A Comparison of the Effect of Strength Training on Cycling Performance between Men and Women
Abstract
:1. Introduction
2. The Effects of Strength Training on Cycling Performance and Its Physiological Determinants
3. Sex Difference in the Effect of Strength Training on Cycling Performance
4. Mechanisms behind the Effects of Strength Training on Cycling Performance and Sex Differences in These Mechanisms
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rønnestad, B.R.; Hansen, E.A.; Raastad, T. Effect of heavy strength training on thigh muscle cross-sectional area, performance determinants, and performance in well-trained cyclists. Eur. J. Appl. Physiol. 2010, 108, 965–975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vikmoen, O.; Ellefsen, S.; Trøen, Ø.; Hollan, I.; Hanestadhaugen, M.; Raastad, T.; Rønnestad, B.R. Strength training improves cycling performance, fractional utilization of VO2max and cycling economy in female cyclists. Scand. J. Med. Sci. Sports 2016, 26, 384–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aagaard, P.; Andersen, J.L.; Bennekou, M.; Larsson, B.; Olesen, J.L.; Crameri, R.; Magnusson, S.P.; Kjaer, M. Effects of resistance training on endurance capacity and muscle fiber composition in young top-level cyclists. Scand. J. Med. Sci. Sports 2011, 21, e298–e307. [Google Scholar] [CrossRef]
- Rønnestad, B.R.; Mujika, I. Optimizing strength training for running and cycling endurance performance: A review. Scand. J. Med. Sci. Sports 2014, 24, 603–612. [Google Scholar] [CrossRef] [PubMed]
- Beattie, K.; Kenny, I.C.; Lyons, M.; Carson, B.P. The Effect of Strength Training on Performance in Endurance Athletes. Sports Med. 2014, 44, 845–865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berryman, N.; Mujika, I.; Arvisais, D.; Roubeix, M.; Binet, C.; Bosquet, L. Strength Training for Middle- and Long-Distance Performance: A Meta-Analysis. Int. J. Sports Physiol. Perform. 2018, 13, 57–63. [Google Scholar] [CrossRef]
- Bishop, D.; Jenkins, D.G.; Mackinnon, L.T.; McEniery, M.; Carey, M.F. The effects of strength training on endurance performance and muscle characteristics. Med. Sci. Sports Exerc. 1999, 31, 886–891. [Google Scholar] [CrossRef] [PubMed]
- Mujika, I.; Rønnestad, B.R.; Martin, D.T. Effects of Increased Muscle Strength and Muscle Mass on Endurance-Cycling Performance. Int. J. Sports Physiol. Perform. 2016, 11, 283–289. [Google Scholar] [CrossRef]
- Montalvo-Pérez, A.; Alejo, L.B.; Valenzuela, P.L.; Gil-Cabrera, J.; Talavera, E.; Luia, A.; Barranco-Gil, D. Traditional Versus Velocity-Based Resistance Training in Competitive Female Cyclists: A Randomized Controlled Trial. Front. Physiol. 2021, 12. [Google Scholar] [CrossRef]
- Hunter, S.K. Sex differences in human fatigability: Mechanisms and insight to physiological responses. Acta Physiol. 2014, 210, 768–789. [Google Scholar] [CrossRef] [Green Version]
- Tarnopolsky, M.A. Gender Differences in Substrate Metabolism during Endurance Exercise. Can. J. Appl. Physiol. 2000, 25, 312–327. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, W.J.; Ratamess, N.A. Hormonal Responses and Adaptations to Resistance Exercise and Training. Sports Med. 2005, 35, 339–361. [Google Scholar] [CrossRef] [PubMed]
