Lower Limb Kinematic Coordination during the Running Motion of Stroke Patient: A Single Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participant
2.2. Measurement Method
2.3. Analysis of Joint Movement Coordination
3. Results
3.1. Interlimb Coherence and Phase Analysis
3.2. Intra-Limb Coherence Analysis and Phase Analysis (Left Limbs)
3.3. Intra-Limb Coherence Analysis and Phase Analysis (Right Limbs)
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Novacheck, T.F. The biomechanics of running. Gait Posture 1998, 7, 77–95. [Google Scholar] [CrossRef]
- Runciman, P.; Derman, W. Athletes with Brain Injury: Pathophysiologic and Medical Challenges. Phys. Med. Rehabil. Clin. N. Am. 2018, 29, 267–281. [Google Scholar] [CrossRef]
- Cappellini, G.; Ivanenko, Y.P.; Poppele, R.E.; Lacquaniti, F. Motor patterns in human walking and running. J. Neurophysiol. 2006, 95, 3426–3437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuitunen, S.; Komi, P.V.; Kyröläinen, H. Knee and ankle joint stiffness in sprint running. Med Sci Sports Exerc. 2002, 34, 166–173. [Google Scholar] [CrossRef]
- Sirico, F.; Palermi, S.; Massa, B.; Corrado, B. Tendinopathies of the hip and pelvis in athletes: A narrative review. J. Hum. Sport Exerc. 2020, 15, 748–762. [Google Scholar]
- Palermi, S.; Massa, B.; Vecchiato, M.; Mazza, F.; De Blasiis, P.; Romano, A.M.; Di Salvatore, M.G.; Della Valle, E.; Tarantino, D.; Ruosi, C.; et al. Indirect Structural Muscle Injuries of Lower Limb: Rehabilitation and Therapeutic Exercise. J. Funct. Morphol. Kinesiol. 2021, 6, 75. [Google Scholar] [CrossRef]
- Day, E.M.; Hahn, M.E. A comparison of metatarsophalangeal joint center locations on estimated joint moments during running. J. Biomech. 2019, 86, 64–70. [Google Scholar] [CrossRef]
- Almeida, M.O.; Davis, I.S.; Lopes, A.D. Biomechanical Differences of Foot-Strike Patterns During Running: A Systematic Review with Meta-analysis. J. Orthop. Sports Phys. Ther. 2015, 45, 738–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sobhani, S.; Hijmans, J.; van den Heuvel, E.; Zwerver, J.; Dekker, R.; Postema, K. Biomechanics of slow running and walking with a rocker shoe. Gait Posture 2013, 38, 998–1004. [Google Scholar] [CrossRef]
- Nilsson, J.; Thorstensson, A. Ground reaction forces at different speeds of human walking and running. Acta Physiol. Scand. 1989, 136, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Koenig, I.; Eichelberger, P.; Blasimann, A.; Hauswirth, A.; Baeyens, J.P.; Radlinger, L. Wavelet analyses of electromyographic signals derived from lower extremity muscles while walking or running: A systematic review. PLoS ONE 2018, 13, e0206549. [Google Scholar] [CrossRef]
- .Peyré-Tartaruga, L.A.; Dewolf, A.H.; di Prampero, P.E.; Fábrica, G.; Malatesta, D.; Minetti, A.E.; Monte, A.; Pavei, G.; Silva-Pereyra, V.; Willems, P.A.; et al. Mechanical work as a (key) determinant of energy cost in human locomotion: Recent findings and future directions. Exp. Physiol. 2021, 106, 1897–1908. [Google Scholar] [CrossRef] [PubMed]
- Farris, D.J.; Sawicki, G.S. The mechanics and energetics of human walking and running: A joint level perspective. J. R. Soc Interface. 2012, 9, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Togo, S.; Imamizu, H. Normalized Index of Synergy for Evaluating the Coordination of Motor Commands. PLoS ONE 2015, 10, e0140836. [Google Scholar] [CrossRef] [Green Version]
- Hogarth, L.; Payton, C.; Nicholson, V.; Spathis, J.; Tweedy, S.; Connick, M.; Beckman, E.; Van de Vliet, P.; Burkett, B. Classifying motor coordination impairment in Para swimmers with brain injury. J. Sci. Med. Sport. 2019, 22, 526–531. [Google Scholar] [CrossRef] [PubMed]
- Boonstra, T.W.; Danna-Dos-Santos, A.; Xie, H.B.; Roerdink, M.; Stins, J.F.; Breakspear, M. Muscle networks: Connectivity analysis of EMG activity during postural control. Sci. Rep. 2015, 5, 17830. [Google Scholar] [CrossRef] [Green Version]
- Mima, T.; Hallett, M. Electroencephalographic analysis of cortico-muscular coherence: Reference effect, volume conduction and generator mechanism. Clin. Neurophysiol. 1999, 110, 1892–1899. [Google Scholar] [CrossRef]
- Lattari, E.; Velasques, B.; Paes, F.; Cunha, M.; Budde, H.; Basile, L.; Cagy, M.; Piedade, R.; Machado, S.; Ribeiro, P. Corticomuscular coherence behavior in fine motor control of force: A critical review. Rev. Neurol. 2010, 51, 610–623. [Google Scholar]
- Balasubramanian, C.K.; Bowden, M.G.; Neptune, R.R.; Kautz, S.A. Relationship between step length asymmetry and walking performance in subjects with chronic hemiparesis. Arch. Phys. Med. Rehabil. 2007, 88, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Böhm, H.; Döderlein, L. Gait asymmetries in children with cerebral palsy: Do they deteriorate with running? Gait Posture 2012, 35, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Zehr, E.P.; Carroll, T.J.; Chua, R.; Collins, D.F.; Frigon, A.; Haridas, C.; Hundza, S.R.; Thompson, A.K. Possible contributions of CPG activity to the control of rhythmic human arm movement. Can. J. Physiol. Pharmacol. 2004, 82, 556–568. [Google Scholar] [CrossRef]
