Match Load Physical Demands in U-19 Professional Soccer Players Assessed by a Wearable Inertial Sensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Procedures
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Cinematic External Load Indicators
4.2. Mechanical External Load Indicators
4.3. Metabolic External Load Indicators
4.4. Strengths and Limitations of the Study
4.5. Practical Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mota, T.; Silva, R.; Clemente, F. Holistic soccer profile by position: A theoretical framework. Hum. Mov. 2021, 24, 1–17. [Google Scholar] [CrossRef]
- Bloomfield, J.; Polman, R.; O’Donoghue, P. Physical Demands of Different Positions in FA Premier League Soccer. J. Sports Sci. Med. 2007, 6, 63–70. [Google Scholar] [PubMed]
- Dolci, F.; Hart, N.H.; Kilding, A.E.; Chivers, P.; Piggott, B.; Spiteri, T. Physical and Energetic Demand of Soccer: A Brief Review. Strength Cond. J. 2020, 42, 70–77. [Google Scholar] [CrossRef]
- Jeffries, A.C.; Marcora, S.M.; Coutts, A.J.; Wallace, L.; McCall, A.; Impellizzeri, F.M. Development of a Revised Conceptual Framework of Physical Training for Use in Research and Practice. Sports Med. 2021, 52, 709–724. [Google Scholar] [CrossRef]
- Buchheit, M.; Laursen, P.B. High-intensity interval training, solutions to the programming puzzle. Part II: Anaerobic energy, neuromuscular load and practical applications. Sports Med. 2013, 43, 927–954. [Google Scholar] [CrossRef]
- Rossi, A.; Pappalardo, L.; Cintia, P.; Iaia, F.M.; Fernàndez, J.; Medina, D. Effective injury forecasting in soccer with GPS training data and machine learning. PLoS ONE 2018, 13, e0201264. [Google Scholar] [CrossRef]
- Gabbett, T.J.; Nassis, G.P.; Oetter, E.; Pretorius, J.; Johnston, N.; Medina, D.; Rodas, G.; Myslinski, T.; Howells, D.; Beard, A.; et al. The athlete monitoring cycle: A practical guide to interpreting and applying training monitoring data. Br. J. Sports Med. 2017, 51, 1451–1452. [Google Scholar] [CrossRef]
- Oliva-Lozano, J.M.; Fortes, V.; Krustrup, P.; Muyor, J.M. Acceleration and sprint profiles of professional male football players in relation to playing position. PLoS ONE 2020, 15, e0236959. [Google Scholar] [CrossRef]
- Krustrup, P.; Mohr, M.; Ellingsgaard, H.; Bangsbo, J. Physical Demands during an Elite Female Soccer Game: Importance of Training Status. Med. Sci. Sports Exerc. 2005, 37, 1242–1248. [Google Scholar] [CrossRef]
- Chmura, P.; Konefał, M.; Chmura, J.; Kowalczuk, E.; Zając, T.; Rokita, A.; Andrzejewski, M. Match outcome and running performance in different intensity ranges among elite soccer players. Biol. Sport 2018, 35, 197–203. [Google Scholar] [CrossRef]
- Stølen, T.; Chamari, K.; Castagna, C.; Wisløff, U. Physiology of soccer: An update. Sports Med. 2005, 35, 501–536. [Google Scholar] [CrossRef]
- Baptista, I.; Johansen, D.; Figueiredo, P.; Rebelo, A.; Pettersen, S.A. Positional Differences in Peak- and Accumulated- Training Load Relative to Match Load in Elite Football. Sports 2019, 8, 1. [Google Scholar] [CrossRef]
- Brito, Â.; Roriz, P.; Duarte, R.; Garganta, J. Match-running performance of young soccer players in different game formats. Int. J. Perform. Anal. Sport 2018, 18, 410–422. [Google Scholar] [CrossRef]
- Osgnach, C.; Poser, S.; Bernardini, R.; Rinaldo, R.; Di Prampero, P.E. Energy cost and metabolic power in elite soccer: A new match analysis approach. Med. Sci. Sport. Exerc. 2010, 42, 170–178. [Google Scholar] [CrossRef]
- Ehrmann, F.; Duncan, C.S.; Sindhusake, D.; Franzsen, W.N.; Greene, D.A. GPS and Injury Prevention in Professional Soccer. J. Strength Cond. Res. 2015, 30, 360–367. [Google Scholar] [CrossRef]
