The Influence of Physical Load on Dynamic Postural Control—A Systematic Replication Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Instruments
2.3.1. Y-Balance Test
2.3.2. Modified Wingate Anaerobic Test
2.4. Statistical Analyses
3. Results
3.1. Statistical Assumptions
3.2. Normalized Reach Distances and Composite Scores
3.3. Side-Difference Anterior
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dingwell, J.B.; Cusumano, J.P.; Cavanagh, P.R.; Sternad, D. Local Dynamic Stability versus Kinematic Variability of Continuous Overground and Treadmill Walking. J. Biomech. Eng. 2000, 123, 27–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yim-Chiplis, P.K.; Talbot, L.A. Defining and Measuring Balance in Adults. Biol. Res. Nurs. 2000, 1, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Johnston, W.; Dolan, K.; Reid, N.; Coughlan, G.F.; Caulfield, B.; Johnston, W. Investigating the effects of maximal anaerobic fatigue on dynamic postural control using the Y-Balance Test. J. Sci. Med. Sport 2018, 21, 103–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zech, A.; Steib, S.; Hentschke, C.; Eckhardt, H.; Pfeifer, K. Effects of Localized and General Fatigue on Static and Dynamic Postural Control in Male Team Handball Athletes. J. Strength Cond. Res. 2012, 26, 1162–1168. [Google Scholar] [CrossRef]
- Whyte, E.F.; Burke, A.; White, E.; Moran, K. A High-Intensity, Intermittent Exercise Protocol and Dynamic Postural Control in Men and Women. J. Athl. Train. 2015, 50, 392–399. [Google Scholar] [CrossRef] [Green Version]
- Boden, B.P.; Sheehan, F.T.; Torg, J.S.; Hewett, T.E. Non-contact ACL injuries: Mechanisms and risk factors. J. Am. Acad. Orthop. Surg. 2010, 18, 520–527. [Google Scholar] [CrossRef] [Green Version]
- Yu, B.; E Garrett, W. Mechanisms of non-contact ACL injuries. Br. J. Sports Med. 2007, 41, i47–i51. [Google Scholar] [CrossRef] [Green Version]
- Paterno, M.V.; Schmitt, L.C.; Ford, K.R.; Rauh, M.J.; Myer, G.D.; Huang, B.; Hewett, T.E. Biomechanical Measures during Landing and Postural Stability Predict Second Anterior Cruciate Ligament Injury after Anterior Cruciate Ligament Reconstruction and Return to Sport. Am. J. Sports Med. 2010, 38, 1968–1978. [Google Scholar] [CrossRef]
- Butler, R.J.; Lehr, M.E.; Fink, M.L.; Kiesel, K.B.; Plisky, P.J. Dynamic balance performance and noncontact lower extremity injury in college football players: An initial study. Sports Health 2013, 5, 417–422. [Google Scholar] [CrossRef] [Green Version]
- Plisky, P.J.; Rauh, M.J.; Kaminski, T.W.; Underwood, F.B. Star Excursion Balance Test as a Predictor of Lower Extremity Injury in High School Basketball Players. J. Orthop. Sports Phys. Ther. 2006, 36, 911–919. [Google Scholar] [CrossRef]
- Smith, C.A.; Chimera, N.J.; Warren, M. Association of Y Balance Test Reach Asymmetry and Injury in Division I Athletes. Med. Sci. Sports Exerc. 2015, 47, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.C.; Wang, D.; Chen, J.B.; Vail, J.; Rugg, C.M.; Hame, S.L. Lower Quarter Y-Balance Test Scores and Lower Extremity Injury in NCAA Division I Athletes. Orthop. J. Sports Med. 2017, 5, 2325967117723666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekstrand, J.; Hägglund, M.; Waldén, M. Injury incidence and injury patterns in professional football: The UEFA injury study. Br. J. Sports Med. 2009, 45, 553–558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verschueren, J.; Tassignon, B.; De Pauw, K.; Proost, M.; Teugels, A.; Van Cutsem, J.; Roelands, B.; Verhagen, E.; Meeusen, R. Does Acute Fatigue Negatively Affect Intrinsic Risk Factors of the Lower Extremity Injury Risk Profile? A Systematic and Critical Review. Sports Med. 2019, 50, 767–784. [Google Scholar] [CrossRef]
