Effects of Resistance Training in Individuals with Lower Limb Amputation: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Procedures and Study Selection
2.2. Eligibility Criteria
2.3. Data Collection Process
2.4. Risk of Bias in Individual Studies
3. Results
3.1. Risk of Bias within Studies
3.2. Study Characteristics
3.3. Exercise Approaches and Studies Results
4. Discussion
4.1. Studies Qualities
4.2. Session Duration, Weekly Frequency, and Total Weeks (Months)
4.3. Participants
4.4. Exercise Protocols
4.4.1. Exercise Intensity
4.4.2. Number of Sets, Repetitions, and Rest Interval Length
4.4.3. Type of Exercises
4.5. Resistance Training Effects
4.5.1. Strength Gains
4.5.2. Fall Risk and Balance Analyses
4.5.3. Gait and Muscle Changes
4.5.4. Chronic Low Back Pain
4.6. Locomotion and Accessibility
4.7. Other Results
5. Review Limitations
6. Conclusions
7. Resistance Training Practical Recommendations for Amputees
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. World Report on Disability 2011. 2011. Available online: https://apps.who.int/iris/rest/bitstreams/53067/retrieve (accessed on 22 July 2022).
- Ziegler-Graham, K.; MacKenzie, E.J.; Ephraim, P.L.; Travison, T.G.; Brookmeyer, R. Estimating the prevalence of limb loss in the united states: 2005 to 2050. Arch. Phys. Med. Rehabil. 2008, 89, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Hewson, A.; Dent, S.; Sawers, A. Strength deficits in lower limb prosthesis users: A scoping review. Prosthet. Orthot. Int. 2020, 44, 323–340. [Google Scholar] [CrossRef] [PubMed]
- Wilhoite, S.; Williams, S.; Cook, J.; Ryan, G. Rehabilitation, guidelines, and exercise prescription for lower limb amputees. Strength Cond. J. 2020, 42, 95–102. [Google Scholar] [CrossRef]
- Fleck, S.J.; Kraemer, W.J. Fundamentos do Treinamento de Força Muscular, 4th ed.; Artmed Editora: Porto Alegre, Brasil, 2017. [Google Scholar]
- Galvão, T.F.; de Souza Andrade Pansani, T.; Harrad, D. Principais itens para relatar Revisões sistemáticas e Meta-análises: A recomendação PRISMA. Epidemiol. Serv. Saúde 2015, 24, 335–342. [Google Scholar] [CrossRef]
- Smart, N.A.; Waldron, M.; Ismail, H.; Giallauria, F.; Vigorito, C.; Cornelissen, V.; Dieberg, G. Validation of a new tool for the assessment of study quality and reporting in exercise training studies: TESTEX. Int. J. Evid. Based Healthc. 2015, 13, 9–18. [Google Scholar] [CrossRef]
- García-García, Ó.; Mosteiro, S.; Suárez-Iglesias, D.; Ayán, C. Exercise training program in children with lower-limb amputation. Rev. Assoc. Med. Bras. 2021, 67, 277–281. [Google Scholar] [CrossRef]
- Miller, C.A.; Williams, J.E.; Durham, K.L.; Hom, S.C.; Smith, J.L. The effect of a supervised community–based exercise program on balance, balance confidence, and gait in individuals with lower limb amputation. Prosthet. Orthot. Int. 2017, 41, 446–454. [Google Scholar] [CrossRef]
- Mosteiro-Losada, S.; Varela, S.; García-García, O.; Martínez-Lemos, I.; Ayán, C. Effects of including core strengthening exercise as part of a comprehensive rehabilitation programmes on people with lower-limb amputation: A pilot study. Int. J. Ther. Rehabil. 2021, 28, 1–10. [Google Scholar] [CrossRef]
- Schafer, Z.A.; Vanicek, N. A block randomised controlled trial investigating changes in postural control following a personalised 12-week exercise programme for individuals with lower limb amputation. Gait Posture 2021, 84, 198–204. [Google Scholar] [CrossRef]
- Shin, M.K.; Yang, H.S.; Yang, H.E.; Kim, D.H.; Ahn, B.R.; Kwon, H.; Lee, J.H.; Jung, S.; Choi, H.C.; Yun, S.K.; et al. Effects of lumbar strengthening exercise in lower-limb amputees with chronic low back pain. Ann. Rehabil. Med. 2018, 42, 59. [Google Scholar] [CrossRef]
- Tipchatyotin, S.; Choochuay, S.; Kaewwongkot, C.; Wongphaet, P. The effects of isokinetic hip muscles training on gait performance in above-knee amputees: A quasi-experimental study. J. Med. Assoc. Thail. 2020, 103, 128–133. Available online: http://www.jmatonline.com/index.php/jmat/article/view/10624 (accessed on 7 July 2022).
