Acute Effects of Three Recovery Interventions on Post-Practice Vertical Jump Force-Time Metrics in Female Basketball Players
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Neuromuscular Performance
2.3. Recovery Treatment
2.4. External Load
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cabarkapa, D.; Cabarkapa, D.V.; Aleksic, J.; Scott, A.A.; Fry, A.C. Relationship between vertical jump performance and playing time and efficiency in professional male basketball players. Front. Sports Act. Living 2024, 6, 1399399. [Google Scholar] [CrossRef] [PubMed]
- Cabarkapa, D.; Johnson, Q.R.; Cabarkapa, D.V.; Philipp, N.M.; Eserhaut, D.A.; Fry, A.C. Changes in countermovement vertical jump force-time metrics during a game in professional male basketball players. J. Strength Cond. Res. 2024, 38, 1326–1329. [Google Scholar] [CrossRef]
- Cormery, B.; Marcil, M.; Bouvard, M. Rule change incidence on physiological characteristics of elite basketball players: A 10-year-period investigation. Br. J. Sports Med. 2008, 42, 25–30. [Google Scholar] [CrossRef]
- Hoffman, J.R. Physiology of basketball. In Handbook of Sports Medicine and Science: Basketball; Caine, D.J., Harmer, P.A., Hoffman, J.R., Eds.; Blackwell: Oxford, UK, 2003; pp. 12–24. [Google Scholar]
- Mihajlovic, M.; Cabarkapa, D.; Cabarkapa, D.V.; Philipp, N.M.; Fry, A.C. Recovery methods in basketball: A systematic review. Sports 2023, 11, 230. [Google Scholar] [CrossRef] [PubMed]
- Bishop, P.A.; Jones, E.; Woods, A.K. Recovery from training: A brief review. J. Strength Cond. Res. 2008, 22, 1015–1024. [Google Scholar] [CrossRef]
- Kellmann, M.; Bertollo, M.; Bosquet, L.; Brink, M.; Coutts, A.J.; Duffield, R.; Erlacher, D.; Halson, S.L.; Hecksteden, A.; Heidari, J.; et al. Recovery and performance in sport: Consensus statement. Int. J. Sports Physiol. Perform. 2018, 13, 240–245. [Google Scholar] [CrossRef]
- Chaiyakul, S.; Chaibal, S. Effects of delayed cold-water immersion after high-intensity intermittent exercise on subsequent exercise performance in basketball players. Sport Mont 2021, 19, 15–20. [Google Scholar] [CrossRef]
- Delextrat, A.; Calleja-González, J.; Hippocrate, A.; Clarke, N.D. Effects of sports massage and intermittent cold-water immersion on recovery from matches by basketball players. J. Sports Sci. 2013, 31, 11–19. [Google Scholar] [CrossRef]
- Hurr, C. Acute local cooling to the lower body during recovery does not improve repeated vertical jump performance. Int. J. Environ. Res. Public Health 2021, 18, 5026. [Google Scholar] [CrossRef]
- Montgomery, P.G.; Pyne, D.B.; Cox, A.J.; Hopkins, W.G.; Minahan, C.L.; Hunt, P.H. Muscle damage, inflammation, and recovery interventions during a 3-day basketball tournament. Eur. J. Sport. Sci. 2008, 8, 241–250. [Google Scholar] [CrossRef]
- Atkins, R.; Lam, W.-K.; Scanlan, A.T.; Beaven, C.M.; Driller, M. Lower-body compression garments worn following exercise improves perceived recovery but not subsequent performance in basketball athletes. J. Sports Sci. 2020, 38, 961–969. [Google Scholar] [CrossRef]
- Ballmann, C.; Hotchkiss, H.; Marshall, M.; Rogers, R. The effect of wearing a lower body compression garment on anaerobic exercise performance in Division-I NCAA basketball players. Sports 2019, 7, 144. [Google Scholar] [CrossRef]
- Buchinsky, O.S.; Varvinsky, O.P.; Zaitsev, D.V. Intermittent pneumatic compression in rehabilitation and sports medicine. Ucrain. J. Med. Biol. Sports 2022, 7, 15–20. [Google Scholar]