- Gribble, P.A.; Robinson, R.H.; Hertel, J.; Denegar, C.R. The effects of gender and fatigue on dynamic postural control. J. Sport Rehabil. 2009, 18, 240–257. [Google Scholar] [CrossRef]
- Baghbani, F.; Woodhouse, L.; Gaeini, A. Dynamic Postural Control in Female Athletes and Nonathletes After a Whole-Body Fatigue Protocol. J. Strength Cond. Res. 2016, 30, 1942–1947. [Google Scholar] [CrossRef]
- Sarshin, A.; Mohammadi, S.; Shahrabad, H.B.P.; Sedighi, M. The effects of functional fatique on dynamic postural control of badminton players. Biol. Exerc. 2011, 7, 25–34. [Google Scholar]
- Hassanlouei, H.; Arendt-Nielsen, L.; Kersting, U.G.; Falla, D. Effect of exercise-induced fatigue on postural control of the knee. J. Electromyogr. Kinesiol. 2012, 22, 342–347. [Google Scholar] [CrossRef]
- Hrysomallis, C. Relationship between Balance Ability, Training and Sports Injury Risk. Sports Med. 2007, 37, 547–556. [Google Scholar] [CrossRef]
- Wright, K.E.; Lyons, T.S.; Navalta, J.W. Effects of exercise-induced fatigue on postural balance: A comparison of treadmill versus cycle fatiguing protocols. Graefe’s Arch. Clin. Exp. Ophthalmol. 2012, 113, 1303–1309. [Google Scholar] [CrossRef] [Green Version]
- Güler, Ö.; Aras, D.; Akça, F.; Bianco, A.; Lavanco, G.; Paoli, A.; Şahin, F.N. Effects of Aerobic and Anaerobic Fatigue Exercises on Postural Control and Recovery Time in Female Soccer Players. Int. J. Environ. Res. Public Health 2020, 17, 6273. [Google Scholar] [CrossRef]
- Steib, S.; Zech, A.; Hentschke, C.; Pfeifer, K. Fatigue-Induced Alterations of Static and Dynamic Postural Control in Athletes With a History of Ankle Sprain. J. Athl. Train. 2013, 48, 203–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, J.J.; Gandevia, S.C. A comparison of central aspects of fatigue in submaximal and maximal voluntary contractions. J. Appl. Physiol. 2008, 104, 542–550. [Google Scholar] [CrossRef] [PubMed]
- Forestier, N.; Teasdale, N.; Nougier, V. Alteration of the position sense at the ankle induced by muscular fatigue in humans. Med. Sci. Sports Exerc. 2002, 34, 117–122. [Google Scholar] [CrossRef]
- Rozzi, S.; Yuktanandana, P.; Pincivero, D.; Lephart, S. Role of fatigue on proprioception and neuromuscular control. In Proprioception and Neuromuscular Control in Joint Stability; Lephart, S.M., Fu, F.H., Eds.; Human Kinetics: Champaign, IL, USA, 2000; pp. 375–383. [Google Scholar]
- Gribble, P.A.; Hertel, J.; Plisky, P. Using the Star Excursion Balance Test to Assess Dynamic Postural-Control Deficits and Outcomes in Lower Extremity Injury: A Literature and Systematic Review. J. Athl. Train. 2012, 47, 339–357. [Google Scholar] [CrossRef] [Green Version]
- Gribble, P.A.; Hertel, J.; Denegar, C.R.; Buckley, W.E. The Effects of Fatigue and Chronic Ankle Instability on Dynamic Postural Control. J. Athl. Train. 2004, 39, 321–329. [Google Scholar]