- Vingren, J.L.; Kraemer, W.J.; Hatfield, D.L.; Volek, J.S.; Ratamess, N.A.; Anderson, J.M.; Häkkinen, K.; Ahtiainen, J.; Fragala, M.S.; Thomas, G.A.; et al. Effect of resistance exercise on muscle steroid receptor protein content in strength-trained men and women. Steroids 2009, 74, 1033–1039. [Google Scholar] [CrossRef]
- McMahon, G.; Morse, C.I.; Winwood, K.; Burden, A.; Onambélé, G.L. Gender associated muscle-tendon adaptations to resistance training. PLoS ONE 2018, 13, e0197852. [Google Scholar] [CrossRef] [Green Version]
- Vikmoen, O.; Rønnestad, B.R.; Ellefsen, S.; Raastad, T. Heavy strength training improves running and cycling performance following prolonged submaximal work in well-trained female athletes. Physiol. Rep. 2017, 5, e13149. [Google Scholar] [CrossRef]
- Rønnestad, B.R.; Hansen, E.A.; Raastad, T. Strength training improves 5-min all-out performance following 185 min of cycling. Scand. J. Med. Sci. Sports 2011, 21, 250–259. [Google Scholar] [CrossRef]
- Rønnestad, B.R.; Hansen, J.; Hollan, I.; Ellefsen, S. Strength training improves performance and pedaling characteristics in elite cyclists. Scand. J. Med. Sci. Sports 2015, 25, e89–e98. [Google Scholar] [CrossRef]
- Joyner, M.J.; Coyle, E.F. Endurance exercise performance: The physiology of champions. J. Physiol. 2008, 586, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Hickson, R.C.; Dvorak, B.A.; Gorostiaga, E.M.; Kurowski, T.T.; Foster, C. Potential for strength and endurance training to amplify endurance performance. J. Appl. Physiol. 1988, 65, 2285–2290. [Google Scholar] [CrossRef]
- Koninckx, E.; Van Leemputte, M.; Hespel, P. Effect of isokinetic cycling versus weight training on maximal power output and endurance performance in cycling. Eur. J. Appl. Physiol. 2010, 109, 699–708. [Google Scholar] [CrossRef]
- Bastiaans, J.J.; Van Diemen, A.B.; Veneberg, T.; Jeukendrup, A.E. The effects of replacing a portion of endurance training by explosive strength training on performance in trained cyclists. Eur. J. Appl. Physiol. 2001, 86, 79–84. [Google Scholar] [CrossRef]
- Levin, G.T.; Mcguigan, M.R.; Laursen, P.B. Effect of Concurrent Resistance and Endurance Training on Physiologic and Performance Parameters of Well-Trained Endurance Cyclists. J. Strength Cond. Res. 2009, 23, 2280–2286. [Google Scholar] [CrossRef]
- Psilander, N.; Frank, P.; Flockhart, M.; Sahlin, K. Adding strength to endurance training does not enhance aerobic capacity in cyclists. Scand. J. Med. Sci. Sports 2014, 25, e353–e359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sunde, A.; Støren, Ø.; Bjerkaas, M.; Larsen, M.H.; Hoff, J.; Helgerud, J. Maximal Strength Training Improves Cycling Economy in Competitive Cyclists. J. Strength Cond. Res. 2010, 24, 2157–2165. [Google Scholar] [CrossRef] [Green Version]
- Rønnestad, B.R.; Hansen, E.A.; Raastad, T. In-season strength maintenance training increases well-trained cyclists’ performance. Eur. J. Appl. Physiol. 2010, 110, 1269–1282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrett-O’Keefe, Z.; Helgerud, J.; Wagner, P.D.; Richardson, R.S. Maximal strength training and increased work efficiency: Contribution from the trained muscle bed. J. Appl. Physiol. 2012, 113, 1846–1851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Louis, J.; Hausswirth, C.; Easthope, C.; Brisswalter, J. Strength training improves cycling efficiency in master endurance athletes. Eur. J. Appl. Physiol. 2012, 112, 631–640. [Google Scholar] [CrossRef]