- Anjum, H.; Amjad, I.; Malik, A.N. Effectiveness of proprioceptive neuromuscular facilitation techniques as compared to traditional strength training in gait training among transtibial amputees. J. Coll. Physicians Surg. Pak. 2016, 26, 503–506. [Google Scholar]
- Nolan, L. A training programme to improve hip strength in persons with lower limb amputation. J. Rehabil. Med. 2012, 44, 241–248. [Google Scholar] [CrossRef]
- Donachy, J.; Brannon, K.; Hughes, L.; Seahorn, J.; Crutcher, T.; Christian, E. Strength and endurance training of an individual with left upper and lower limb amputations. Disabil. Rehabil. 2004, 26, 495–499. [Google Scholar] [CrossRef]
- Pauley, T.; Devlin, M.; Madan-Sharma, P. A single-blind, cross-over trial of hip abductor strength training to improve Timed Up & Go performance in patients with unilateral, transfemoral amputation. J. Rehabil. Med. 2014, 46, 264–270. [Google Scholar] [CrossRef]
- Campos, D.B.P. Diretrizes do ACSM para os Testes de Esforço e sua Prescrição, 9th ed.; Editora Guanabara: Rio de Janeiro, Brasil, 2014. [Google Scholar]
- Ferreira, E.G.; De Souza, W.J.; Da Silva, C.A.P.; Novikoff, C.; Rosário, V.H.R.D.; De Oliveira, P.S.P.; Triani, F.D.S. O acesso para cadeirantes em academias de ginástica: Um estudo realizado na Zona Oeste do Rio de Janeiro. Rev. Assoc. Bras. Ativ. Mot. Adapt. 2018, 19, 39–48. [Google Scholar] [CrossRef]
- Medola, F.O.; Macedo, D.L.; Carreri, D.S.S.; Marques, E.F.A.; Kikuchi, L.T.; Costa, N.L.; Busto, R.M. Acessibilidade de um centro de treinamento esportivo para usuários de cadeira de rodas. Rev. Neurociências 2011, 19, 244–249. [Google Scholar] [CrossRef]
- Miller, W.C.; Speechley, M.; Deathe, B. The prevalence and risk factors of falling and fear of falling among lower extremity amputees. Arch. Phys. Med. Rehabil. 2001, 82, 1031–1037. [Google Scholar] [CrossRef]
- Baraúna, M.; Duarte, F.; Sanchez, H.; Canto, R.; Malusa, S.; Campelo-Silva, C.; Ventura-Silva, R. Avaliação do equilíbrio estático em indivíduos amputados de membros inferiores através da biofotogrametria computadorizada. Rev. Bras. Fisioter. 2006, 10, 83–90. [Google Scholar] [CrossRef]
- Wong, C.; Chihuri, S.; Li, G. Risk of fall-related injury in people with lower limb amputations: A prospective cohort study. J. Rehabil. Med. 2016, 48, 80–85. [Google Scholar] [CrossRef]
- Nolan, L.; Wit, A.; Dudziñski, K.; Lees, A.; Lake, M.; Wychowañski, M. Adjustments in gait symmetry with walking speed in trans-femoral and trans-tibial amputees. Gait Posture 2003, 17, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Lamoth, C.J.C.; Ainsworth, E.; Polomski, W.; Houdijk, H. Variability and stability analysis of walking of transfemoral amputees. Med. Eng. Phys. 2010, 32, 1009–1014. [Google Scholar] [CrossRef] [PubMed]
- Bona, R.L.; Peyré-Tartaruga, L.A. Mecânica e Energética da Locomoção de Amputados: Uma Revisão. Pensar Prática 2011, 14, 1–14. [Google Scholar] [CrossRef]
- Kaufman, K.R.; Frittoli, S.; Frigo, C.A. Gait asymmetry of transfemoral amputees using mechanical and microprocessor-controlled prosthetic knees. Clin. Biomech. 2012, 27, 460–465. [Google Scholar] [CrossRef] [PubMed]
- Wasser, J.G.; Vincent, K.R.; Herman, D.C.; Vincent, H.K. Potential lower extremity amputation-induced mechanisms of chronic low back pain: Role for focused resistance exercise. Disabil. Rehabil. 2020, 42, 3713–3721. [Google Scholar] [CrossRef]
- Schinaider, A.P.S.; Garcez, A.; Sant’Anna, P.C.F. Prevalência de dor lombar em pacientes com amputação de membro inferior atendidos em um centro de reabilitação da região metropolitana de Porto Alegre/RS (Br). RSD 2020, 9, e866998004. [Google Scholar] [CrossRef]
- Sanchez, G.C.; Alves, M.H.; Arroyo, C.T.; de Olveira, E.L. Treinamento resistido para pessoas com deficiência física: Qualidade de vida, autonomia e independência. Rev. Assoc. Bras. Ativ. Mot. Adapt. 2021, 22, 15–26. [Google Scholar] [CrossRef]
- Monteiro, J.A.; Silva, M.S. A importância da atividade física para os deficientes físicos. Lect. Educ. Física Deportes 2010, 148. Available online: https://efdeportes.com/efd148/atividade-fisica-para-os-deficientes-fisicos.htm (accessed on 7 July 2022).