- Van Eetvelde, H.; Mendonça, L.D.; Ley, C.; Seil, R.; Tischer, T. Machine learning methods in sport injury prediction and prevention: A systematic review. J. Exp. Orthop. 2021, 8, 27. [Google Scholar] [CrossRef]
- Varley, M.; Fairweather, I.H.; Aughey, R.J. Validity and reliability of GPS for measuring instantaneous velocity during acceleration, deceleration, and constant motion. J. Sports Sci. 2012, 30, 121–127. [Google Scholar] [CrossRef]
- Falbriard, M.; Meyer, F.; Mariani, B.; Millet, G.P.; Aminian, K. Accurate Estimation of Running Temporal Parameters Using Foot-Worn Inertial Sensors. Front. Physiol. 2018, 9, 610. [Google Scholar] [CrossRef]
- Al Haddad, H.; Méndez-Villanueva, A.; Torreño, N.; Munguía-Izquierdo, D.; Suárez-Arrones, L. Variability of GPS-derived running performance during official matches in elite professional soccer players. J. Sports Med. Phys. Fit. 2017, 58, 1439–1445. [Google Scholar] [CrossRef]
- Hands, D.E.; Janse de Jonge, X. Current time-motion analyses of professional football matches in top-level domestic leagues: A systematic review. Int. J. Perform. Anal. Sport 2020, 20, 747–765. [Google Scholar] [CrossRef]
- Di Salvo, V.; Baron, R.; Tschan, H.; Calderon Montero, F.J.; Bachl, N.; Pigozzi, F. Performance Characteristics According to Playing Position in Elite Soccer. Int. J. Sports Med. 2007, 28, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Sarmento, H.; Clemente, F.M.; Harper, L.D.; Costa, I.T.D.; Owen, A.; Figueiredo, A.J. Small sided games in soccer—a systematic review. Int. J. Perform. Anal. Sport 2018, 18, 693–749. [Google Scholar] [CrossRef]
- Di Salvo, V.; Baron, R.; González-Haro, C.; Gormasz, C.; Pigozzi, F.; Bachl, N. Sprinting analysis of elite soccer players during European Champions League and UEFA Cup matches. J. Sports Sci. 2010, 28, 1489–1494. [Google Scholar] [CrossRef] [PubMed]
- Gregson, W.; Drust, B.; Atkinson, G.; Salvo, V.D. Match-to-Match Variability of High-Speed Activities in Premier League Soccer. Int. J. Sports Med. 2010, 31, 237–242. [Google Scholar] [CrossRef]
- Mohr, M.; Krustrup, P.; Bangsbo, J. Match performance of high-standard soccer players with special reference to development of fatigue. J. Sports Sci. 2003, 21, 519–528. [Google Scholar] [CrossRef]
- Miguel, M.; Oliveira, R.; Brito, J.P.; Loureiro, N.; García-Rubio, J.; Ibáñez, S.J. External Match Load in Amateur Soccer: The Influence of Match Location and Championship Phase. Healthcare 2022, 10, 594. [Google Scholar] [CrossRef]
- Saward, C.; Morris, J.G.; Nevill, M.E.; Nevill, A.M.; Sunderland, C. Longitudinal development of match-running performance in elite male youth soccer players. Scand. J. Med. Sci. Sports 2015, 26, 933–942. [Google Scholar] [CrossRef]
- Varley, M.C.; Gregson, W.; McMillan, K.; Bonanno, D.; Stafford, K.; Modonutti, M.; Di Salvo, V. Physical and technical performance of elite youth soccer players during international tournaments: Influence of playing position and team success and opponent quality. Sci. Med. Footb. 2016, 1, 18–29. [Google Scholar] [CrossRef]
- Buchheit, M.; Mendez-Villanueva, A.; Simpson, B.M.; Bourdon, P.C. Repeated-Sprint Sequences During Youth Soccer Matches. Int. J. Sports Med. 2010, 31, 709–716. [Google Scholar] [CrossRef]
- Pillitteri, G.; Thomas, E.; Battaglia, G.; Navarra, G.A.; Scardina, A.; Gammino, V.; Ricchiari, D.; Bellafiore, M. Validity and Reliability of an Inertial Sensor Device for Specific Running Patterns in Soccer. Sensors 2021, 21, 7255. [Google Scholar] [CrossRef]
- Riboli, A.; Coratella, G.; Rampichini, S.; Cé, E.; Esposito, F. Area per player in small-sided games to replicate the external load and estimated physiological match demands in elite soccer players. PLoS ONE 2020, 15, e0229194. [Google Scholar] [CrossRef] [PubMed]