- Jones, A.M.; Carter, H. The Effect of Endurance Training on Parameters of Aerobic Fitness. Sports Med. 2000, 29, 373–386. [Google Scholar] [CrossRef] [PubMed]
- Hawley, J.A.; Noakes, T.D. Peak power output predicts maximal oxygen uptake and performance time in trained cyclists. Eur. J. Appl. Physiol. 1992, 65, 79–83. [Google Scholar] [CrossRef]
- Lucía, A.; Pardo, J.; Durántez, A.; Hoyos, J.; Chicharro, J.L. Physiological differences between professional and elite road cyclists. Int. J. Sports Med. 1998, 19, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Beattie, K.; Carson, B.P.; Lyons, M.; Kenny, I.C. The Effect of Maximal- and Explosive-Strength Training on Performance Indicators in Cyclists. Int. J. Sports Physiol. Perform. 2017, 12, 470–480. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, G.; Davison, R.; Jeukendrup, A.; Passfield, L. Science and cycling: Current knowledge and future directions for research. J. Sports Sci. 2003, 21, 767–787. [Google Scholar] [CrossRef]
- Izquierdo, M.; Ibáñez, J.; Häkkinen, K.; Kraemer, W.J.; Ruesta, M.; Gorostiaga, E.M. Maximal strength and power, muscle mass, endurance and serum hormones in weightlifters and road cyclists. J. Sports Sci. 2004, 22, 465–478. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Lee, K.W.; Lee, Y.W.; Kim, H.J. Correlation between Cycling Power and Muscle Thickness in Cyclists. Clin. Anat. 2018, 31, 899–906. [Google Scholar] [CrossRef] [PubMed]
- Barclay, C.J.; Constable, J.K.; Gibbs, C.L. Energetics of fast- and slow-twitch muscles of the mouse. J. Physiol. 1993, 472, 61–80. [Google Scholar] [CrossRef] [PubMed]
- Smith, N.P.; Barclay, C.J.; Loiselle, D.S. The efficiency of muscle contraction. Prog. Biophys. Mol. Biol. 2005, 88, 1–58. [Google Scholar] [CrossRef] [PubMed]
- Hopker, J.G.; Coleman, D.A.; Gregson, H.C.; Jobson, S.A.; Von Der Haar, T.; Wiles, J.; Passfield, L. The influence of training status, age, and muscle fiber type on cycling efficiency and endurance performance. J. Appl. Physiol. 2013, 115, 723–729. [Google Scholar] [CrossRef]
- Coyle, E.F.; Sidossis, L.S.; Horowitz, J.F.; Beltz, J.D. Cycling efficiency is related to the percentage of type I muscle fibers. Med. Sci. Sports Exerc. 1992, 24, 782–788. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, J.F.; Sidossis, L.S.; Coyle, E.F. High Efficiency of Type I Muscle Fibers Improves Performance. Int. J. Sports Med. 1994, 15, 152–157. [Google Scholar] [CrossRef] [Green Version]
- Mogensen, M.; Bagger, M.; Pedersen, P.K.; Fernström, M.; Sahlin, K. Cycling efficiency in humans is related to low UCP3 content and to type I fibres but not to mitochondrial efficiency. J. Physiol. 2006, 571, 669–681. [Google Scholar] [CrossRef]
- Henneman, E.; Somjen, G.; Carpenter, D.O. Functional Significance of Cell Size in Spinal Motoneurons. J. Neurophysiol. 1965, 28, 560–580. [Google Scholar] [CrossRef] [PubMed]
- Vikmoen, O.; Raastad, T.; Seynnes, O.; Bergstrøm, K.; Ellefsen, S.; Rønnestad, B.R. Effects of Heavy Strength Training on Running Performance and Determinants of Running Performance in Female Endurance Athletes. PLoS ONE 2016, 11, e0150799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bottinelli, R.; Pellegrino, M.; Canepari, M.; Rossi, R.; Reggiani, C. Specific contributions of various muscle fibre types to human muscle performance: An in vitro study. J. Electromyogr. Kinesiol. 1999, 9, 87–95. [Google Scholar] [CrossRef]