- Pastre, C.M.; Salioni, J.F.; Oliveira, B.A.F.; Micheletto, M.; Netto Júnior, J. Fisioterapia e amputação transtibial. Arq. Ciênc. Saúde 2005, 120–124. Available online: http://repositorio-racs.famerp.br/racs_ol/Vol-12-2/11.pdf (accessed on 7 July 2022).
- Sinha, R.; van den Heuvel, W.J.; Arokiasamy, P. Factors affecting quality of life in lower limb amputees. Prosthet. Orthot. Int. 2011, 35, 90–96. [Google Scholar] [CrossRef]
- Christensen, J.; Ipsen, T.; Doherty, P.; Langberg, H. Physical and social factors determining quality of life for veterans with lower-limb amputation(S): A systematic review. Disabil. Rehabil. 2016, 38, 2345–2353. [Google Scholar] [CrossRef]
No | Descriptors |
---|---|
1 | (“strength training” OR “exercise program” OR “strengthening Program” OR “resistance training” OR “exercise Prescription”) AND (amputee OR amputation) AND (“lower limb” OR “lower extremity”) |
Database | Found Articles (N =156) |
---|---|
BVS | 2 |
Cochrane | 1 |
PubMed/Medline | 21 |
Embase | 56 |
Scopus | 50 |
Web Of Science | 26 |
Authors | Criteria | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Total | |
García-García et al., 2021 [8] | N/A | N/A | N/A | N/A | N/A | 2 ** | N/A | N/A | N/A | N/A | 1 | 0 | 3 |
Miller et al., 2017 [9] | 1 | N/A | N/A | N/A | N/A | 2 ** | N/A | N/A | 1 | N/A | 1 | 0 | 5 |
Mosteiro-Losada et al., 2021 [10] | 1 | N/A | N/A | N/A | N/A | 3 | N/A | N/A | 1 | N/A | 1 | 1 | 7 |
Schafer and Vanicek, 2021 [11] | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 2 | 1 | 0 | 1 | 0 | 10 |
Shin et al., 2018 [12] | 1 | N/A | N/A | N/A | N/A | 1 *,** | 0 | N/A | 1 | N/A | 0 | 0 | 3 |
Tipchatyotin et al., 2019 [13] | 1 | N/A | N/A | N/A | N/A | 1 *,** | 0 | N/A | 1 | N/A | 0 | 0 | 3 |
Anjum, Amjad, and Malik, 2016 [14] | 1 | 1 | 0 | 1 | 0 | 0 * | N/A | 2 | 1 | 1 | 0 | 0 | 7 |
Nolan, 2012 [15] | 1 | 1 | 0 | 1 | 0 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 11 |
Donachy et al., 2004 [16] | N/A | N/A | N/A | N/A | N/A | 2 ** | N/A | N/A | N/A | N/A | 1 | 1 | 4 |
Pauley, Devlin, and Madan-Sharma, 2014 [17] | 1 | 1 | 1 | 1 | 1 | 3 | 1 | 2 | 1 | 1 | 0 | 1 | 14 |
García-García et al., 2021 [8] | N/A | N/A | N/A | N/A | N/A | 2 ** | N/A | N/A | N/A | N/A | 1 | 0 | 3 |
Author/Year/Country | Study Design/Aims | Participants | Amputation Level | Assessment Tools |
---|---|---|---|---|
García-García et al.2021, [8]; Spain | Case study. Provide information regarding th] characteristics and effectiveness of a rehabilitation exercise developed for children with lower-limb amputation. | N = 2; children. C1: boy, 8 years old. C2: girl, 9 years old | C1: Transtibial C2: Bilateral | Walking ability and walking speed; L-test of functional mobility; 10-m walk test (10MWT); tensiomyography (TMG). |
Miller et al., 2017 [9]; USA | Non-randomized clinical trial. Explore the impact of a supervised community–based exercise program on balance, balance confidence, and gait in individuals with lower limb amputation | N = 16; mean age: 50.8 years (range 22–87); male (31.2%)/female (68.8%); amputation mean time: 8 years; prosthesis use mean time: 10.4 h/day; convenience sample | Not specified | Pre-test: PAR-Q; GAITRite Gold; figure-of-8 walk test (F8W); activity-specific balance confidence scale (ABC). Post-test: GAITRite Gold; figure-of-8 walk test (F8W); activity-specific balance confidence scale (ABC); |
Mosteiro-Losada et al., 2021 [10]; Spain | Pilot study. Analyze functional mobility, walking speed, range of motion, and quality of life changes of lower limbs amputees after an exercise program. | N = 6; age: 56.83 ± 9.70 years; female (N = 1); male (N = 5); | Not specified | L-test; 10-m walk test (10MWT); range of motion; 36-item short form health survey (SF-36) |