- Maia, F.; Nakamura, F.Y.; Sarmento, H.; Marcelino, R.; Ribeiro, J. Effects of lower-limb intermittent pneumatic compression on sports recovery: A systematic review and meta-analysis. Biol. Sport 2024, 41, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Morris, R.J. Intermittent pneumatic compression—Systems and applications. J. Med. Eng. Technol. 2008, 32, 179–188. [Google Scholar] [CrossRef]
- Kaesaman, N.; Eungpinichpong, W. The acute effect of traditional Thai massage on recovery from fatigue in basketball players. GEOMATE J. 2019, 16, 53–58. [Google Scholar] [CrossRef]
- Córdova-Martínez, A.; Caballero-García, A.; Bello, H.J.; Pérez-Valdecantos, D.; Roche, E. Effect of glutamine supplementation on muscular damage biomarkers in professional basketball players. Nutrients 2021, 13, 2073. [Google Scholar] [CrossRef]
- Lin, Y.T.; Chiu, M.S.; Chang, C.K. Branched-chain amino acids and arginine improve physical but not skill performance in two consecutive days of exercise. Sci. Sports 2017, 32, e221–e228. [Google Scholar] [CrossRef]
- Maughan, R.J.; Shirreffs, S.M. Development of individual hydration strategies for athletes. Int. J. Sport Nutr. Exerc. Metab. 2008, 18, 457–472. [Google Scholar] [CrossRef]
- Jones, J.J.; Kirschen, G.W.; Kancharla, S.; Hale, L. Association between late-night tweeting and next-day game performance among professional basketball players. Sleep Health 2019, 5, 68–71. [Google Scholar] [CrossRef]
- Mah, C.D.; Mah, K.E.; Kezirian, E.J.; Dement, W.C. The effects of sleep extension on the athletic performance of collegiate basketball players. Sleep 2011, 34, 943–950. [Google Scholar] [CrossRef]
- Gardner, F.L.; Moore, Z.E. Mindfulness and acceptance models in sport psychology: A decade of basic and applied scientific advancements. Can. Psychol. 2012, 53, 309–318. [Google Scholar] [CrossRef]
- Beelen, M.; Burke, L.M.; Gibala, M.J.; van Loon, L.J. Nutritional strategies to promote postexercise recovery. Int. J. Sport Nutr. Exerc. Metab. 2010, 20, 515–532. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.F.; Jiao, Y.; Wei, B.; Yang, Z.; Wang, H.Y.; Wu, Y.Y.; Yang, C.; Tseng, K.W.; Huang, C.Y.; Chen, C.Y.; et al. Protein supplementation enhances cerebral oxygenation during exercise in elite basketball players. Nutrition 2018, 53, 34–37. [Google Scholar] [CrossRef]
- Calleja-González, J.; Terrados, N.; Mielgo-Ayuso, J.; Delextrat, A.; Jukic, I.; Vaquera, A.; Torres, L.; Schelling, X.; Stojanovic, M.; Ostojic, S.M. Evidence-based post-exercise recovery strategies in basketball. Physician Sportsmed. 2016, 44, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Waller, T.; Caine, M.; Morris, R. Intermittent pneumatic compression technology for sports recovery. In The Engineering of Sport 6, Vol 3: Developments for Innovation; Moritz, E., Haake, S., Eds.; Springer: New York, NY, USA, 2006; pp. 279–284. [Google Scholar]
- Chen, A.H.; Frangos, S.G.; Kilaru, S.; Sumpio, B.E. Intermittent pneumatic compression devices–physiological mechanisms of action. Eur. J. Vasc. Endovasc. Surg. 2001, 21, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Cabarkapa, D.; Cabarkapa, D.V.; Aleksic, J.; Mihajlovic, F.; Fry, A.C. The impact of the official Basketball Champions League game on lower-body neuromuscular performance characteristics. J. Strength Cond. Res. 2024, 38, e595–e599. [Google Scholar] [CrossRef]
- Cabarkapa, D.; Cabarkapa, D.V.; Philipp, N.M.; Knezevic, O.M.; Mirkov, D.M.; Fry, A.C. Pre-post practice changes in countermovement vertical jump force-time metrics in professional male basketball players. J. Strength Cond. Res. 2023, 37, e609–e612. [Google Scholar] [CrossRef]
