Hamstring Strain Injury Patterns in Spanish Professional Male Football (Soccer): A Systematic Video Analysis of 78 Match Injuries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
Ethical Considerations
2.2. Procedures
2.2.1. Video Acquisition and Processing
2.2.2. Determination of the Moment of Injury
2.3. Video Analysis
3. Results
3.1. Subjects
3.2. General Descriptive Data of the Injuries
3.2.1. Contextualization
3.2.2. Injury Mechanism
3.3. Relevant Descriptive Data Within Each Injury Pattern
4. Discussion
4.1. Sprint Pattern (SP)
4.2. Combined Pattern 2 (COMB2)
4.3. Curvilinear Sprints
4.4. Presence of Contact and Ball
4.5. Specific Position
4.6. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Calleja-González, J.; Mallo, J.; Cos, F.; Sampaio, J.; Jones, M.T.; Marqués-Jiménez, D.; Mielgo-Ayuso, J.; Freitas, T.T.; Alcaraz, P.E.; Vilamitjana, J.; et al. A commentary of factors related to player availability and its influence on performance in elite team sports. Front. Sports Act. Living 2023, 4, 1077934. [Google Scholar] [CrossRef] [PubMed]
- Eirale, C.; Tol, J.L.; Farooq, A.; Smiley, F.; Chalabi, H. Low injury rate strongly correlates with team success in Qatari professional football. Br. J. Sports Med. 2013, 47, 807–808. [Google Scholar] [CrossRef]
- Eliakim, E.; Morgulev, E.; Lidor, R.; Meckel, Y. Estimation of injury costs: Financial damage of English Premier League teams’ underachievement due to injuries. BMJ Open Sport Exerc. Med. 2020, 6, e000675. [Google Scholar] [CrossRef] [PubMed]
- Hägglund, M.; Waldén, M.; Magnusson, H.; Kristenson, K.; Bengtsson, H.; Ekstrand, J. Injuries affect team performance negatively in professional football: An 11-year follow-up of the UEFA Champions League injury study. Br. J. Sports Med. 2013, 47, 738–742. [Google Scholar] [CrossRef]
- Bisciotti, G.N.; Chamari, K.; Cena, E.; Carimati, G.; Bisciotti, A.; Bisciotti, A.; Quaglia, A.; Volpi, P. Hamstring Injuries Prevention in Soccer: A Narrative Review of Current Literature. Joints 2019, 7, 115–126. [Google Scholar] [CrossRef]
- Pérez-Gómez, J.; Adsuar, J.C.; Alcaraz, P.E.; Carlos-Vivas, J. Physical exercises for preventing injuries among adult male football players: A systematic review. J. Sport Health Sci. 2022, 11, 115–122. [Google Scholar] [CrossRef]
- Ekstrand, J.; Spreco, A.; Bengtsson, H.; Bahr, R. Injury rates decreased in men’s professional football: An 18-year prospective cohort study of almost 12 000 injuries sustained during 1.8 million hours of play. Br. J. Sports Med. 2021, 55, 1084–1091. [Google Scholar] [CrossRef]
- Ekstrand, J.; Hägglund, M.; Waldén, M. Epidemiology of muscle injuries in professional football (soccer). Am. J. Sports Med. 2011, 39, 1226–1232. [Google Scholar] [CrossRef]
- Ekstrand, J.; Hägglund, M.; Waldén, M. Injury incidence and injury patterns in professional football: The UEFA injury study. Br. J. Sports Med. 2011, 45, 553–558. [Google Scholar] [CrossRef]
- Jones, A.; Jones, G.; Greig, N.; Bower, P.; Brown, J.; Hind, K.; Francis, P. Epidemiology of injury in English Professional Football players: A cohort study. Phys. Ther. Sport 2019, 35, 18–22. [Google Scholar] [CrossRef]