- Westerblad, H.; Bruton, J.D.; Katz, A. Skeletal muscle: Energy metabolism, fiber types, fatigue and adaptability. Exp. Cell Res. 2010, 316, 3093–3099. [Google Scholar] [CrossRef] [PubMed]
- Lionikas, A.; Li, M.; Larsson, L. Human skeletal muscle myosin function at physiological and non-physiological temperatures. Acta Physiol. 2006, 186, 151–158. [Google Scholar] [CrossRef]
- Abe, T.; DeHoyos, D.V.; Pollock, M.L.; Garzarella, L. Time course for strength and muscle thickness changes following upper and lower body resistance training in men and women. Eur. J. Appl. Physiol. 2000, 81, 174–180. [Google Scholar] [CrossRef]
- Folland, J.P.; Williams, A.G. The adaptations to strength training: Morphological and neurological contributions to increased strength. Sports Med. 2007, 37, 145–168. [Google Scholar] [CrossRef]
- Staron, R.S.; Karapondo, D.L.; Kraemer, W.J.; Fry, A.C.; Gordon, S.E.; Falkel, J.E.; Hagerman, F.C.; Hikida, R.S. Skeletal muscle adaptations during early phase of heavy-resistance training in men and women. J. Appl. Physiol. 1994, 76, 1247–1255. [Google Scholar] [CrossRef]
- Kongsgaard, M.; Reitelseder, S.; Pedersen, T.G.; Holm, L.; Aagaard, P.; Kjaer, M.; Magnusson, S.P. Region specific patellar tendon hypertrophy in humans following resistance training. Acta Physiol. 2007, 191, 111–121. [Google Scholar] [CrossRef]
- Kubo, K.; Kanehisa, H.; Ito, M.; Fukunaga, T. Effects of isometric training on the elasticity of human tendon structures in vivo. J. Appl. Physiol. 2001, 91, 26–32. [Google Scholar] [CrossRef]
- Reeves, N.D.; Maganaris, C.N.; Narici, M.V. Effect of strength training on human patella tendon mechanical properties of older individuals. J. Physiol. 2003, 548, 971–981. [Google Scholar] [CrossRef]
- Albracht, K.; Arampatzis, A. Exercise-induced changes in triceps surae tendon stiffness and muscle strength affect running economy in humans. Eur. J. Appl. Physiol. 2013, 113, 1605–1615. [Google Scholar] [CrossRef] [PubMed]
- Guglielmo, L.; Greco, C.; Denadai, B.S. Effects of Strength Training on Running Economy. Int. J. Sports Med. 2008, 30, 27–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saunders, P.U.; Telford, R.D.; Pyne, D.B.; Peltola, E.M.; Cunningham, R.B.; Gore, C.J.; Hawley, J.A. Short-Term Plyometric Training Improves Running Economy in Highly Trained Middle and Long Distance Runners. J. Strength Cond. Res. 2006, 20, 947–954. [Google Scholar] [CrossRef] [PubMed]
- Magnusson, S.P.; Hansen, M.; Langberg, H.; Miller, B.; Haraldsson, B.; Westh, E.K.; Koskinen, S.; Aagaard, P.; Kjaer, M. The adaptability of tendon to loading differs in men and women. Int. J. Exp. Pathol. 2007, 88, 237–240. [Google Scholar] [CrossRef]
- Bijker, K.E.; De Groot, G.; Hollander, A.P. Differences in leg muscle activity during running and cycling in humans. Eur. J. Appl. Physiol. 2002, 87, 556–561. [Google Scholar] [CrossRef]
- Ericson, M.O.; Nisell, R.; Arborelius, U.P.; Ekholm, J. Muscular activity during ergometer cycling. Scand. J. Rehabil. Med. 1985, 17, 53–61. [Google Scholar] [PubMed]
- Coyle, E.F. Integration of the physiological factors determining endurance performance ability. Exerc. Sport Sci. Rev. 1995, 23, 25–63. [Google Scholar] [CrossRef]
- Holloszy, J.O.; Coyle, E.F. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J. Appl. Physiol. 1984, 56, 831–838. [Google Scholar] [CrossRef] [PubMed]