- Cabarkapa, D.; Cabarkapa, D.V.; Fry, A.C. Inter-limb asymmetries in professional male basketball and volleyball players: Bilateral vs. unilateral jump comparison. Int. Biomech. 2025, 12, 28–34. [Google Scholar] [CrossRef]
- Philipp, N.M.; Cabarkapa, D.; Nijem, R.M.; Fry, A.C. Changes in countermovement jump force-time characteristics in elite male basketball players: A season-long analysis. PLoS ONE 2023, 18, e0286581. [Google Scholar] [CrossRef]
- Spiteri, T.; Nimphius, S.; Wolski, A.; Bird, S. Monitoring neuromuscular fatigue in female basketball players across training and game performance. J. Aust. Strength Cond. 2013, 21, 73–74. [Google Scholar]
- Ghigiarelli, J.J.; Saldutti, D.V.; Pottorf, O.A.; Sell, K.M.; Gonzalez, A.M. Individual monitoring of the countermovement rebound jump in Division I female basketball players across a competitive season. J. Strength Cond. Res. 2025, 39, 433–446. [Google Scholar] [CrossRef]
- Merrigan, J.J.; Strang, A.; Eckerle, J.; Mackowski, N.; Hierholzer, K.; Ray, N.T.; Smith, R.; Hagen, J.A.; Briggs, R.A. Countermovement jump force-time curve analyses: Reliability and comparability across force plate systems. J. Strength Cond. Res. 2024, 38, 30–37. [Google Scholar] [CrossRef]
- Cabarkapa, D.; Cabarkapa, D.V.; Nagy, D.; Szabo, K.; Balogh, L.; Safar, S.; Ratgeber, L. Differences in anthropometric and vertical jump force-time characteristics between U16 and U18 female basketball players. Front. Sports Act. Living 2024, 6, 1425475. [Google Scholar] [CrossRef]
- Merrigan, J.J.; Stone, J.D.; Martin, J.R.; Hornsby, W.G.; Galster, S.M.; Hagen, J.A. Applying force plate technology to inform human performance programming in tactical populations. Appl. Sci. 2021, 11, 6538. [Google Scholar] [CrossRef]
- Seçkin, A.Ç.; Ateş, B.; Seçkin, M. Review on wearable technology in sports: Concepts, challenges and opportunities. Appl. Sci. 2023, 13, 10399. [Google Scholar] [CrossRef]
- Stone, J.D.; Merrigan, J.J.; Ramadan, J.; Brown, R.S.; Cheng, G.T.; Hornsby, W.G.; Smith, H.; Galster, S.M.; Hagen, J.A. Simplifying external load data in NCAA Division-I men’s basketball competitions: A principal component analysis. Front. Sports Act. Living 2022, 4, 795897. [Google Scholar] [CrossRef] [PubMed]
- Philipp, N.M.; Cabarkapa, D.; Blackburn, S.D.; Fry, A.C. Dose-response relationship for external workload and neuromuscular performance over a female, collegiate, basketball season. J. Strength Cond. Res. 2024, 38, e253–e263. [Google Scholar] [CrossRef] [PubMed]
- Vučković, I.; Rátgéber, L.; Nagy, D.; Cabarkapa, D.; Mikić, M.; Kukić, F. Load dynamics in basketball: Insights from wins and losses. Montenegrin J. Sports Sci. Med. 2026; ahead of print. [Google Scholar]
- Leeder, J.; Gissane, C.; Van Someren, K.; Gregson, W.; Howatson, G. Cold water immersion and recovery from strenuous exercise: A meta-analysis. Br. J. Sports Med. 2012, 46, 233–240. [Google Scholar] [CrossRef]
- Machado, A.F.; Ferreira, P.H.; Micheletti, J.K.; de Almeida, A.C.; Lemes, I.R.; Vanderlei, F.M.; Junior, J.N.; Pastre, C.M. Can water temperature and immersion time influence the effect of cold water immersion on muscle soreness? A systematic review and meta-analysis. Sports Med. 2016, 46, 503–514. [Google Scholar] [CrossRef]
- Tipton, M.J.; Collier, N.; Massey, H.; Corbett, J.; Harper, M. Cold water immersion: Kill or cure? Exp. Physiol. 2017, 102, 1335–1355. [Google Scholar] [CrossRef]
- De Nardi, M.; La Torre, A.; Barassi, A.; Ricci, C.; Banfi, G. Effects of cold-water immersion and contrast-water therapy after training in young soccer players. J. Sports Med. Phys. Fit. 2011, 51, 609–615. [Google Scholar]