- Riboli, A.; Olthof, S.B.; Esposito, F.; Coratella, G. Training elite youth soccer players: Area per player in small-sided games to replicate the match demands. Biol. Sport 2022, 39, 579–598. [Google Scholar] [CrossRef] [PubMed]
- Di Prampero, P.E.; Fusi, S.; Sepulcri, L.; Morin, J.B.; Belli, A.; Antonutto, G. Sprint running: A new energetic approach. J. Exp. Biol. 2005, 208, 2809–2816. [Google Scholar] [CrossRef]
- Minetti, A.E.; Moia, C.; Roi, G.S.; Susta, D.; Ferretti, G. Energy cost of walking and running at extreme uphill and downhill slopes. J. Appl. Physiol. 2002, 93, 1039–1046. [Google Scholar] [CrossRef] [PubMed]
- Coutts, A.J.; Duffield, R. Validity and reliability of GPS devices for measuring movement demands of team sports. J. Sci. Med. Sport 2010, 13, 133–135. [Google Scholar] [CrossRef]
- Impellizzeri, F.M.; Marcora, S.M.; Coutts, A.J. Internal and External Training Load: 15 Years On. Int. J. Sports Physiol. Perform. 2019, 14, 270–273. [Google Scholar] [CrossRef]
- Ravé, G.; Granacher, U.; Boullosa, D.; Hackney, A.C.; Zouhal, H. How to Use Global Positioning Systems (GPS) Data to Monitor Training Load in the “Real World” of Elite Soccer. Front. Physiol. 2020, 11, 944. [Google Scholar] [CrossRef]
- Abbott, W.; Brickley, G.; Smeeton, N.J. Physical demands of playing position within {English} {Premier} {League} academy soccer. J. Hum. Sport Exerc. 2018, 13, 285–295. [Google Scholar] [CrossRef]
- Ademović, A. Differences In the Quantity and Intesity of Playing In Elite Soccer Players of Different Position in the Game. Homosporticus 2016, 18, 26–31. [Google Scholar]
- Andrzejewski, M.; Konefał, M.; Chmura, P.; Kowalczuk, E.; Chmura, J. Match outcome and distances covered at various speeds in match play by elite German soccer players. Int. J. Perform. Anal. Sport 2016, 16, 817–828. [Google Scholar] [CrossRef]
- Aslan, A.; Acikada, C.; Güvenç, A.; Gören, H.; Hazir, T.; Ozkara, A. Metabolic demands of match performance in young soccer players. J. Sports Sci. Med. 2012, 11, 170–179. [Google Scholar]
- Mendez-Villanueva, A.; Buchheit, M.; Simpson, B.; Bourdon, P.C. Match Play Intensity Distribution in Youth Soccer. Int. J. Sports Med. 2013, 34, 101–110. [Google Scholar] [CrossRef]
- Di Salvo, V.; Gregson, W.; Atkinson, G.; Tordoff, P.; Drust, B. Analysis of High Intensity Activity in Premier League Soccer. Int. J. Sports Med. 2009, 30, 205–212. [Google Scholar] [CrossRef]
- Ingebrigtsen, J.; Dalen, T.; Hjelde, G.H.; Drust, B.; Wisløff, U. Acceleration and sprint profiles of a professional elite football team in match play. Eur. J. Sport Sci. 2014, 15, 101–110. [Google Scholar] [CrossRef]
- Ade, J.; Fitzpatrick, J.; Bradley, P.S. High-intensity efforts in elite soccer matches and associated movement patterns, technical skills and tactical actions. Information for position-specific training drills. J. Sports Sci. 2016, 34, 2205–2214. [Google Scholar] [CrossRef]
- Orendurff, M.S.; Walker, J.D.; Jovanovic, M.; Tulchin, K.L.; Levy, M.; Hoffmann, D.K. Intensity and Duration of Intermittent Exercise and Recovery During a Soccer Match. J. Strength Cond. Res. 2010, 24, 2683–2692. [Google Scholar] [CrossRef]
- Bangsbo, J. Energy demands in competitive soccer. J. Sports Sci. 1994, 12, S5–S12. [Google Scholar] [CrossRef]
- Gaudino, P.; Iaia, F.M.; Alberti, G.; Strudwick, A.J.; Atkinson, G.; Gregson, W. Monitoring Training in Elite Soccer Players: Systematic Bias between Running Speed and Metabolic Power Data. Int. J. Sports Med. 2013, 34, 963–968. [Google Scholar] [CrossRef]
- Bangsbo, J.; Nørregaard, L.; Thorsø, F. Activity profile of competition soccer. Can. J. Sport Sci. = J. Can. des Sci. du Sport 1991, 16, 110–116. [Google Scholar]