- Ivy, J.L.; Withers, R.T.; Van Handel, P.J.; Elger, D.H.; Costill, D.L. Muscle respiratory capacity and fiber type as determinants of the lactate threshold. J. Appl. Physiol. 1980, 48, 523–527. [Google Scholar] [CrossRef]
- Coyle, E.F.; Feltner, M.E.; Kautz, S.A.; Hamilton, M.T.; Montain, S.J.; Baylor, A.M.; Abraham, L.D.; Petrek, G.W. Physiological and biomechanical factors associated with elite endurance cycling performance. Med. Sci. Sports Exerc. 1991, 23, 93–107. [Google Scholar] [CrossRef] [PubMed]
- Alvehus, M.; Boman, N.; Söderlund, K.; Svensson, M.B.; Burén, J. Metabolic adaptations in skeletal muscle, adipose tissue, and whole-body oxidative capacity in response to resistance training. Eur. J. Appl. Physiol. 2014, 114, 1463–1471. [Google Scholar] [CrossRef] [PubMed]
- Bell, G.J.; Syrotuik, D.; Martin, T.P.; Burnham, R.; Quinney, H.A. Effect of concurrent strength and endurance training on skeletal muscle properties and hormone concentrations in humans. Eur. J. Appl. Physiol. 2000, 81, 418–427. [Google Scholar] [CrossRef]
- Green, H.; Goreham, C.; Ouyang, J.; Ball-Burnett, M.; Ranney, D. Regulation of fiber size, oxidative potential, and capillarization in human muscle by resistance exercise. Am. J. Physiol. Integr. Comp. Physiol. 1999, 276, R591–R596. [Google Scholar] [CrossRef] [PubMed]
- Hoff, J.; Helgerud, J.; Wisløff, U. Maximal strength training improves work economy in trained female cross-country skiers. Med. Sci. Sports Exerc. 1999, 31, 870–877. [Google Scholar] [CrossRef]
- Tsitkanou, S.; Spengos, K.; Stasinaki, A.-N.; Zaras, N.; Bogdanis, G.; Papadimas, G.; Terzis, G. Effects of high-intensity interval cycling performed after resistance training on muscle strength and hypertrophy. Scand. J. Med. Sci. Sports 2016, 27, 1317–1327. [Google Scholar] [CrossRef]
- Spiliopoulou, P.; Zaras, N.; Methenitis, S.; Papadimas, G.; Papadopoulos, C.; Bogdanis, G.C.; Terzis, G. Effect of Concurrent Power Training and High-Intensity Interval Cycling on Muscle Morphology and Performance. J. Strength Cond. Res. 2019. [Google Scholar] [CrossRef]
- Blazevich, A.J.; Wilson, C.J.; Alcaraz, P.E.; Rubio-Arias, J.A. Effects of Resistance Training Movement Pattern and Velocity on Isometric Muscular Rate of Force Development: A Systematic Review with Meta-analysis and Meta-regression. Sports Med. 2020, 50, 943–963. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vikmoen, O.; Rønnestad, B.R. A Comparison of the Effect of Strength Training on Cycling Performance between Men and Women. J. Funct. Morphol. Kinesiol. 2021, 6, 29. https://doi.org/10.3390/jfmk6010029
Vikmoen O, Rønnestad BR. A Comparison of the Effect of Strength Training on Cycling Performance between Men and Women. Journal of Functional Morphology and Kinesiology. 2021; 6(1):29. https://doi.org/10.3390/jfmk6010029
Chicago/Turabian StyleVikmoen, Olav, and Bent R. Rønnestad. 2021. "A Comparison of the Effect of Strength Training on Cycling Performance between Men and Women" Journal of Functional Morphology and Kinesiology 6, no. 1: 29. https://doi.org/10.3390/jfmk6010029
APA StyleVikmoen, O., & Rønnestad, B. R. (2021). A Comparison of the Effect of Strength Training on Cycling Performance between Men and Women. Journal of Functional Morphology and Kinesiology, 6(1), 29. https://doi.org/10.3390/jfmk6010029