- Glickman, E.L.; Caine-Bish, N.; Cheatham, C.C.; Blegen, M.; Potkanowicz, E.S. The influence of age on thermosensitivity during cold water immersion. Wilderness Environ. Med. 2002, 13, 194–202. [Google Scholar] [CrossRef]
- Hohenauer, E.; Taeymans, J.; Baeyens, J.P.; Clarys, P.; Clijsen, R. The effect of post-exercise cryotherapy on recovery characteristics: A systematic review and meta-analysis. PLoS ONE 2015, 10, e0139028. [Google Scholar] [CrossRef]
- Kwiecien, S.Y.; McHugh, M.P. The cold truth: The role of cryotherapy in the treatment of injury and recovery from exercise. Eur. J. Appl. Physiol. 2021, 121, 2125–2142. [Google Scholar] [CrossRef] [PubMed]
- Russell, M.; Birch, J.; Love, T.; Cook, C.J.; Bracken, R.M.; Taylor, T.; Swift, E.; Cockburn, E.; Finn, C.; Cunningham, D. The effects of a single whole-body cryotherapy exposure on physiological, performance, and perceptual responses of professional academy soccer players after repeated sprint exercise. J. Strength Cond. Res. 2017, 31, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Vieira, A.; Bottaro, M.; Ferreira-Junior, J.B.; Vieira, C.; Cleto, V.A.; Cadore, E.L.; Simões, H.G.; Carmo, J.D.; Brown, L.E. Does whole-body cryotherapy improve vertical jump recovery following a high-intensity exercise bout? Open Access J. Sports Med. 2015, 6, 49–54. [Google Scholar] [CrossRef]
- Rose, C.; Edwards, K.M.; Siegler, J.; Graham, K.; Caillaud, C. Whole-body cryotherapy as a recovery technique after exercise: A review of the literature. Int. J. Sports Med. 2017, 38, 1049–1060. [Google Scholar] [CrossRef]
- Keck, N.A.; Cuddy, J.S.; Hailes, W.S.; Dumke, C.L.; Ruby, B.C. Effects of commercially available pneumatic compression on muscle glycogen recovery after exercise. J. Strength Cond. Res. 2015, 29, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Neves, R.S.; Furtado, G.E.; da Silva, M.A.R.; Caldo-Silva, A.; de Rezende, M.D.A.C.; Pinheiro, J. Effects of intermittent pneumatic compression as a recovery method after exercise: A comprehensive review. J. Bodyw. Mov. Ther. 2024, 34, 245–259. [Google Scholar] [CrossRef]
- O’Donnell, S.; Driller, M.W. The effect of intermittent sequential pneumatic compression on recovery between exercise bouts in well-trained triathletes. J. Sci. Cycl. 2015, 4, 19–23. [Google Scholar]
- Khan, Z.; Ahmad, I.; Hussain, M.E. Intermittent pneumatic compression changes heart rate recovery and heart rate variability after short-term submaximal exercise in collegiate basketball players: A cross-over study. Sport Sci. Health 2021, 17, 317–326. [Google Scholar] [CrossRef]
- Collins, R.; McGrath, D.; Horner, K.; Eusebi, S.; Ditroilo, M. Effect of external counterpulsation on exercise recovery in team sport athletes. Int. J. Sports Med. 2019, 40, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Stedge, H.L.; Armstrong, K. The effects of intermittent pneumatic compression on the reduction of exercise-induced muscle damage in endurance athletes: A critically appraised topic. J. Sport Rehabil. 2021, 30, 668–671. [Google Scholar] [CrossRef]
- Rossato, M.; de Souza Bezerra, E.; da Silva, D.D.C.S.; Santana, T.A.; Malezam, W.R.; Carpes, F.P. Effects of cryotherapy on muscle damage markers and perception of delayed onset muscle soreness after downhill running: A pilot study. Rev. Andal. Med. Deporte 2015, 8, 49–53. [Google Scholar] [CrossRef]
- Jovanović, M. Decoding Fatigue: Can We Measure It Live in Team Sports? 2025. Available online: https://www.researchgate.net/publication/390564429_decoding_fatigue_can_we_measure_it_live_in_team_sports (accessed on 10 December 2025).