- Aquino, R.; Carling, C.; Vieira, L.H.P.; Martins, G.; Jabor, G.; Machado, J.; Santiago, P.; Garganta, J.; Puggina, E. Influence of Situational Variables, Team Formation, and Playing Position on Match Running Performance and Social Network Analysis in Brazilian Professional Soccer Players. J. Strength Cond. Res. 2020, 34, 808–817. [Google Scholar] [CrossRef]
- Trewin, J.; Meylan, C.; Varley, M.; Cronin, J. The influence of situational and environmental factors on match-running in soccer: A systematic review. Sci. Med. Footb. 2017, 1, 183–194. [Google Scholar] [CrossRef]
- Altmann, S.; Neumann, R.; Woll, A.; Härtel, S. Endurance Capacities in Professional Soccer Players: Are Performance Profiles Position Specific? Front. Sports Act. Living 2020, 2, 549897. [Google Scholar] [CrossRef] [PubMed]
- Rampinini, E.; Coutts, A.J.; Castagna, C.; Sassi, R.; Impellizzeri, F.M. Variation in top level soccer match performance. Int. J. Sports Med. 2007, 28, 1018–1024. [Google Scholar] [CrossRef]
- Dalen, T.; Jørgen, I.; Gertjan, E.; Havard, H.G.; Ulrik, W. Player Load, Acceleration, and Deceleration During Forty-Five Competitive Matches of Elite Soccer. J. Strength Cond. Res. 2016, 30, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, M.; Samozino, P.; Glynn, J.A.; Michael, B.S.; Al Haddad, H.; Mendez-Villanueva, A.; Morin, J.-B. Mechanical determinants of acceleration and maximal sprinting speed in highly trained young soccer players. J. Sports Sci. 2014, 32, 1906–1913. [Google Scholar] [CrossRef]
- Little, T.; Williams, A.G. Specificity of acceleration, maximum speed, and agility in professional soccer players. J. Strength Cond. Res. 2005, 19, 76–78. [Google Scholar]
- Varley, M.C.; Aughey, R.J. Acceleration profiles in elite Australian soccer. Int. J. Sport. Med. 2013, 34, 34–39. [Google Scholar] [CrossRef]
- Vanrenterghem, J.; Nedergaard, N.J.; Robinson, M.A.; Drust, B. Training Load Monitoring in Team Sports: A Novel Framework Separating Physiological and Biomechanical Load-Adaptation Pathways. Sports Med. 2017, 47, 2135–2142. [Google Scholar] [CrossRef]
- Hader, K.; Mendez-Villanueva, A.; Palazzi, D.; Ahmaidi, S.; Buchheit, M. Metabolic Power Requirement of Change of Direction Speed in Young Soccer Players: Not All Is What It Seems. PLoS ONE 2016, 11, e0149839. [Google Scholar] [CrossRef]
- Riboli, A.; Esposito, F.; Coratella, G. Small-Sided Games in Elite Football: Practical Solutions to Replicate the 4-min Match-Derived Maximal Intensities. J. Strength Cond. Res. 2022, 37, 366–374. [Google Scholar] [CrossRef]
- Bourgeois, F.A.; McGuigan, M.R.; Gill, N.D.; Gamble, P. Physical characteristics and performance in change of direction tasks: A brief review and training considerations. J. Aust. Strength Cond. 2017, 25, 104–117. [Google Scholar]
- DeWeese, B.H.; Nimphius, S. Program design and technique for speed and agility training. In Essentials of Strength Training and Conditioning; Human Kinetics Publishers: Champaign, IL, USA, 2018. [Google Scholar]
- Manzi, V.; Annino, G.; Savoia, C.; Caminiti, G.; Padua, E.; Masucci, M.; D’Onofrio, R.; Iellamo, F. Relationship between aerobic fitness and metabolic power metrics in elite male soccer players. Biol. Sport 2022, 39, 599–606. [Google Scholar] [CrossRef]
Indicators | Type | Description (Unit of Measure) |
---|---|---|
TD | Cinematic/volume | Total distance covered (m) |
MS * | Cinematic/intensity | Maximum speed reached (even for <1 s) |
N°INTACC * | Mechanical/volume | Number of intense accelerations >2 m/s2 |
N°INTDEC * | Mechanical/volume | Number of intense decelerations >2 m/s2 |
TDA | Mechanical/volume | Distance traveled with positive acceleration (i.e., with speed increase) (m) |
TDD | Mechanical/volume | Distance traveled with negative acceleration (i.e., with speed decrease) (m) |
N°HSR * | Cinematic/volume | Number of high-intensity running at >20 km/h |
