng, H.; Li, Y.; Huang, H.; Liang, Z.; Jiang, H.; Sun, J. Effects of medium chain triglycerides on body fat distribution and adipocytokine levels in children with acute lymphoblastic leukemia under chemotherapy. Medicine 2019, 98, e16811. [Google Scholar] [CrossRef]
- Figueras, M.; Busquets, S.; Carbó, N.; Barreiro, E.; Almendro, V.; Argilés, J.M.; López-Soriano, F.J. Interleukin-15 is able to suppress the increased DNA fragmentation associated with muscle wasting in tumour-bearing rats. FEBS Lett. 2004, 569, 201–206. [Google Scholar] [CrossRef]
- Idorn, M.; Thor Straten, P. Exercise and cancer: From “healthy” to “therapeutic”? Cancer Immunol. Immunother. 2017, 66, 667–671. [Google Scholar] [CrossRef]
- Ashcraft, K.A.; Warner, A.B.; Jones, L.W.; Dewhirst, M.W. Exercise as adjunct therapy in cancer. Semin. Radiat. Oncol. 2018, 29, 16–24. [Google Scholar] [CrossRef]
- Becker-Hapak, M.K.; Shrestha, N.; McClain, E.; Dee, M.J.; Chaturvedi, P.; Leclerc, G.M.; Marsala, L.I.; Foster, M.; Schappe, T.; Tran, J.; et al. A fusion protein complex that combines IL-12, IL-15, and IL-18 signaling to induce memory-like NK cells for cancer immunotherapy. Cancer Immunol. Res. 2021, 9, 1071–1087. [Google Scholar] [CrossRef]
- Rojas-Martinez, A.; Cienfuegos-Jimenez, O.; Vazquez-Garza, E. CAR-NK cells for cancer therapy: Molecular redesign of the innate antineoplastic response. Curr. Gene Ther. 2022, 22, 303–318. [Google Scholar] [CrossRef]
CG (n = 7) | REG (n = 7) | CEG (n = 9) | p Value a | p Value b | |
---|---|---|---|---|---|
Age (Years) | 32.14 ± 9.83 | 26.86 ± 6.17 | 23.33 ± 6.30 | 0.043 | 0.086 |
Gender (M:F) | 3:4 | 2:5 | 1:8 | 0.352 | |
BMI (kg/m2) | 28.16 ± 6.29 | 29.29 ± 4.77 | 26.52 ± 7.19 | 0.881 | 0.680 |
FFM (kg) | 55.17 ± 13.00 | 63.88 ± 11.53 | 61.01 ± 14.70 | 0.244 | 0.471 |
PFFM (%) | 73.10 ± 17.31 | 79.72 ± 13.71 | 83.74 ± 15.59 | 0.215 | 0.415 |
BFM (kg) | 22.39 ± 14.76 | 17.40 ± 11.80 | 14.22 ± 13.80 | 0.273 | 0.500 |
PBFM (%) | 26.90 ± 17.31 | 20.27 ± 13.71 | 16.25 ± 15.59 | 0.215 | 0.415 |
SMM (kg) | 26.75 ± 7.14 | 30.78 ± 5.49 | 29.44 ± 8.10 | 0.312 | 0.566 |
PSMM (%) | 35.00 ± 8.08 | 38.27 ± 6.18 | 41.59 ± 6.97 | 0.109 | 0.208 |
IL-15 (observances) | 0.042 (0.11–0.055) | 0.049 (0.016–0.064) | 0.018 (0.001–0.061) | 0.769 | 0.007 |
Hemoglobin (mg/dL) | 8.20 (8.9–5.4) | 8.00 (6.10–8.70) | 6.75 (4.80–12.10) | 0.298 | 0.675 |
Neutrophiles (×103/µL) | 2.30 (0.4–89.4) | 0.70 (0.4–160.0) | 1.20 (0.40–12.10) | 0.490 | 0.867 |
Leucocytes (×103/µL) | 46.30 (1.3–386) | 19.50 (3.10–282.00) | 13.45 (1.80–171.50) | 0.490 | 0.675 |
Platelets (×103/µL) | 23.00 (14.0–62.00) | 49.00 (8.00–92.00) | 35.50 (7.00–109.00) | 0.298 | 0.867 |
CG (n = 7) | REG (n = 7) | CEG (n = 9) | p Value b | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Pre | Post | p Value a | Pre | Post | p Value a | Pre | Post | p Value a | ||
BMI (kg/m2) | 28.16 ± 6.29 | 27.17 ± 2.02 | 0.216 | 29.29 ± 4.77 | 26.91 ± 2.17 | 0.040 | 26.52 ± 7.19 | 24.95 ± 1.77 | 0.042 | 0.655 |
FFM (kg) | 55.17 ± 13.00 | 53.66 ± 4.87 | 0.544 | 63.88 ± 11.53 | 55.30 ± 5.26 | 0.011 | 61.01 ± 14.70 | 55.86 ± 4.29 | 0.029 | 0.942 |
PFFM (%) | 73.10 ± 17.31 | 71.41 ± 5.51 | 0.523 | 79.72 ± 13.71 | 74.98 ± 5.95 | 0.005 | 83.74 ± 15.59 | 81.10 ± 4.86 | 0.070 | 0.604 |
BFM (kg) | 22.39 ± 14.76 | 20.67 ± 4.50 | 0.533 | 17.40 ± 11.80 | 19.49 ± 4.86 | 0.012 | 14.22 ± 13.80 | 14.95 ± 3.97 | 0.445 | 0.422 |
PBFM (%) | 26.90 ± 17.31 | 28.54 ± 5.51 | 0.543 | 20.27 ± 13.71 | 25.01 ± 5.95 | 0.005 | 16.25 ± 15.59 | 18.90 ± 4.86 | 0.070 | 0.424 |