- Fernandez-Del-Olmo, M.; Rodriguez, F.A.; Marquez, G.; Iglesias, X.; Marina, M.; Benitez, A.; Vallejo, L.; Acero, R.M. Isometric knee extensor fatigue following a Wingate test: Peripheral and central mechanisms. Scand. J. Med. Sci. Sports 2013, 23, 57–65. [Google Scholar] [CrossRef]
- Paillard, T. Effects of general and local fatigue on postural control: A review. Neurosci. Biobehav. Rev. 2012, 36, 162–176. [Google Scholar] [CrossRef]
- Coco, M.; Buscemi, A.; Cavallari, P.; Massimino, S.; Rinella, S.; Tortorici, M.M.; Maci, T.; Perciavalle, V.; Tusak, M.; Di Corrado, D.; et al. Executive Functions During Submaximal Exercises in Male Athletes: Role of Blood Lactate. Front. Psychol. 2020, 11, 537922. [Google Scholar] [CrossRef]
- Coco, M.; Buscemi, A.; Pennisi, E.; Cavallari, P.; Papotto, G.; Papotto, G.M.F.; Perciavalle, V.; Di Corrado, D.; Perciavalle, V. Postural Control and Stress Exposure in Young Men: Changes in Cortisol Awakening Response and Blood Lactate. Int. J. Environ. Res. Public Health 2020, 17, 7222. [Google Scholar] [CrossRef]
- Benjaminse, A.; Webster, K.E.; Kimp, A.; Meijer, M.; Gokeler, A. Revised Approach to the Role of Fatigue in Anterior Cruciate Ligament Injury Prevention: A Systematic Review with Meta-Analyses. Sports Med. 2019, 49, 565–586. [Google Scholar] [CrossRef] [Green Version]
- Heil, J.; Loffing, F.; Büsch, D. The Influence of Exercise-Induced Fatigue on Inter-Limb Asymmetries: A Systematic Review. Sports Med.-Open 2020, 6, 1–16. [Google Scholar] [CrossRef]
- Thompson, R.; Watson, T. Is a professional soccer player’s dominant lower limb at higher risk of injury than their non-dominant lower limb? A systematic review. Phys. Ther. Rev. 2019, 24, 314–329. [Google Scholar] [CrossRef]
- Gribble, P.A.; Hertel, J. Considerations for Normalizing Measures of the Star Excursion Balance Test. Meas. Phys. Educ. Exerc. Sci. 2003, 7, 89–100. [Google Scholar] [CrossRef]
- Fusco, A.; Giancotti, G.F.; Fuchs, P.X.; Wagner, H.; Da Silva, R.A.; Cortis, C. Y balance test: Are we doing it right? J. Sci. Med. Sport 2020, 23, 194–199. [Google Scholar] [CrossRef]
- Coughlan, G.F.; Fullam, K.; Delahunt, E.; Gissane, C.; Caulfield, B.M.; Sci, M. A Comparison between Performance on Selected Directions of the Star Excursion Balance Test and the Y Balance Test. J. Athl. Train. 2012, 47, 366–371. [Google Scholar] [CrossRef] [Green Version]
- Plisky, P.J.; Gorman, P.P.; Butler, R.J.; Kiesel, K.B.; Underwood, F.B.; Elkins, B. The Reliability of an Instrumented Device for Measuring Components of the Star Excursion Balance Test. North Am. J. Sports Phys. Ther. NAJSPT 2009, 4, 92–99. [Google Scholar]
- Robinson, R.H.; Gribble, P.A. Support for a Reduction in the Number of Trials Needed for the Star Excursion Balance Test. Arch. Phys. Med. Rehabil. 2008, 89, 364–370. [Google Scholar] [CrossRef]
- Carey, D.G.; Richardson, M.T. Can Aerobic and Anaerobic Power be Measured in a 60-Second Maximal Test? J. Sports Sci. Med. 2003, 2, 151–157. [Google Scholar]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Wuensch, K.L. Using SPSS to Obtain Confidence Interval for Cohen’s d. Available online: http://core.ecu.edu/psyc/wuenschk/SPSS/CI-d-SPSS.pdf (accessed on 24 September 2020).