WT | Cinematic/volume | Time spent in the various speed zones (<6 km/h) (s) |
THSR * | Cinematic/volume | Time spent in the various speed zones (>20 km/h) (s) |
WD | Cinematic/volume | Distance traveled in the various speed zones (<6 km/h) (m) |
DHSR * | Cinematic/volume | Distance traveled in the various speed zones (>20 km/h) (m) |
MP * | Metabolic/intensity | Metabolic Power (w·kg−1) was calculated by multiplying EC (in J·kg−1·m−1) by running speed (v; in m·s−1) at any given moment (i.e., every 0.2 s): P met = EC·v.In order to assess metabolic power, considering the energy expenditure and derived, the equation developed by di Prampero et al. [33] established on previously studies by Minetti et al. [34] and Osgnach et al. [14] was adopted. (Watt = w) |
TLMP | Metabolic/volume | Time spent in various metabolic power zones (<10 w) (s) |
THMP * | Metabolic/volume | Time spent in various metabolic power zones (20–35 w) (s) |
TEMP * | Metabolic/volume | Time spent in various metabolic power zones (35–55 w) (s) |
TMMP * | Metabolic/volume | Time spent in various metabolic power zones (>55 w) (s) |
DLMP | Metabolic/volume | Distance traveled in the various metabolic power zones (<10 w) (m) |
DHMP * | Metabolic/volume | Distance traveled in the various metabolic power zones (20–35 w) (m) |
DEMP * | Metabolic/volume | Distance traveled in the various metabolic power zones (35–55 w) (m) |
DMMP * | Metabolic/volume | Distance traveled in the various metabolic power zones (>55 w) (m) |
N°CoDR * | Mechanical/volume | Number of direction changes to the right >30° and with speed >2 m/s |
N°CoDL * | Mechanical/volume | Number of direction changes to the left >30° and with speed >2 m/s |
Cinematic | |||||||||
---|---|---|---|---|---|---|---|---|---|
TD (m) | MS (km/h) | N°HSR (Total) | WT (s) | THSR (s) | WD (m) | DHSR (m) | |||
MEAN | 5620 | 26.5 | 29.4 | 1451 | 54.7 | 1226 | 335 | ||
SD | 537 | 2.58 | 10.3 | 179 | 24.5 | 155 | 152 | ||
MIN | 4714 | 20.6 | 10 | 1106 | 13 | 987 | 76.5 | ||
MAX | 6557 | 30.8 | 58 | 1780 | 143 | 1539 | 880 | ||
Mechanical | |||||||||
N°INTACC (total) | N°INTDEC (total) | TDA (m) | TDD (m) | N°CoDR (total) | N°CoDL (total) | ||||
MEAN | 25.5 | 24.9 | 3018 | 2582 | 143 | 139 | |||
SD | 6.35 | 7.09 | 309 | 239 | 15.9 | 31.6 | |||
MIN | 16 | 9 | 2466 | 2161 | 105 | 76 | |||
MAX | 37 | 38 | 3569 | 3071 | 173 | 220 | |||
Metabolic | |||||||||
MP (w) | TLMP (s) | THMP (s) | TEMP (s) | TMMP (s) | DLMP (m) | DHMP (m) | DEMP (m) | DMMP (m) | |
MEAN | 10.7 | 1739 | 250 | 80.3 | 30.8 | 1883 | 998 | 399 | 179 |
SD | 1.12 | 139 | 46.3 | 21.5 | 10.6 | 120 | 207 | 119 | 67.5 |
MIN | 8.7 | 1502 | 172 | 33 | 14 | 1668 | 628 | 136 | 77.4 |
MAX | 13 | 2004 | 337 | 133 | 56 | 2197 | 1398 | 711 | 329 |
Cinematic | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
MATCH | TD (m) | MS (km/h) | N°HSR (Total) | WT (s) | THSR (s) | WD (m) | DHSR (m) | |||
MEAN | 1 | 5708 | 26.8 | 29.8 | 1428 | 53.7 | 1248 | 328 | ||
2 | 5673 | 25.7 | 31.6 | 1330 | 60.3 | 1151 | 369 | |||
3 | 5456 | 26.8 | 26.6 | 1595 | 49.6 | 1325 | 303 | |||
4 | 5625 | 26.8 | 29.3 | 1469 | 54.8 | 1187 | 335 | |||
SD | 1 | 594 | 2.77 | 12.1 | 164 | 23.4 | 124 | 146 | ||
2 | 625 | 1.97 | 12.4 | 163 | 35.0 | 109 | 216 | |||
3 | 515 | 2.68 | 7.69 | 192 | 18.7 | 195 | 117 | |||
4 | 444 | 3.14 | 8.86 | 96.8 | 19.3 | 153 | 119 | |||
MIN | 1 | 4714 | 21.9 | 10 | 1177 | 13 | 1119 | 76.5 | ||
2 | 4728 | 22.4 | 14 | 1106 | 20 | 987 | 120 | |||
3 | 4936 | 23.3 | 14 | 1267 | 22 | 1079 | 131 | |||
4 | 4740 | 20.6 | 11 | 1318 | 13 | 1026 | 77.4 | |||
MAX | 1 | 6557 | 29.1 | 48 | 1705 | 81 | 1444 | 504 | ||
2 | 6544 | 28.4 | 58 | 1575 | 143 | 1343 | 880 | |||
3 | 6338 | 30.8 | 38 | 1780 | 82 | 1539 | 505 | |||