Schafer e Vanicek, 2021 [11]; United Kingdom | Randomized clinical trial. Evaluate the effectiveness of a 12-week personalized exercise program on postural control for individuals with lower limb amputation during different balancing conditions when the somatosensory, visual, and vestibular systems were challenged. | N = 14; control group (N = 7) male (N = 7), female (N = 0); age: 63 (DP = 17); amputation time: 18 years (SD = 21). Intervention group (N = 7) male (N = 4), female (N = 3); age: 60 years (SD = 12); amputation time: 10 years (SD = 17). | Transfemoral (N = 5) Transtibial (N = 2) | Sensory organization test (SOT); motor control test (MCT); ABC scale. |
Shin et al., 2018 [12]; South Korea | Prospective study; Analyze the effect of lumbar strengthening exercise in lower-limb amputees with chronic low back pain | N = 19; mean age: 63.9 ± 7.4 years; amputation time: 39.6 ± 7.5. | Transfemoral (N = 5) Knee disarticulation (N = 1) Transtibial (N = 9) Syme (N = 1) | Visual analog scale (VAS); Korean version of the Oswestry Disability Index (K-ODI); Thomas test; Sorensen Test; trunk-raising test; prone-lying trunk-raising test. |
Tipchatyotin et al., 2019 [13]; Thailand | A quasi-experimental study. Evaluate the effect of hip muscle strengthening exercise on gait performance in above-the-knee amputees. | N = 8; mean age: 52.5 ± 13.7 years; male (N = 6); female (N = 2); | Not specified | Gait parameters; 10-m walk test (10MWT); hip muscle strength |
Anjum, Amjad, Malik, 2016 [14]; Pakistan | Randomized clinical trial. Determine the effects of proprioceptive neuromuscular facilitation (PNF) techniques as compared with traditional strength training (TPT) in improving ambulatory function in subjects with trans-tibial amputation. | N = 63; randomized groups: PNF (N = 31)/TPT (N = 32) | Transtibial | Locomotive capacity index and gait parameters |
Nolan, 2012 [15]; Sweden | Randomized clinical trial. Investigate the effect of a 10-week training program on persons with lower limb amputation and determine if this training is sufficient to enable running. | N = 16; training group (N = 8): mean age 41.1 years (standard deviation (SD) = 8.4); average height 1.8 m (SD = 0.12); average body mass: 91.5 kg (SD = 25.5); amputation time: 8.2 years (SD = 9.2). Control group (N = 8): mean age: 49 years (SD = 9.1); average height: 1.7 m (SD = 0.08); average body mass: 76.2 kg (SD = 14.9); amputation time: 8.3 years (SD = 11.3); | Transtibial (N = 7) Transfemoral (N = 8) Bilateral (N = 1) | Hip strength; oxygen consumption; gait. |
Donachy et al., 2004 [16]; USA | Case study. Describe the development of a strength and endurance training program designed to prepare an individual with left glenohumeral disarticulation and transtibial amputation for a bike trip across the USA. | N = 1; man; 40 years old | Left Transtibial amputation and left shoulder disarticulation | Timed sit-up test; 10RM test; test of peak VO2. Tests were modified to compensate for this individual’s characteristics. |
Pauley, Devlin e Madan-Sharma, 2014 [17]; Canada | Randomized single-blind, crossover trial. Evaluate hip abductor strength training for transfemoral amputee patients. | N = 17; intervention group (N = 9); control group (N = 8); male (N = 13); female (N = 4); age: 67.8 years (SD = 5.2); amputation time: 7.3 years (SD = 8.2). | Right transfemoral amputation (N = 6) Left transfemoral amputation (N = 11) | Timed up and go test; two-minute walk test; hip abduction strength; ABC scale; Houghton scale. |