- Yoshida, N.; Hornsby, W.G.; Sole, C.J.; Sato, K.; Stone, M.H. Effect of neuromuscular fatigue on the countermovement jump characteristics: Basketball-related high-intensity exercises. J. Strength Cond. Res. 2024, 38, 164–173, Erratum in J. Strength Cond. Res. 2024, 38, 637–638. [Google Scholar] [CrossRef] [PubMed]

| Variable (Unit) | Pre-Practice | Post-Practice | Post-Recovery |
|---|---|---|---|
| CON mean force (N) | |||
| CTRL | 1238.5 ± 227.3 | 1223.5 ± 205.1 | 1181.8 ± 132.5 * |
| CWI | 1124.2 ± 142.9 | 1120.2 ± 139.9 | 1091.0 ± 150.9 * |
| CRT | 1143.8 ± 138.7 | 1157.3 ± 159.6 | 1127.0 ± 185.2 * |
| IPC | 1177.2 ± 105.2 | 1152.2 ± 92.9 | 1133.0 ± 94.6 * |
| CON peak force (N) | |||
| CTRL | 1557.3 ± 309.9 | 1518.0 ± 283.1 | 1446.5 ± 130.9 # |
| CWI | 1361.0 ± 183.5 | 1362.4 ± 175.6 | 1335.0 ± 177.2 # |
| CRT | 1365.0 ± 151.5 | 1373.8 ± 182.2 | 1371.3 ± 204.7 # |
| IPC | 1543.2 ± 208.5 | 1518.4 ± 185.6 | 1481.0 ± 195.5 # |
| CON mean power (W) | |||
| CTRL | 1593.0 ± 483.5 | 1550.8 ± 433.2 | 1465.3 ± 296.0 * |
| CWI | 1379.2 ± 136.9 | 1384.0 ± 113.4 | 1306.6 ± 137.1 * |
| CRT | 1463.3 ± 140.8 | 1474.0 ± 209.2 | 1395.5 ± 231.8 * |
| IPC | 1527.0 ± 114.9 | 1480.8 ± 116.7 | 1402.8 ± 117.8 * |
| CON peak power (W) | |||
| CTRL | 2863.8 ± 663.7 | 2804.9 ± 628.7 | 2688.9 ± 460.6 * |
| CWI | 2577.6 ± 273.2 | 2572.1 ± 298.8 | 2421.2 ± 369.0 * |
| CRT | 2661.3 ± 215.9 | 2692.2 ± 295.2 | 2626.8 ± 321.4 * |
| IPC | 2739.5 ± 254.0 | 2689.1 ± 316.2 | 2534.1 ± 284.6 * |
| CON peak velocity (m/s) | |||
| CTRL | 2.40 ± 0.25 | 2.37 ± 0.24 | 2.33 ± 0.19 * |
| CWI | 2.35 ± 0.16 | 2.35 ± 0.16 | 2.28 ± 0.13 * |
| CRT | 2.43 ± 0.14 | 2.42 ± 0.12 | 2.38 ± 0.08 * |
| IPC | 2.43 ± 0.21 | 2.40 ± 0.23 | 2.31 ± 0.16 * |
| CON impulse (Ns) | |||
| CTRL | 146.5 ± 25.4 | 143.6 ± 24.3 | 141.3 ± 22.9 * |
| CWI | 138.8 ± 18.7 | 137.4 ± 19.4 | 132.8 ± 21.7 * |
| CRT | 141.9 ± 9.2 | 141.7 ± 13.9 | 138.9 ± 14.1 * |
| IPC | 141.8 ± 15.8 | 138.4 ± 18.9 | 133.4 ± 18.5 * |
| CON duration (s) | |||
| CTRL | 0.249 ± 0.042 | 0.248 ± 0.037 | 0.257 ± 0.031 |
| CWI | 0.277 ± 0.044 | 0.274 ± 0.040 | 0.280 ± 0.041 |
| CRT | 0.268 ± 0.024 | 0.261 ± 0.028 | 0.273 ± 0.030 |
| IPC | 0.254 ± 0.058 | 0.258 ± 0.055 | 0.256 ± 0.054 |
| Variable (Unit) | Pre-Practice | Post-Practice | Post-Recovery |
|---|---|---|---|
| ECC mean force (N) | |||
| CTRL | 631.8 ± 62.4 | 630.8 ± 60.5 | 631.0 ± 61.7 |
| CWI | 618.6 ± 118.5 | 618.5 ± 118.3 | 617.4 ± 118.4 |