4 | 6162 | 30.2 | 41 | 1571 | 78 | 1409 | 477 | |||
Mechanical | ||||||||||
MATCH | N°INTACC (total) | N°INTDEC (total) | TDA (m) | TDD (m) | N°CoDR (total) | N°CoDL (total) | ||||
MEAN | 1 | 26.3 | 27.6 | 3097 | 2592 | 148 | 139 | |||
2 | 24.8 | 23.1 | 3038 | 2616 | 138 | 146 | ||||
3 | 24.4 | 22.9 | 2903 | 2532 | 134 | 125 | ||||
4 | 26.4 | 25.9 | 3023 | 2581 | 150 | 145 | ||||
SD | 1 | 5.74 | 7.11 | 345 | 265 | 12.5 | 30.9 | |||
2 | 6.89 | 7.94 | 356 | 275 | 18.3 | 33.3 | ||||
3 | 5.60 | 4.97 | 305 | 215 | 15.8 | 39.2 | ||||
4 | 7.93 | 7.97 | 229 | 228 | 12.8 | 21.8 | ||||
MIN | 1 | 18 | 18 | 2485 | 2206 | 124 | 101 | |||
2 | 16 | 13 | 2466 | 2248 | 105 | 117 | ||||
3 | 19 | 15 | 2581 | 2280 | 108 | 76 | ||||
4 | 16 | 9 | 2557 | 2161 | 137 | 117 | ||||
MAX | 1 | 35 | 36 | 3569 | 2970 | 164 | 198 | |||
2 | 35 | 38 | 3476 | 3071 | 162 | 220 | ||||
3 | 35 | 28 | 3476 | 2845 | 153 | 184 | ||||
4 | 37 | 35 | 3357 | 2904 | 173 | 188 | ||||
Metabolic | ||||||||||
MATCH | MP (w) | TLMP (s) | THMP (s) | TEMP (s) | TMMP (s) | DLMP (m) | DHMP (m) | DEMP (m) | DMMP (m) | |
MEAN | 1 | 10.9 | 1711 | 257 | 85.6 | 31.0 | 1896 | 1028 | 423 | 181 |
2 | 11.1 | 1646 | 252 | 80.9 | 32.0 | 1867 | 1009 | 408 | 183 | |
3 | 10.1 | 1850 | 236 | 71.9 | 28.9 | 1907 | 938 | 356 | 168 | |
4 | 10.6 | 1766 | 254 | 82.0 | 31.1 | 1862 | 1012 | 406 | 182 | |
SD | 1 | 1.22 | 137 | 50.1 | 19.8 | 11.6 | 114 | 223 | 111 | 77.1 |
2 | 1.26 | 122 | 46.6 | 29.1 | 10.9 | 152 | 219 | 163 | 69.0 | |
3 | 0.964 | 138 | 52.6 | 11.1 | 11.8 | 116 | 219 | 59.8 | 76.4 | |
4 | 0.884 | 80.7 | 41.1 | 23.0 | 9.46 | 106 | 190 | 126 | 57.3 | |
MIN | 1 | 8.88 | 1511 | 181 | 56 | 15 | 1738 | 690 | 254 | 79.5 |
2 | 9.15 | 1502 | 172 | 48 | 21 | 1668 | 628 | 213 | 106 | |
3 | 9.05 | 1659 | 178 | 50 | 15 | 1743 | 688 | 242 | 81.8 | |
4 | 8.70 | 1641 | 187 | 33 | 14 | 1763 | 685 | 136 | 77.4 | |
MAX | 1 | 12.6 | 1958 | 321 | 107 | 48 | 2060 | 1319 | 559 | 289 |
2 | 13.0 | 1857 | 337 | 133 | 56 | 2197 | 1398 | 711 | 329 | |
3 | 11.8 | 2004 | 327 | 87 | 52 | 2068 | 1324 | 450 | 312 | |
4 | 11.6 | 1864 | 327 | 101 | 44 | 2069 | 1330 | 511 | 261 |
Midfielder (M ± SD) | Central Back (M ± SD) | External Striker (M ± SD) | Full Back (M ± SD) | Wide Midfielder (M ± SD) | |
---|---|---|---|---|---|
Cinematic | |||||
TD (m) | 5963 ± 74 | 5240 ± 340 1,5 | 5723 ± 438 4 | 5087 ± 344 1,5 | 6161 ± 316 |
MS (km/h) | 25.7 ± 1.88 | 24.3 ± 2.66 3,5 | 28.4 ± 1.34 4 | 25 ± 2.61 5 | 28.2 ± 1.31 |
N°HSR | 29.8 ± 3.5 | 18.7 ± 7.89 3,5 | 38.8 ± 8.88 4 | 22.9 ± 6.53 5 | 34.4 ± 7.03 |
WT (s) | 1303 ± 78.5 | 1490 ± 60.5 | 1476 ± 205 | 1578 ± 187 5 | 1345 ± 151 |
THSR (s) | 56 ± 5.72 | 29.7 ± 15.6 3,5 | 80.4 ± 26.3 4 | 39.9 ± 12.4 | 62.1 ± 13.5 |
WD (m) | 1071 ± 53.9 | 1191 ± 161 | 1260 ± 137 | 1308 ± 186 | 1214 ± 129 |
DHSR (m) | 342 ± 36.3 | 179 ± 95.2 3,5 | 494 ± 163 4 | 242 ± 77.3 | 381 ± 84.6 |
Mechanical | |||||
N°INTACC (total) | 21.8 ± 4.35 3 | 22.5 ± 5.21 3 | 32.3 ± 3.99 5 | 25.4 ± 6.55 | 22.9 ± 5.3 |
N°INTDEC (total) | 22.5 ± 6.86 | 21.7 ± 8.21 | 29.9 ± 3.91 | 21.9 ± 5 | 26.5 ± 8.64 |
TDA (m) | 3136 ± 59.1 3 | 2818 ± 197 5 | 3067 ± 251 4 | 2732 ± 234 5 | 3348 ± 202 |
TDD (m) | 2810 ± 64.4 2,4 | 2404 ± 159 3,5 | 2639 ± 206 4 | 2336 ± 117 5 | 2789 ± 125 |
N°CoDR (total) | 139 ± 5.74 | 143 ± 8.99 | 146 ± 18.9 | 131 ± 19.1 5 | 153 ± 9.92 |
N°CoDL (total) | 165 ± 6.08 | 152 ± 25.1 | 122 ± 25.1 | 149 ± 44.4 | 123 ± 15.4 |
Metabolic | |||||
MP (w) | 11.1 ± 0.233 | 9.9 ± 0.792 5 | 11.1 ± 1.07 4 | 9.68 ± 0.771 5 | 11.7 ± 0.812 |
TLMP (s) | 1625 ± 87.6 4 | 1793 ± 54 | 1754 ± 135 | 1856 ± 128 5 | 1626 ± 103 |
THMP (s) | 286 ± 9.54 2,4 | 221 ± 32.7 5 | 245 ± 32.3 5 | 209 ± 23.7 5 | 301 ± 36.6 |
TEMP (s) | 76.5 ± 17.7 | 67.2 ± 22.2 3 | 97.4 ± 16.6 4 | 66 ± 15.6 | 89.1 ± 19.2 |