- Petersen, N.; Christensen, L.O.; Nielsen, J. The effect of transcranial magnetic stimulation on the soleus H reflex during human walking. J. Physiol. 1998, 513, 599–610. [Google Scholar] [CrossRef]
- Petersen, N.T.; Butler, J.E.; Marchand-Pauvert, V.; Fisher, R.; Ledebt, A.; Pyndt, H.S.; Hansen, N.L.; Nielsen, J.B. Suppression of EMG activity by transcranial magnetic stimulation in human subjects during walking. J. Physiol. 2001, 537, 651–656. [Google Scholar] [CrossRef]
- Mima, T.; Simpkins, N.; Oluwatimilehin, T.; Hallett, M. Force level modulates human cortical oscillatory activities. Neurosci. Lett. 1999, 275, 77–80. [Google Scholar] [CrossRef]
- Rosenberg, J.R.; Amjad, A.M.; Breeze, P.; Brillinger, D.R.; Halliday, D.M. The Fourier approach to the identification of functional coupling between neuronal spike trains. Prog. Biophys. Mol. Biol. 1989, 53, 1–31. [Google Scholar] [CrossRef]
- Lamontagne, A.; Stephenson, J.L.; Fung, J. Physiological evaluation of gait disturbances post stroke. Clin. Neurophysiol. 2007, 118, 717–729. [Google Scholar] [CrossRef]
- Turns, L.J.; Neptune, R.R.; Kautz, S.A. Relationships between muscle activity and anteroposterior ground reaction forces in hemiparetic walking. Arch. Phys. Med. Rehabil. 2007, 88, 1127–1135. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.Q.; Anderson, F.C.; Schwartz, M.H.; Delp, S.L. Muscle contributions to support and progression over a range of walking speeds. J. Biomech. 2008, 41, 3243–3252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia, F.D.; Da Cunha, M.J.; Schuch, C.P.; Schifino, G.P.; Balbinot, G.; Pagnussat, A.S. Movement smoothness in chronic post-stroke individuals walking in an outdoor environment—A cross-sectional study using IMU sensors. PLoS ONE 2021, 16, e0250100. [Google Scholar] [CrossRef] [PubMed]
- Jonkers, I.; Delp, S.; Patten, C. Capacity to increase walking speed is limited by impaired hip and ankle power generation in lower functioning persons post-stroke. Gait Posture 2009, 29, 129–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sekiguchi, Y.; Muraki, T.; Owaki, D.; Honda, K.; Izumi, S. Regulation of quasi-joint stiffness by combination of activation of ankle muscles in midstances during gait in patients with hemiparesis. Gait Posture 2018, 62, 378–383. [Google Scholar] [CrossRef] [PubMed]
- Latash, M.L. Muscle coactivation: Definitions, mechanisms, and functions. J. Neurophysiol. 2018, 120, 88–104. [Google Scholar] [CrossRef]
- Tagawa, Y.; Shibam, N.; Matsuo, S.; Yamashita, T. Analysis of human abnormal walking using a multi-body model: Joint models for abnormal walking and walking aids to reduce compensatory action. J. Biomech. 2000, 33, 1405–1414. [Google Scholar] [CrossRef]
- Balbinot, G.; Schuch, C.P.; Bainchi Oliveira, H.; Peyré-Tartaruga, L.A. Mechanical and energetic determinants of impaired gait following stroke: Segmental work and pendular energy transduction during treadmill walking. Biol. Open. 2020, 21, bio051581. [Google Scholar] [CrossRef]
- Klarner, T.; Zehr, E.P. Sherlock Holmes and the curious case of the human locomotor central pattern generator. J. Neurophysiol. 2018, 120, 53–77. [Google Scholar] [CrossRef]
- Bahadori, S.; Davenport, P.; Immins, T.; Wainwright, T.W. Validation of joint angle measurements: Comparison of a novel low-cost marker-less system with an industry standard marker-based system. J. Med. Eng. Technol. 2019, 43, 19–24. [Google Scholar] [CrossRef]
- Fiorese, B.A.; Beckman, E.M.; Connick, M.J.; Hunter, A.B.; Tweedy, S.M. Biomechanics of starting, sprinting and submaximal running in athletes with brain impairment: A systematic review. J. Sci. Med. Sport 2020, 23, 1118–1127. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiba, N.; Minamisawa, T. Lower Limb Kinematic Coordination during the Running Motion of Stroke Patient: A Single Case Study. J. Funct. Morphol. Kinesiol. 2022, 7, 6. https://doi.org/10.3390/jfmk7010006
Chiba N, Minamisawa T. Lower Limb Kinematic Coordination during the Running Motion of Stroke Patient: A Single Case Study. Journal of Functional Morphology and Kinesiology. 2022; 7(1):6. https://doi.org/10.3390/jfmk7010006
Chicago/Turabian StyleChiba, Noboru, and Tadayoshi Minamisawa. 2022. "Lower Limb Kinematic Coordination during the Running Motion of Stroke Patient: A Single Case Study" Journal of Functional Morphology and Kinesiology 7, no. 1: 6. https://doi.org/10.3390/jfmk7010006
APA StyleChiba, N., & Minamisawa, T. (2022). Lower Limb Kinematic Coordination during the Running Motion of Stroke Patient: A Single Case Study. Journal of Functional Morphology and Kinesiology, 7(1), 6. https://doi.org/10.3390/jfmk7010006