- Warburton, D.E.; Jamnik, V.K.; Bredin, S.S.; McKenzie, D.C.; Stone, J.; Shephard, R.J.; Gledhill, N. Evidence-based risk assessment and recommendations for physical activity clearance: An introduction1This paper is one of a selection of papers published in this Special Issue, entitled Evidence-based risk assessment and recommendations for physical activity clearance, and has undergone the Journal’s usual peer review process. Appl. Physiol. Nutr. Metab. 2011, 36, S1–S2. [Google Scholar] [CrossRef]
- Cormack, S.J.; Newton, R.U.; McGuigan, M.R.; Doyle, T.L. Reliability of Measures Obtained During Single and Repeated Countermovement Jumps. Int. J. Sports Physiol. Perform. 2008, 3, 131–144. [Google Scholar] [CrossRef] [Green Version]
- Shrout, P.E.; Fleiss, J.L. Intraclass correlations: Uses in assessing rater reliability. Psychol. Bull. 1979, 86, 420–428. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Lenhard, W.; Lenhard, A. Berechnung von Effektstärken. Available online: https://www.psychometrica.de/effektstaerke.html (accessed on 24 September 2020).
- West, S.G.; Finch, J.F.; Curran, P.J. Structural equation models with nonnormal variables: Problems and remedies. In Structural Equation Modeling: Concepts, Issues, and Applications; Hoyle, R.H., Ed.; Sage Publications: Sauzenda Oakes, CL, USA, 1995; pp. 56–75. [Google Scholar]
- Bishop, C. Interlimb Asymmetries. Strength Cond. J. 2020. [Google Scholar] [CrossRef]
- Luedke, L.E.; Geisthardt, T.W.; Rauh, M. Y-Balance Test Performance Does Not Determine Non-Contact Lower Quadrant Injury in Collegiate American Football Players. Sports 2020, 8, 27. [Google Scholar] [CrossRef] [Green Version]
Total | Group 1 | Group 2 | |
---|---|---|---|
N | 64 (16 m, 16 f) | 32 (16 m, 16 f) | 32 (16 m, 16 f) |
Age (years) (M ± SD) | 24.11 ± 2.42 | 24.44 ± 2.86 | 23.78 ± 1.88 |
Height (cm) (M ± SD) | 175.53 ± 8.17 | 175.19 ± 7.9 | 175.87 ± 8.54 |
Weight (kg) (M ± SD) | 67.16 ± 10.08 | 67.5 ± 9.32 | 66.88 ± 10.92 |
Leg length kicking leg (cm) (M ± SD) | 94.94 ± 6.54 | 94.53 ± 5.73 | 95.35 ± 7.33 |
Leg length standing leg (cm) (M ± SD) | 94.94 ± 6.59 | 94.53 ± 5.81 | 95.34 ± 7.35 |
pre03 | post01 | post02 | post03 | ||
---|---|---|---|---|---|
ANT kicking leg | M ± SD | 60.53 ± 6.48 | 56.22 ± 6.70 | 59.10 ± 5.77 | 60.23 ± 6.22 |
dz 1 [95% CI] | −0.82 [−1.20, −0.47] | 0.68 [0.28, 0.99] | 0.32 [−0.02, 0.68] | ||
Average change 2 (M ± SD) | 4.32 ± 5.25 | 1.43 ± 3.75 | 0.31 ± 3.57 | ||
Change (%) 2 | −7.14 | −2.37 | −0.51 | ||
ANT standing leg | M ± SD | 61.56 ± 6.34 | 57.62 ± 5.99 | 60.31 ± 6.00 | 60.53 ± 6.05 |
dz 1 [95% CI] | −0.83 [−1.17, −0.45] | 0.79 [0.43, 1.15] | 0.09 [−0.26, 0.44] | ||
Average change 2 (M ± SD) | 3.94 ± 4.77 | 1.25 ± 3.18 | 1.03 ± 3.38 | ||
Change (%) 2 | −6.40 | −2.03 | −1.67 | ||
CS kicking leg | M ± SD | 88.66 ± 6.40 | 85.01 ± 7.28 | 86.84 ± 6.38 | 87.73 ± 6.64 |
dz 1 [95% CI] | −0.67 [−1.08, −0.36] | 0.46 [0.08, 0.78] | 0.30 [−0.04, 0.66] | ||