TMMP (s) | 25.3 ± 4.72 3 | 21.8 ± 7.25 3,5 | 42 ± 9.87 4 | 25 ± 7.98 | 34.9 ± 5.67 |
DLMP (m) | 1790 ± 90.8 | 1888 ± 153 | 1894 ± 148 | 1934 ± 98.3 | 1863 ± 86.5 |
DHMP (m) | 1139 ± 46.8 2,4 | 860 ± 151 5 | 999 ± 150 5 | 811 ± 110 5 | 1281 ± 164 |
DEMP (m) | 382 ± 92 | 316 ± 111 3 | 502 ± 94.3 4 | 316 ± 82.9 | 450 ± 98.2 |
DMMP (m) | 144 ± 31.4 3 | 120 ± 42.1 3,5 | 247 ± 59.5 4 | 140 ± 48.4 | 212 ± 43.9 |
Cinematic | |||||||||
---|---|---|---|---|---|---|---|---|---|
TD (m) | MS (km/h) | N°HSR (Total) | WT (s) | THSR (s) | WD (m) | DHSR (m) | |||
Highest (M ± SD) | WM (6161 ± 316) MD (5963 ± 74) | ES (28.4 ± 1.34) WM (28.2 ± 1.31) | ES (38.8 ± 8.88 )WM (34.4 ± 7.03) | FB (1578 ± 187) CB (1490 ± 60.5) | ES (80.4 ± 26.3) WM (62.1 ± 13.5) | FB (1308 ± 186) ES (1260 ± 137) | ES (494 ± 163) WM (381 ± 84.6) | ||
Lowest (M ± SD) | FB (5087 ± 344) CB (5240 ± 340) | CB (24.3 ± 2.66) FB (25 ± 2.61) | CB (18.7 ± 7.89) FB (22.9 ± 6.53) | MD (1303 ± 78.5) WM (1345 ± 151) | CB (29.7 ± 15.6) FB (39.9 ± 12.4) | MD (1071 ± 53.9) CB (1191 ± 161) | CB (179 ± 95.2) FB (242 ± 77.3) | ||
Mechanical | |||||||||
N°INTACC (total) | N°INTDEC (total) | TDA (m) | TDD (m) | N°CoDR (total) | N°CoDL (total) | ||||
Highest (M ± SD) | ES (32.3 ± 3.99) FB (25.4 ± 6.55) | ES (29.9 ± 3.91) WM (26.5 ± 8.64) | WM (3348 ± 202) MD (3136 ± 59.1) | MD (2810 ± 64.4) WM (2789 ± 125) | WM (153 ± 9.92) ES (146 ± 18.9) | MD (165 ± 6.08) CB (152 ± 25.1) | |||
Lowest (M ± SD) | MD (21.8 ± 4.35) CB (22.5 ± 5.21) | CB (21.7 ± 8.21) FB (21.9 ± 5) | FB (2732 ± 234) CB (2818 ± 197) | FB (2336 ± 117) CB (2404 ± 159) | FB (131 ± 19.1) MD (139 ± 5.74) | ES (122 ± 25.1) WM (123 ± 15.4) | |||
Metabolic | |||||||||
MP (w) | TLMP (s) | THMP (s) | TEMP (s) | TMMP (s) | DLMP (m) | DHMP (m) | DEMP (m) | DMMP (m) | |
Highest (M ± SD) | WM (11.7 ± 0.812) MD (11.1 ± 0.233) | FB (1856 ± 128) CB (1793 ± 54) | WM (301 ± 36.6) MD (286 ± 9.54) | ES (97.4 ± 16.6) WM (89.1 ± 19.2) | ES (42 ± 9.87) WM (34.9 ± 5.67) | FB (1934 ± 98.3) ES (1894 ± 148) | WM (1281 ± 164) MD (1139 ± 46.8) | ES (502 ± 94.3) WM (450 ± 98.2) | ES (247 ± 59.5) WM (212 ± 43.9) |
Lowest (M ± SD) | FB (9.68 ± 0.771) CB (9.9 ± 0.792) | MD (1625 ± 87.6) WM (1626 ± 103) | FB (209 ± 23.7) CB (221 ± 32.7) | FB (66 ± 15.6) CB (67.2 ± 22.2) | CB (21.8 ± 7.253) FB (25 ± 7.98) | MD (1790 ± 90.8) WM (1863 ± 86.5) | FB (811 ± 110) CB (860 ± 151) | FB (316 ± 82.9) CB (316 ± 111) | CB (120 ± 42.1) FB (140 ± 48.4) |
Indicators | F | df1 | df2 | p |
---|---|---|---|---|
TD | 16.59 | 4 | 13.9 | <0.001 |
MS | 5.54 | 4 | 11.8 | 0.009 |
N°INTACC | 6.22 | 4 | 12.5 | 0.005 |
N°INTDEC | 3.43 | 4 | 11.7 | 0.045 |
TDA | 9.99 | 4 | 14.2 | <0.001 |
TDD | 23.29 | 4 | 13.7 | <0.001 |
N°HSR | 6.94 | 4 | 13.7 | 0.003 |
WT | 5.21 | 4 | 13.1 | 0.01 |
THSR | 7.82 | 4 | 14 | 0.002 |
WD | 4.76 | 4 | 14 | 0.012 |
DHSR | 7.89 | 4 | 14 | 0.002 |
MP | 8.83 | 4 | 14.2 | <0.001 |
TLMP | 6.22 | 4 | 12.6 | 0.005 |
THMP | 18.75 | 4 | 14.1 | <0.001 |
TEMP | 4.1 | 4 | 12.2 | 0.025 |
TMMP | 7.04 | 4 | 13.1 | 0.003 |
DLMP | 1.43 | 4 | 12.4 | 0.28 |
DHMP | 15.51 | 4 | 14.1 | <0.001 |
DEMP | 5 | 4 | 12.3 | 0.013 |
DMMP | 7.6 | 4 | 13.2 | 0.002 |
N°CoDR | 2.93 | 4 | 13.9 | 0.06 |
N°CoDL | 13.03 | 4 | 14 | <0.001 |
Cinematic Indicators | |
---|---|
TD | * significant difference between MD and CB (p < 0.05), between CM and FB (p < 0.01), between CB and WM (p < 0.001), and between FB and WM (p < 0.001). |
MS | * significant difference between CB and ES (p < 0.01), between CB and WM (p < 0.01), between ES and FB (p < 0.05), and between FB and WM (p < 0.05). |
N°HSR | * significant difference between CB and ES (p < 0.001), between CB and WM (p < 0.01), between ES and FB (p < 0.01), and between FB and WM (p < 0.05). |