Author/Year/Country | Exercise Protocol Time | Interventions/Exercise Protocol | Results |
García-García et al., 2021 [8]; Spain | 20 weeks; 1×/week; 2 h/day. |
|
|
Miller et al., 2017 [9]; USA | 1 h/session; 2×/week; 6 weeks. |
|
|
Mosteiro-Losada et al., 2021 [10]; Spain. | 1st step: first w weeks; 1×/week 1 h/session; 2nd step: 3rd week; 1×/week; 3rd etapa: 4th week; 1×/week; 2 h/session. Warming (15 min); main (time n/i); calm down (10 min) |
|
|
Schafer e Vanicek, 2021 [11]; United Kingdom | 12 weeks; 2×/week circuit at university; 1×/week at home, 2×/week after 6 weeks | Intervention group: exercises included concentric and eccentric strengthening of key muscle groups (plantar flexors, knee extensors, hip extensors, flexors, abductors and adductors, and abdominal muscles) and dynamic balance (including picking up objects from the floor and balancing on a compliant surface). Control group: usual activities. |
|
Shin et al., 2018 [12]; South Korea | 8 weeks; 2×/week; 30 min/session |
|
|
Tipchatyotin et al., 2019 [13]; Thailand. | 3 weeks; 2×/week |
|
|
Anjum, Amjad, Malik, 2016 [14]; Pakistan | 4 weeks; 30 min/session. |
|
|
Nolan, 2012 [15]; Sweden. | 10 weeks; 2×/week w/1 day rest. |
|
|
Donachy et al., 2004 [16]; USA | 2 months; 1st step: 3×/week; 2nd step: 2×/week. |
|
|
Pauley, Devlin e Madan-Sharma, 2014 [17]; Canada | 8 weeks; 2×/week |
|
|
Variable | Evidence-Based Recommendations |
---|---|
Muscle groups |
|
Frequency | 2× to 3× a week per muscle group. |
Intensity | 10RM test to define 1RM value. We suggest the ACSM’s recommendations (2014) consider starting training with 40–50% of 1RM. |
Time | It was not possible to define an ideal time for resistance training. |
Sets | Start with 1 series and gradually evolve to 3 series for strength gains in amputees. |
Repetitions | Start with 10 repetitions, progressing to 12 and up to 15. |
Rest | It was not possible to set an ideal rest interval, so we recommend following the ACSM’s recommendations of 2–3 min rest. |
Progression | Ideally, there should be progressive weight, number of repetitions, and sets. |
Type |
|
Equipment | It is recommended to adapt the equipment, if necessary. Weight machines, free weights, elastic bands, body weight, and ankle weights may be used. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosario, M.L.V.V.; Costa, P.B.; da Silveira, A.L.B.; Florentino, K.R.C.; Casimiro-Lopes, G.; Pimenta, R.A.; Dias, I.; Bentes, C.M. Effects of Resistance Training in Individuals with Lower Limb Amputation: A Systematic Review. J. Funct. Morphol. Kinesiol. 2023, 8, 23. https://doi.org/10.3390/jfmk8010023
Rosario MLVV, Costa PB, da Silveira ALB, Florentino KRC, Casimiro-Lopes G, Pimenta RA, Dias I, Bentes CM. Effects of Resistance Training in Individuals with Lower Limb Amputation: A Systematic Review. Journal of Functional Morphology and Kinesiology. 2023; 8(1):23. https://doi.org/10.3390/jfmk8010023
Chicago/Turabian StyleRosario, Miguel L. V. V., Pablo B. Costa, Anderson L. B. da Silveira, Kairos R. C. Florentino, Gustavo Casimiro-Lopes, Ricardo A. Pimenta, Ingrid Dias, and Claudio Melibeu Bentes. 2023. "Effects of Resistance Training in Individuals with Lower Limb Amputation: A Systematic Review" Journal of Functional Morphology and Kinesiology 8, no. 1: 23. https://doi.org/10.3390/jfmk8010023
APA StyleRosario, M. L. V. V., Costa, P. B., da Silveira, A. L. B., Florentino, K. R. C., Casimiro-Lopes, G., Pimenta, R. A., Dias, I., & Bentes, C. M. (2023). Effects of Resistance Training in Individuals with Lower Limb Amputation: A Systematic Review. Journal of Functional Morphology and Kinesiology, 8(1), 23. https://doi.org/10.3390/jfmk8010023