| CRT | 610.3 ± 72.9 | 610.5 ± 73.6 | 609.5 ± 74.1 |
| IPC | 605.2 ± 62.9 | 606.0 ± 62.8 | 605.2 ± 63.1 |
| ECC peak force (N) | |||
| CTRL | 1493.8 ± 315.3 | 1447.8 ± 270.4 | 1349.8 ± 145.6 * |
| CWI | 1297.2 ± 137.1 | 1305.4 ± 135.5 | 1281.0 ± 159.9 * |
| CRT | 1364.0 ± 154.6 | 1334.5 ± 219.0 | 1244.9 ± 288.7 * |
| IPC | 1530.8 ± 207.8 | 1489.2 ± 190.8 | 1445.6 ± 210.0 * |
| ECC mean power (W) | |||
| CTRL | 402.5 ± 80.4 | 389.5 ± 79.9 | 354.5 ± 87.4 # |
| CWI | 400.6 ± 80.4 | 395.0 ± 64.4 | 399.0 ± 98.7 # |
| CRT | 389.2 ± 42.8 | 372.0 ± 62.6 | 341.0 ± 84.2 # |
| IPC | 402.6 ± 69.3 | 401.2 ± 74.9 | 406.4 ± 71.8 # |
| ECC peak power (W) | |||
| CTRL | 1246.8 ± 321.4 | 1254.5 ± 380.2 | 1011.3 ± 274.5 * |
| CWI | 1105.2 ± 230.7 | 1116.4 ± 136.8 | 1078.2 ± 251.4 * |
| CRT | 1064.5 ± 77.3 | 1042.3 ± 239.3 | 891.3 ± 292.6 * |
| IPC | 1294.4 ± 285.8 | 1204.6 ± 332.2 | 1266.0 ± 304.9 * |
| ECC peak velocity (m/s) | |||
| CTRL | 1.28 ± 0.13 | 1.26 ± 0.15 | 1.14 ± 0.18 * |
| CWI | 1.28 ± 0.10 | 1.28 ± 0.11 | 1.26 ± 0.14 * |
| CRT | 1.24 ± 0.09 | 1.21 ± 0.15 | 1.09 ± 0.31 * |
| IPC | 1.35 ± 0.19 | 1.32 ± 0.22 | 1.34 ± 0.18 * |
| ECC impulse (Ns) | |||
| CTRL | 45.3 ± 9.3 | 44.4 ± 9.4 | 41.9 ± 10.0 * |
| CWI | 46.7 ± 10.7 | 44.9 ± 6.1 | 42.9 ± 10.3 * |
| CRT | 42.2 ± 1.6 | 41.3 ± 5.2 | 35.8 ± 11.0 * |
| IPC | 46.2 ± 9.8 | 45.9 ± 7.9 | 46.1 ± 8.2 * |
| ECC duration (s) | |||
| CTRL | 0.396 ± 0.038 | 0.413 ± 0.033 | 0.453 ± 0.029 # |
| CWI | 0.460 ± 0.083 | 0.460 ± 0.063 | 0.464 ± 0.051 # |
| CRT | 0.445 ± 0.020 | 0.458 ± 0.024 | 0.469 ± 0.013 # |
| IPC | 0.413 ± 0.066 | 0.424 ± 0.057 | 0.431 ± 0.066 # |
| Variable (Unit) | Pre-Practice | Post-Practice | Post-Recovery |
|---|---|---|---|
| Body mass (kg) | |||
| CTRL | 64.2 ± 6.3 | 64.2 ± 6.2 | 64.3 ± 6.3 |
| CWI | 63.0 ± 12.1 | 63.0 ± 12.1 | 62.9 ± 12.1 |
| CRT | 62.1 ± 7.4 | 62.1 ± 7.5 | 62.1 ± 7.6 |
| IPC | 61.6 ± 6.5 | 61.7 ± 6.4 | 61.6 ± 6.4 |
| Jump height (cm) | |||
| CTRL | 26.6 ± 6.0 | 25.6 ± 5.7 | 24.6 ± 4.5 * |
| CWI | 25.3 ± 4.0 | 24.8 ± 4.1 | 23.2 ± 3.3 * |
| CRT | 27.0 ± 3.4 | 26.7 ± 3.3 | 25.6 ± 2.2 * |
| IPC | 27.1 ± 5.5 | 26.1 ± 5.7 | 24.2 ± 5.4 * |
| RSI-modified (ratio) | |||
| CTRL | 0.43 ± 0.14 | 0.39 ± 0.11 | 0.34 ± 0.06 * |
| CWI | 0.36 ± 0.09 | 0.34 ± 0.09 | 0.31 ± 0.05 * |
| CRT | 0.38 ± 0.04 | 0.37 ± 0.05 | 0.34 ± 0.03 * |
| IPC | 0.41 ± 0.07 | 0.39 ± 0.06 | 0.35 ± 0.05 * |
| Contraction time (s) | |||
| CTRL | 0.645 ± 0.077 | 0.661 ± 0.059 | 0.710 ± 0.033 * |