- Ekstrand, J.; Bengtsson, H.; Waldén, M.; Davison, M.; Khan, K.M.; Hägglund, M. Hamstring injury rates have increased during recent seasons and now constitute 24% of all injuries in men’s professional football: The UEFA Elite Club Injury Study from 2001/02 to 2021/22. Br. J. Sports Med. 2022, 57, 292–298. [Google Scholar] [CrossRef]
- Opar, D.A.; Williams, M.D.; Shield, A.J. Hamstring strain injuries: Factors that Lead to injury and re-Injury. Sports Med. 2012, 42, 209–226. [Google Scholar] [CrossRef]
- Beltran, L.; Ghazikhanian, V.; Padron, M.; Beltran, J. The proximal hamstring muscle-tendon-bone unit: A review of the normal anatomy, biomechanics, and pathophysiology. Eur. J. Radiol. 2012, 81, 3772–3779. [Google Scholar] [CrossRef]
- Thorborg, K.; Opar, D.; Shield, A.J. Prevention and Rehabilitation of Hamstring Injuries; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Schache, A.G.; Crossley, K.M.; Macindoe, I.G.; Fahrner, B.B.; Pandy, M.G. Can a clinical test of hamstring strength identify football players at risk of hamstring strain? Knee Surg. Sports Traumatol. Arthrosc. 2011, 19, 38–41. [Google Scholar] [CrossRef]
- Schache, A.G.; Dorn, T.W.; Blanch, P.D.; Brown, N.A.T.; Pandy, M.G. Mechanics of the human hamstring muscles during sprinting. Med. Sci. Sports Exerc. 2012, 44, 647–658. [Google Scholar] [CrossRef]
- Schache, A.G.; Kim, H.J.; Morgan, D.L.; Pandy, M.G. Hamstring muscle forces prior to and immediately following an acute sprinting-related muscle strain injury. Gait Posture 2010, 32, 136–140. [Google Scholar] [CrossRef]
- Orchard, J.W. Hamstrings are most susceptible to injury during the early stance phase of sprinting. Br. J. Sports Med. 2012, 46, 88–89. [Google Scholar] [CrossRef]
- Edouard, P.; Mendiguchia, J.; Lahti, J.; Arnal, P.J.; Gimenez, P.; Jiménez-Reyes, P.; Brughelli, M.; Samozino, P.; Morin, J.-B. Sprint Acceleration Mechanics in Fatigue Conditions: Compensatory Role of Gluteal Muscles in Horizontal Force Production and Potential Protection of Hamstring Muscles. Front. Physiol. 2018, 9, 1706. [Google Scholar] [CrossRef]
- Freeman, B.W.; Talpey, S.W.; James, L.P.; Young, W.B. Sprinting and hamstring strain injury: Beliefs and practices of professional physical performance coaches in Australian football. Phys. Ther. Sport 2021, 48, 12–19. [Google Scholar] [CrossRef]
- Askling, C.; Malliaropoulos, N.; Karlsson, J. High-speed running type or stretching-type of hamstring injuries makes a difference to treatment and prognosis. Br. J. Sports Med. 2012, 46, 86–87. [Google Scholar] [CrossRef]
- Danielsson, A.; Horvath, A.; Senorski, C.; Alentorn-Geli, E.; Garrett, W.E.; Cugat, R.; Samuelsson, K.; Senorski, E.H. The mechanism of hamstring injuries—A systematic review. BMC Musculoskelet. Disord. 2020, 21, 641. [Google Scholar] [CrossRef] [PubMed]
- Huygaerts, S.; Cos, F.; Cohen, D.D.; Calleja-González, J.; Guitart, M.; Blazevich, A.J.; Alcaraz, P.E. Mechanisms of Hamstring Strain Injury: Interactions between Fatigue, Muscle Activation and Function. Sports 2020, 8, 65. [Google Scholar] [CrossRef] [PubMed]
- Mendiguchia, J.; Castano-Zambudio, A.; Jimenez-Reyes, P.; Morin, J.B.; Edouard, P.; Conceicao, F.; Tawiah-Dodoo, J.; Colyer, S.L. Can We Modify Maximal Speed Running Posture? Implications for Performance and Hamstring Injury Management. Int. J. