The “Journal of Functional Morphology and Kinesiology” Journal Club Series: PhysioMechanics of Human Locomotion
Abstract
:1. Introduction
2. Locomotion Analysis and Its Applications in Amyotrophic Lateral Sclerosis
Highlight by Grazia Maugeri and Velia D’Agata
3. Nordic Walking Benefits on Postural Control and Cardiovascular System
Highlight by Federico Roggio
4. Flat or High?
Highlight by Cristina Cortis, Andrea Fusco, and Carl Foster
5. Assessment of Ankle Plantarflexion Muscle Function in Patients with Multiple Sclerosis
Highlight by Mark M. Mañago and Michael O. Harris-Love
6. Objective or Subjective Markers to Monitor Training during Water Locomotion or Ground Locomotion?
Highlight by Veronica Vleck and Maria Francesca Piacentini
7. Human Locomotion under Reduced Gravity Conditions
Highlight by Giuseppe Musumeci
Funding
Conflicts of Interest
References
- Rowland, L.P.; Shneider, N.A. Amyotrophic lateral sclerosis. N. Engl. J. Med. 2001, 344, 1688–1700. [Google Scholar] [CrossRef] [PubMed]
- Ivanhoe, C.B.; Reistetter, T.A. Spasticity: The misunderstood part of the upper motor neuron syndrome. Am. J. Phys. Med. Rehabilit. 2004, 83, S3–S9. [Google Scholar] [CrossRef] [PubMed]
- Stifani, N. Motor neurons and the generation of spinal motor neuron diversity. Front. Cell. Neurosci. 2014, 8, 293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morozova, N.; Weisskopf, M.G.; McCullough, M.L.; Munger, K.; Calle, E.E.; Thun, M.J.; Ascherio, A. Diet and Amyotrophic Lateral Sclerosis. Epidemiology 2008, 19, 324–337. [Google Scholar] [CrossRef] [PubMed]
- Yü, Y.; Hayashi, S.; Cai, X.; Fang, C.; Shi, W.; Tsutsui, H.; Sheng, J. Pu-Erh Tea Extract Induces the Degradation of FET Family Proteins Involved in the Pathogenesis of Amyotrophic Lateral Sclerosis. BioMed Res. Int. 2014, 2014, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Maugeri, G.; D’Agata, V. Effects of Physical Activity on Amyotrophic Lateral Sclerosis. J. Funct. Morphol. Kinesiol. 2020, 5, 29. [Google Scholar] [CrossRef]
- Brooks, B.R.; Miller, R.G.; Swash, M.; Munsat, T.L. El Escorial revisited: Revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. 2000, 1, 293–299. [Google Scholar] [CrossRef]
- De Carvalho, M.; Dengler, R.; Eisen, A.; England, J.D.; Kaji, R.; Kimura, J.; Mills, K.; Mitsumoto, H.; Nodera, H.; Shefner, J.; et al. Electrodiagnostic criteria for diagnosis of ALS. Clin. Neurophysiol. 2008, 119, 497–503. [Google Scholar] [CrossRef]
- Hardiman, O.; Berg, L.H.V.D.; Kiernan, M.C. Clinical diagnosis and management of amyotrophic lateral sclerosis. Nat. Rev. Neurol. 2011, 7, 639–649. [Google Scholar] [CrossRef]
- Hampton, T.G.; Amende, I. Treadmill Gait Analysis Characterizes Gait Alterations in Parkinson’s Disease and Amyotrophic Lateral Sclerosis Mouse Models. J. Mot. Behav. 2009, 42, 1–4. [Google Scholar] [CrossRef]
- Tang, W.; Lovering, R.M.; Roche, J.A.; Bloch, R.J.; Neerchal, N.K.; Tasch, U. Gait analysis of locomotory impairment in rats before and after neuromuscular injury. J. Neurosci. Methods 2009, 181, 249–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, W.; Tasch, U.; Neerchal, N.K.; Zhu, L.; Yarowsky, P. Measuring early pre-symptomatic changes in locomotion of SOD1-G93A rats—A rodent model of amyotrophic lateral sclerosis. J. Neurosci. Methods 2009, 176, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Yarowsky, P.; Tasch, U. Detecting ALS and Parkinson’s disease in rats through locomotion analysis. Netw. Model. Anal. Health Inform. Bioinform. 2012, 1, 63–68. [Google Scholar] [CrossRef]
- Boccia, G.; Zoppirolli, C.; Bortolan, L.; Schena, F.; Pellegrini, B. Shared and task-specific muscle synergies of Nordic walking and conventional walking. Scand. J. Med. Sci. Sports 2017, 28, 905–918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pellegrini, B.; Peyré-Tartaruga, L.A.; Zoppirolli, C.; Bortolan, L.; Savoldelli, A.; Minetti, A.E.; Schena, F. Mechanical energy patterns in nordic walking: Comparisons with conventional walking. Gait Posture 2017, 51, 234–238. [Google Scholar] [CrossRef]
- Pellegrini, B.; Peyré-Tartaruga, L.A.; Zoppirolli, C.; Bortolan, L.; Bacchi, E.; Figard-Fabre, H.; Schena, F. Exploring Muscle Activation during Nordic Walking: A Comparison between Conventional and Uphill Walking. PLoS ONE 2015, 10, e0138906. [Google Scholar] [CrossRef] [Green Version]
- Kocur, P.; Wiernicka, M.; Wilski, M.; Kaminska, E.; Furmaniuk, L.; Maslowska, M.F.; Lewandowski, J. Does Nordic walking improves the postural control and gait parameters of women between the age 65 and 74: A randomized trial. J. Phys. Ther. Sci. 2015, 27, 3733–3737. [Google Scholar] [CrossRef] [Green Version]
- Zoffoli, L.; Lucertini, F.; Federici, A.; Ditroilo, M. Trunk muscles activation during pole walking vs. walking performed at different speeds and grades. Gait Posture 2016, 46, 57–62. [Google Scholar] [CrossRef]
- Kocur, P.; Deskur-Śmielecka, E.; Wilk, M.; Dylewicz, P. Effects of Nordic Walking training on exercise capacity and fitness in men participating in early, short-term inpatient cardiac rehabilitation after an acute coronary syndrome ? A controlled trial. Clin. Rehabilit. 2009, 23, 995–1004. [Google Scholar] [CrossRef]
- Bulińska, K.; Kropielnicka, K.; Jasiński, T.; Wojcieszczyk-Latos, J.; Pilch, U.; Dąbrowska, G.; Skórkowska-Telichowska, K.; Kałka, D.; Zywar, K.; Paszkowski, R.; et al. Nordic pole walking improves walking capacity in patients with intermittent claudication: A randomized controlled trial. Disabil. Rehabilit. 2015, 38, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Girold, S.; Rousseau, J.; Le Gal, M.; Coudeyre, E.; Le Henaff, J. Nordic walking versus walking without poles for rehabilitation with cardiovascular disease: Randomized controlled trial. Ann. Phys. Rehabilit. Med. 2017, 60, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Gomeñuka, N.A.; Oliveira, H.B.; Silva, E.S.; Costa, R.R.; Kanitz, A.C.; Liedtke, G.V.; Schuch, F.B.; Peyré-Tartaruga, L.A. Effects of Nordic walking training on quality of life, balance and functional mobility in elderly: A randomized clinical trial. PLoS ONE 2019, 14, e0211472. [Google Scholar] [CrossRef]
- Bullo, V.; Gobbo, S.; Vendramin, B.; Duregon, F.; Cugusi, L.; Di Blasio, A.; Bocalini, D.S.; Zaccaria, M.; Bergamin, M.; Ermolao, A. Nordic Walking Can Be Incorporated in the Exercise Prescription to Increase Aerobic Capacity, Strength, and Quality of Life for Elderly: A Systematic Review and Meta-Analysis. Rejuvenation Res. 2018, 21, 141–161. [Google Scholar] [CrossRef] [PubMed]
- Reeves, J.; Jones, R.; Liu, A.; Bent, L.; Plater, E.; Nester, C. A systematic review of the effect of footwear, foot orthoses and taping on lower limb muscle activity during walking and running. Prosthet. Orthot. Int. 2019, 43, 576–596. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Paquette, M.R.; Zhang, S. A comparison of gait biomechanics of flip-flops, sandals, barefoot and shoes. J. Foot Ankle Res. 2013, 6, 45. [Google Scholar] [CrossRef] [Green Version]
- Price, C.; Andrejevas, V.; Findlow, A.H.; Graham-Smith, P.; Jones, R. Does flip-flop style footwear modify ankle biomechanics and foot loading patterns? J. Foot Ankle Res. 2014, 7, 40. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.L.-W.; Wong, D.W.-C.; Xu, Z.; Tan, Q.; Wang, Y.; Luximon, A.; Zhang, M. Lower limb muscle co-contraction and joint loading of flip-flops walking in male wearers. PLoS ONE 2018, 13, e0193653. [Google Scholar] [CrossRef] [Green Version]
- Morris, C.; Chander, H.; Wilson, S.J.; Loftin, M.; Wade, C.; Garner, J.C. Impact of alternative footwear on human energy expenditure. J. Hum. Sport Exerc. 2017, 12, 1220–1229. [Google Scholar] [CrossRef] [Green Version]
- Wiedemeijer, M.; Otten, E. Effects of high heeled shoes on gait. A review. Gait Posture 2018, 61, 423–430. [Google Scholar] [CrossRef]
- Ebbeling, C.J.; Hamill, J.; Crussemeyer, J.A. Lower Extremity Mechanics and Energy Cost of Walking in High-Heeled Shoes. J. Orthop. Sports Phys. Ther. 1994, 19, 190–196. [Google Scholar] [CrossRef] [Green Version]
- Sumbul, H.; Ozyurt, O. Effect of High-Heeled Shoes on Gait: A Micro-Electro-Mechanical-Systems Based Approach. Int. J. Electron. Commun. Eng. 2017, 11, 437–442. [Google Scholar]
- Fusco, A.; Giancotti, G.F.; Fuchs, P.X.; Wagner, H.; da Silva, R.A.; Cortis, C. Y Balance Test: Are We Doing It Right? J. Sci. Med. Sport 2020, 23, 185–190. [Google Scholar] [CrossRef]
- Filli, L.; Sutter, T.; Easthope, C.S.; Killeen, T.; Meyer, C.; Reuter, K.; Lőrincz, L.; Bolliger, M.; Weller, M.; Curt, A.; et al. Profiling walking dysfunction in multiple sclerosis: Characterisation, classification and progression over time. Sci. Rep. 2018, 8, 4984. [Google Scholar] [CrossRef] [PubMed]
- Comber, L.; Galvin, R.; Coote, S. Gait deficits in people with multiple sclerosis: A systematic review and meta-analysis. Gait Posture 2017, 51, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Mañago, M.M.; Hebert, J.R.; Schenkman, M. Psychometric Properties of a Clinical Strength Assessment Protocol in People with Multiple Sclerosis. Int. J. MS Care 2017, 19, 253–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramari, C.; Hvid, L.G.; De David, A.C.; Dalgas, U. The importance of lower-extremity muscle strength for lower-limb functional capacity in multiple sclerosis: Systematic review. Ann. Phys. Rehabilit. Med. 2020, 63, 123–137. [Google Scholar] [CrossRef] [PubMed]
- Padgett, P.K.; Kasser, S.L. Exercise for Managing the Symptoms of Multiple Sclerosis. Phys. Ther. 2013, 93, 723–728. [Google Scholar] [CrossRef] [Green Version]
- Stark, T.; Walker, B.F.; Phillips, J.K.; Fejer, R.; Beck, R. Hand-held Dynamometry Correlation With the Gold Standard Isokinetic Dynamometry: A Systematic Review. J. Inj. Funct. Rehabilit. 2011, 3, 472–479. [Google Scholar] [CrossRef]
- Harris-Love, M.; Shrader, J.A.; Davenport, T.E.; Joe, G.; Rakocevic, G.; McElroy, B.; Dalakas, M. Are Repeated Single-Limb Heel Raises and Manual Muscle Testing Associated With Peak Plantar-Flexor Force in People With Inclusion Body Myositis? Phys. Ther. 2014, 94, 543–552. [Google Scholar] [CrossRef] [Green Version]
- Marmon, A.R.; Pozzi, F.; Alnahdi, A.H.; Zeni, J.A. The validity of plantarflexor strength measures obtained through hand-held dynamometry measurements of force. International journal of sports physical therapy. Int. J. Sports Phys. Ther. 2013, 8, 820–827. [Google Scholar]
- Lind, K.; Styf, J.; Karlsson, J. The reliability of isokinetic testing of the ankle joint and a heel-raise test for endurance. Knee Surgery Sports Traumatol. Arthrosc. 2003, 13, 60–71. [Google Scholar] [CrossRef]
- Mañago, M.M.; Hebert, J.R.; Kittelson, J.; Schenkman, M. Contributions of Ankle, Knee, Hip, and Trunk Muscle Function to Gait Performance in People With Multiple Sclerosis: A Cross-Sectional Analysis. Phys. Ther. 2018, 98, 595–604. [Google Scholar] [CrossRef] [Green Version]
- Wagner, J.M.; Kremer, T.; Van Dillen, L.R.; Naismith, R.T. Plantarflexor weakness negatively impacts walking in persons with multiple sclerosis more than plantarflexor spasticity. Arch. Phys. Med. Rehabilit. 2014, 95, 1358–1365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hébert-Losier, K.; Wessman, C.; Alricsson, M.; Svantesson, U. Updated reliability and normative values for the standing heel-rise test in healthy adults. Physiotherapy 2017, 103, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Meeusen, R.; Duclos, M.; Foster, C.; Fry, A.; Gleeson, M.; Nieman, D.; Raglin, J.; Rietjens, G.; Steinacker, J.M.; Urhausen, A. Prevention, diagnosis and treatment of the overtraining syndrome: Joint consensus statement of the European College of Sport Science (ECSS) and the American College of Sports Medicine (ACSM). Eur. J. Sport Sci. 2013, 13, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Meeusen, R.; Vrijkotte, S.; De Pauw, K.; Piacentini, M.F. Overtraining Syndrome. Aspetar Sport Med. J. 2017, 3, 14–21. [Google Scholar]
- Piacentini, M.F.; Meeusen, R. An Online Training-Monitoring System to Prevent Nonfunctional Overreaching. Int. J. Sports Physiol. Perform. 2015, 10, 524–527. [Google Scholar] [CrossRef]
- Cadegiani, F.A.; Kater, C.E. Hormonal aspects of overtraining syndrome: A systematic review. BMC Sports Sci. Med. Rehabilit. 2017, 9, 14. [Google Scholar] [CrossRef] [PubMed]
- Meeusen, R.; Piacentini, M.F.; Busschaert, B.; Buyse, L.; De Schutter, G.; Stray-Gundersen, J. Hormonal responses in athletes: The use of a two bout exercise protocol to detect subtle differences in (over)training status. Graefe Arch. Clin. Exp. Ophthalmol. 2003, 91, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Hornsby, W.G.; Haff, G.G.; Suarez, D.G.; Ramsey, M.W.; Triplett, N.T.; Hardee, J.P.; Stone, M.E.; Stone, M.H. Alterations in Adiponectin, Leptin, Resistin, Testosterone, and Cortisol across Eleven Weeks of Training among Division One Collegiate Throwers: A Preliminary Study. J. Funct. Morphol. Kinesiol. 2020, 5, 44. [Google Scholar] [CrossRef]
- Ravalli, S.; Castrogiovanni, P.; Musumeci, G. Exercise as medicine to be prescribed in osteoarthritis. World J. Orthop. 2019, 10, 262–267. [Google Scholar] [CrossRef]
- Di Rosa, M.; Castrogiovanni, P.; Musumeci, G. The Synovium Theory: Can Exercise Prevent Knee Osteoarthritis? The Role of “Mechanokines”, A Possible Biological Key. J. Funct. Morphol. Kinesiol. 2019, 4, 11. [Google Scholar] [CrossRef] [Green Version]
- Loreto, C.; Musumeci, G.; Leonardi, R. Chondrocyte-like apoptosis in temporomandibular joint disc internal derangement as a repair-limiting mechanism. An in vivo study. Histol. Histopathol. 2009, 24, 293–298. [Google Scholar] [PubMed]
- Musumeci, G. Sarcopenia and Exercise The State of the Art. J. Funct. Morphol. Kinesiol. 2017, 2, 40. [Google Scholar] [CrossRef] [Green Version]
- Pichler, K.; Loreto, C.; Leonardi, R.; Reuber, T.; Weinberg, A.; Musumeci, G. RANKL is downregulated in bone cells by physical activity (treadmill and vibration stimulation training) in rat with glucocorticoid-induced osteoporosis. Histol. Histopathol. 2013, 28, 1185–1196. [Google Scholar]
- Musumeci, G.; Loreto, C.; Carnazza, M.L.; Martinez, G. Characterization of apoptosis in articular cartilage derived from the knee joints of patients with osteoarthritis. Knee Surgery Sports Traumatol. Arthrosc. 2010, 19, 307–313. [Google Scholar] [CrossRef]
- Castrogiovanni, P.; Di Rosa, M.; Ravalli, S.; Castorina, A.; Guglielmino, C.; Imbesi, R.; Vecchio, M.; Drago, F.; Szychlinska, M.; Musumeci, G. Moderate Physical Activity as a Prevention Method for Knee Osteoarthritis and the Role of Synoviocytes as Biological Key. Int. J. Mol. Sci. 2019, 20, 511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musumeci, G. Physical Activity for Health—An Overview and an Update of the Physical Activity Guidelines of the Italian Ministry of Health. J. Funct. Morphol. Kinesiol. 2016, 1, 269. [Google Scholar] [CrossRef]
- Sylos-Labini, F.; Lacquaniti, F.; Ivanenko, Y. Human Locomotion under Reduced Gravity Conditions: Biomechanical and Neurophysiological Considerations. BioMed Res. Int. 2014, 2014, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacquaniti, F.; Ivanenko, Y.; Sylos-Labini, F.; La Scaleia, V.; La Scaleia, B.; Willems, P.A.; Zago, M. Human Locomotion in Hypogravity: From Basic Research to Clinical Applications. Front. Physiol. 2017, 8, 893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guertin, P. Preclinical evidence supporting the clinical development of central pattern generator-modulating therapies for chronic spinal cord-injured patients. Front. Hum. Neurosci. 2014, 8, 272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerasimenko, Y.; Musienko, P.; Bogacheva, I.; Moshonkina, T.; Savochin, A.; Lavrov, I.; Roy, R.R.; Edgerton, V.R. Propriospinal bypass of the serotonergic system that can facilitate stepping. J. Neurosci. 2009, 29, 5681–5689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selionov, V.A.; Solopova, I.A.; Zhvansky, D.S.; Karabanov, A.; Chernikova, L.; Gurfinkel, V.; Ivanenko, Y. Lack of non-voluntary stepping responses in Parkinson’s disease. Neuroscience 2013, 235, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Angeli, C.A.; Edgerton, V.R.; Gerasimenko, Y.P.; Harkema, S. Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain 2014, 137, 1394–1409. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maugeri, G.; D’Agata, V.; Roggio, F.; Cortis, C.; Fusco, A.; Foster, C.; Mañago, M.M.; Harris-Love, M.O.; Vleck, V.; Piacentini, M.F.; et al. The “Journal of Functional Morphology and Kinesiology” Journal Club Series: PhysioMechanics of Human Locomotion. J. Funct. Morphol. Kinesiol. 2020, 5, 52. https://doi.org/10.3390/jfmk5030052
Maugeri G, D’Agata V, Roggio F, Cortis C, Fusco A, Foster C, Mañago MM, Harris-Love MO, Vleck V, Piacentini MF, et al. The “Journal of Functional Morphology and Kinesiology” Journal Club Series: PhysioMechanics of Human Locomotion. Journal of Functional Morphology and Kinesiology. 2020; 5(3):52. https://doi.org/10.3390/jfmk5030052
Chicago/Turabian StyleMaugeri, Grazia, Velia D’Agata, Federico Roggio, Cristina Cortis, Andrea Fusco, Carl Foster, Mark M. Mañago, Michael O. Harris-Love, Veronica Vleck, Maria Francesca Piacentini, and et al. 2020. "The “Journal of Functional Morphology and Kinesiology” Journal Club Series: PhysioMechanics of Human Locomotion" Journal of Functional Morphology and Kinesiology 5, no. 3: 52. https://doi.org/10.3390/jfmk5030052
APA StyleMaugeri, G., D’Agata, V., Roggio, F., Cortis, C., Fusco, A., Foster, C., Mañago, M. M., Harris-Love, M. O., Vleck, V., Piacentini, M. F., & Musumeci, G. (2020). The “Journal of Functional Morphology and Kinesiology” Journal Club Series: PhysioMechanics of Human Locomotion. Journal of Functional Morphology and Kinesiology, 5(3), 52. https://doi.org/10.3390/jfmk5030052