SMM (kg) | 26.75 ± 7.14 | 25.45 ± 2.41 | 0.282 | 30.78 ± 5.49 | 27.06 ± 2.61 | 0.003 | 29.44 ± 8.10 | 27.06 ± 2.13 | 0.072 | 0.861 |
PSMM (%) | 35.00 ± 8.08 | 33.95 ± 2.65 | 0.303 | 38.27 ± 6.18 | 36.99 ± 2.86 | 0.088 | 41.59 ± 6.97 | 39.16 ± 2.33 | 0.265 | 0.357 |
CG (n = 7) | REG (n = 7) | CEG (n = 9) | p Value b | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Pre | Post | p Value a | Pre | Post | p Value a | Pre | Post | p Value a | ||
Hemoglobin (g/dL) | 8.20 (8.9–5.4) | 8.60 (6.50–10.0) | 0.611 | 8.00 (6.10–8.70) | 7.40 (5.90–9.70) | 0.866 | 6.75 (4.80–12.10) | 8.40 (5.70–9.20) | 0.018 | 0.466 |
Neutrophiles (×103/µL) | 2.30 (0.4–89.4) | 3.02 (0.10–16.90) | 0.116 | 0.70 (0.4–160.0) | 0.20 (0.00–1.50) | 0.063 | 1.20 (0.40–12.10) | 0.40 (0.00–6.20) | 0.345 | 0.826 |
Leucocytes (×103/µL) | 46.30 (1.3–386) | 8.48 (0.30–47.60) | 0.091 | 19.50 (3.10–282.00) | 0.70 (0.20–3.20) | 0.028 | 13.45 (1.80–171.50) | 0.90 (0.30–2.50) | 0.063 | 0.263 |
Platelets (×103/µL) | 23.00 (14.0–62.0) | 53.00 (18.00–395.00) | 0.173 | 49.00 (8.00–92.00) | 44.00 (11.00–365.00) | 0.753 | 35.50 (7.00–109.00) | 48.00 (11.00–97.00) | 0.236 | 0.097 |
CG (n = 7) | REG (n = 7) | CEG (n = 9) | p Value | |
---|---|---|---|---|
Survival n (%) | 0.080 | |||
Alive | 3 (42.14) | 6 (85.7) | 8 (88.9) | |
Death | 4 (57.1) | 1 (14.3) | 1 (11.1) | |
Overall survival (days) | 412.71 ± 94.33 | 444.57 ± 146.65 | 488.55 ± 34.33 | 0.319 |
MRD + 45 days n (%) | 0.082 | |||
Positive | 7 (100) | 5 (71.4) | 9 (100) | |
Negative | 0 (0) | 2 (28.6) | 0 (0) | |
Relapse n (%) | 0.612 | |||
Absence | 5 (71.4) | 5 (71.4) | 8 (88.9) | |
Presence | 2 (28.8) | 2 (28.8) | 1 (11.1) | |
Response to induction n (%) | 0.264 | |||
Remission | 4 (57.1) | 6 (85.7) | 8 (88.9) | |
Refractory | 3 (42.9) | 1 (14.3) | 1(11.1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallardo Rodríguez, A.G.; Olarte Carrillo, I.; Martínez Tovar, A.; Cerón Maldonado, R.; Martínez Moreno, E.; Ramos Peñafiel, C.O. Effect of a Cross-Training and Resistance Exercise Routine on IL-15 in Adults with Type B Acute Lymphoblastic Leukemia during the Induction Phase: Randomized Pilot Study. J. Funct. Morphol. Kinesiol. 2024, 9, 4. https://doi.org/10.3390/jfmk9010004
Gallardo Rodríguez AG, Olarte Carrillo I, Martínez Tovar A, Cerón Maldonado R, Martínez Moreno E, Ramos Peñafiel CO. Effect of a Cross-Training and Resistance Exercise Routine on IL-15 in Adults with Type B Acute Lymphoblastic Leukemia during the Induction Phase: Randomized Pilot Study. Journal of Functional Morphology and Kinesiology. 2024; 9(1):4. https://doi.org/10.3390/jfmk9010004
Chicago/Turabian StyleGallardo Rodríguez, Adán Germán, Irma Olarte Carrillo, Adolfo Martínez Tovar, Rafael Cerón Maldonado, Emmanuel Martínez Moreno, and Christian Omar Ramos Peñafiel. 2024. "Effect of a Cross-Training and Resistance Exercise Routine on IL-15 in Adults with Type B Acute Lymphoblastic Leukemia during the Induction Phase: Randomized Pilot Study" Journal of Functional Morphology and Kinesiology 9, no. 1: 4. https://doi.org/10.3390/jfmk9010004
APA StyleGallardo Rodríguez, A. G., Olarte Carrillo, I., Martínez Tovar, A., Cerón Maldonado, R., Martínez Moreno, E., & Ramos Peñafiel, C. O. (2024). Effect of a Cross-Training and Resistance Exercise Routine on IL-15 in Adults with Type B Acute Lymphoblastic Leukemia during the Induction Phase: Randomized Pilot Study. Journal of Functional Morphology and Kinesiology, 9(1), 4. https://doi.org/10.3390/jfmk9010004