| CWI | 0.737 ± 0.127 | 0.734 ± 0.099 | 0.745 ± 0.089 * |
| CRT | 0.714 ± 0.036 | 0.720 ± 0.051 | 0.742 ± 0.034 * |
| IPC | 0.667 ± 0.123 | 0.682 ± 0.111 | 0.687 ± 0.117 * |
| Braking phase duration (s) | |||
| CTRL | 0.247 ± 0.041 | 0.250 ± 0.036 | 0.262 ± 0.015 * |
| CWI | 0.287 ± 0.051 | 0.283 ± 0.041 | 0.295 ± 0.036 * |
| CRT | 0.278 ± 0.010 | 0.281 ± 0.011 | 0.303 ± 0.022 * |
| IPC | 0.247 ± 0.033 | 0.255 ± 0.033 | 0.261 ± 0.033 * |
| CMJ depth (cm) | |||
| CTRL | 25.2 ± 2.7 | 25.3 ± 2.0 | 25.1 ± 3.2 |
| CWI | 30.0 ± 6.2 | 29.6 ± 4.7 | 30.1 ± 5.8 |
| CRT | 28.3 ± 2.1 | 28.0 ± 2.9 | 26.9 ± 6.5 |
| IPC | 27.9 ± 7.6 | 28.5 ± 7.5 | 29.0 ± 8.0 |
| Variable (Unit) | CTRL | CWI | CRT | IPC |
|---|---|---|---|---|
| HS distance (m) | 924.0 ± 99.8 | 943.2 ± 93.1 | 988.3 ± 98.3 | 925.8 ± 93.5 |
| Distance (m/min) | 89.0 ± 9.6 | 89.2 ± 13.5 | 90.1 ± 7.2 | 90.0 ± 13.2 |
| AAL (au) | 6.54 ± 0.59 | 6.82 ± 0.89 | 6.50 ± 0.58 | 6.6 ± 1.0 |
| Speed (km/h) | 5.26 ± 0.58 | 5.34 ± 0.83 | 5.46 ± 0.43 | 5.41 ± 0.79 |
| Sprints (total) | 55.8 ± 3.4 | 56.1 ± 8.2 | 54.5 ± 7.2 | 58.6 ± 4.4 |
| Jumps (total) | 22.7 ± 3.8 | 20.6 ± 6.1 | 21.3 ± 3.7 | 26.2 ± 6.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Cabarkapa, D.; Cabarkapa, D.V.; Nagy, D.; Repasi, R.; Laczko, T.; Ratgeber, L. Acute Effects of Three Recovery Interventions on Post-Practice Vertical Jump Force-Time Metrics in Female Basketball Players. J. Funct. Morphol. Kinesiol. 2026, 11, 44. https://doi.org/10.3390/jfmk11010044
Cabarkapa D, Cabarkapa DV, Nagy D, Repasi R, Laczko T, Ratgeber L. Acute Effects of Three Recovery Interventions on Post-Practice Vertical Jump Force-Time Metrics in Female Basketball Players. Journal of Functional Morphology and Kinesiology. 2026; 11(1):44. https://doi.org/10.3390/jfmk11010044
Chicago/Turabian StyleCabarkapa, Dimitrije, Damjana V. Cabarkapa, Dora Nagy, Richard Repasi, Tamas Laczko, and Laszlo Ratgeber. 2026. "Acute Effects of Three Recovery Interventions on Post-Practice Vertical Jump Force-Time Metrics in Female Basketball Players" Journal of Functional Morphology and Kinesiology 11, no. 1: 44. https://doi.org/10.3390/jfmk11010044
APA StyleCabarkapa, D., Cabarkapa, D. V., Nagy, D., Repasi, R., Laczko, T., & Ratgeber, L. (2026). Acute Effects of Three Recovery Interventions on Post-Practice Vertical Jump Force-Time Metrics in Female Basketball Players. Journal of Functional Morphology and Kinesiology, 11(1), 44. https://doi.org/10.3390/jfmk11010044