Average change 2 (M ± SD) | 3.66 ± 5.49 | 1.82 ± 3.98 | 0.93 ± 3.56 | ||
Change (%) 2 | −4.13 | −2.05 | −1.05 | ||
CS standing leg | M ± SD | 89.43 ± 6.43 | 85.66 ± 6.48 | 87.08 ± 6.55 | 87.97 ± 6.44 |
dz 1 [95% CI] | −0.71 [−1.07, −0.35] | 0.44 [0.09, 0.79] | 0.32 [−0.04, 0.66] | ||
Average change 2 (M ± SD) | 3.76 ± 5.33 | 2.35 ± 4.18 | 1.46 ± 3.68 | ||
Change (%) 2 | −4.21 | −2.62 | −1.63 |
Between | F (1, 63) | p | ηp2 | 1-β | ||||
---|---|---|---|---|---|---|---|---|
Normalized values (%) | ANT kicking leg | Contrast 1 | Pre03 | Post01 | 43.34 | <0.001 | 0.41 | >0.99 |
Contrast 2 | Post 01 | Post02 | 28.87 | <0.001 | 0.31 | >0.99 | ||
Contrast 3 | Post02 | Post03 | 6.39 | 0.01 | 0.09 | 0.70 | ||
Contrast 4 | Pre03 | Post03 | 0.05 | 0.49 | 0.01 | 0.11 | ||
ANT standing leg | Contrast 1 | Pre03 | Post01 | 43.68 | <0.001 | 0.41 | >0.99 | |
Contrast 2 | Post 01 | Post02 | 39.68 | <0.001 | 0.09 | >0.99 | ||
Contrast 3 | Post02 | Post03 | 0.52 | 0.47 | 0.01 | 0.11 | ||
Contrast 4 | Pre03 | Post03 | 5.92 | 0.02 | 0.09 | 0.67 | ||
CS kicking leg | Contrast 1 | Pre03 | Post01 | 28.44 | <0.001 | 0.31 | >0.99 | |
Contrast 2 | Post 01 | Post02 | 13.17 | 0.001 | 0.17 | 0.95 | ||
Contrast 3 | Post02 | Post03 | 5.82 | 0.02 | 0.09 | 0.66 | ||
Contrast 4 | Pre03 | Post03 | 4.42 | 0.04 | 0.07 | 0.54 | ||
CS standing leg | Contrast 1 | Pre03 | Post01 | 31.92 | <0.001 | 0.34 | >0.99 | |
Contrast 2 | Post 01 | Post02 | 12.23 | 0.001 | 0.16 | 0.93 | ||
Contrast 3 | Post02 | Post03 | 6.39 | 0.01 | 0.09 | 0.70 | ||
Contrast 4 | Pre03 | Post03 | 10.03 | 0.002 | 0.14 | 0.88 |
pre03 | post01 | post02 | post03 | |
---|---|---|---|---|
M ± SD | 3.52 ± 3.16 | 3.52 ± 2.67 | 3.33 ± 2.89 | 3.28 ± 2.77 |
dz 1 [95% CI] | 0 [−0.35, 0.35] | −0.07 [−0.42, 0.28] | −0.02 [−0.36, 0.33] | |
Average change (cm) 2 (M ± SD) | 0 ± 3.42 | 0.19 ± 2.42 | 0.23 ± 2.95 | |
Change (%) 2 | 0 | −5.33 | −6.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heil, J.; Schulte, S.; Büsch, D. The Influence of Physical Load on Dynamic Postural Control—A Systematic Replication Study. J. Funct. Morphol. Kinesiol. 2020, 5, 100. https://doi.org/10.3390/jfmk5040100
Heil J, Schulte S, Büsch D. The Influence of Physical Load on Dynamic Postural Control—A Systematic Replication Study. Journal of Functional Morphology and Kinesiology. 2020; 5(4):100. https://doi.org/10.3390/jfmk5040100
Chicago/Turabian StyleHeil, Jessica, Sarah Schulte, and Dirk Büsch. 2020. "The Influence of Physical Load on Dynamic Postural Control—A Systematic Replication Study" Journal of Functional Morphology and Kinesiology 5, no. 4: 100. https://doi.org/10.3390/jfmk5040100
APA StyleHeil, J., Schulte, S., & Büsch, D. (2020). The Influence of Physical Load on Dynamic Postural Control—A Systematic Replication Study. Journal of Functional Morphology and Kinesiology, 5(4), 100. https://doi.org/10.3390/jfmk5040100