WT | * significant difference between FB and WM (p < 0.05). |
THSR | * significant between CB and ES (p < 0.001), between CB and WM (p < 0.05), and between ES and FB (p < 0.001). |
WD | no significant difference between playing positions. |
DHSR | * significant between CB and ES (p < 0.001), between CB and WM (p < 0.05), and between ES and FB (p < 0.001). |
Mechanical Indicators | |
N°INTACC | * significant difference between MD and ES (p < 0.05), between CB and ES (p < 0.05), and between ES and WM (p < 0.05). |
N°INTDEC | no significant difference between playing positions. |
TDA | * significant difference between FB and MD (p < 0.05), between CB and MD (p < 0.001), between FB and ES (p < 0.05), and between WM and FB (p < 0.001) |
TDD | * significant difference between MD and CB (p < 0.01), between MD and FB (p < 0.001), between CB and ES (p < 0.05), between CB and WM (p < 0.001), between ES and FB (p < 0.01), and between FB and WM (p < 0.001). |
N°CoDR | * significant difference between FB and WM (p < 0.05). |
N°CoDL | no significant difference between playing positions. |
Metabolic Indicators | |
MP | * significant difference between CB and WM (p < 0.01), between ES and FB (p < 0.05), and between FB and WM (p < 0.001). |
TLMP | * significant difference between MD and FB (p < 0.05), and between FB and WM (p < 0.001). |
THMP | * significant difference between MD and CB (p < 0.05), between MD and FB (p < 0.01), between CB and WM (p < 0.001), between ES and WM (p < 0.01), and between FB and WM (p < 0.001). |
TEMP | * significant difference between CB and ES (p < 0.05), and between ES and FB (p < 0.05). |
TMMP | * significant difference between ES and MD (p < 0.01), between ES and CB (p < 0.001), between CB and WM (p < 0.05), and between ES and FB (p < 0.001). |
DLMP | no significant difference between playing positions. |
DHMP | * significant difference between MD and CB (p < 0.05), between MD and FB (p < 0.01), between CB and WM (p < 0.001), between ES and WM (p < 0.05), and between FB and WM (p < 0.001). |
DEMP | * significant difference between CB and ES (p < 0.01), and between ES and FB (p < 0.001). |
DMMP | * significant difference between MD and ES (p < 0.05), between CB and ES (p < 0.001), between CB and WM (p < 0.05), between ES and FB (p < 0.001), and between FB and WM (p < 0.05). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pillitteri, G.; Giustino, V.; Petrucci, M.; Rossi, A.; Leale, I.; Bellafiore, M.; Thomas, E.; Iovane, A.; Palma, A.; Battaglia, G. Match Load Physical Demands in U-19 Professional Soccer Players Assessed by a Wearable Inertial Sensor. J. Funct. Morphol. Kinesiol. 2023, 8, 22. https://doi.org/10.3390/jfmk8010022
Pillitteri G, Giustino V, Petrucci M, Rossi A, Leale I, Bellafiore M, Thomas E, Iovane A, Palma A, Battaglia G. Match Load Physical Demands in U-19 Professional Soccer Players Assessed by a Wearable Inertial Sensor. Journal of Functional Morphology and Kinesiology. 2023; 8(1):22. https://doi.org/10.3390/jfmk8010022
Chicago/Turabian StylePillitteri, Guglielmo, Valerio Giustino, Marco Petrucci, Alessio Rossi, Ignazio Leale, Marianna Bellafiore, Ewan Thomas, Angelo Iovane, Antonio Palma, and Giuseppe Battaglia. 2023. "Match Load Physical Demands in U-19 Professional Soccer Players Assessed by a Wearable Inertial Sensor" Journal of Functional Morphology and Kinesiology 8, no. 1: 22. https://doi.org/10.3390/jfmk8010022
APA StylePillitteri, G., Giustino, V., Petrucci, M., Rossi, A., Leale, I., Bellafiore, M., Thomas, E., Iovane, A., Palma, A., & Battaglia, G. (2023). Match Load Physical Demands in U-19 Professional Soccer Players Assessed by a Wearable Inertial Sensor. Journal of Functional Morphology and Kinesiology, 8(1), 22. https://doi.org/10.3390/jfmk8010022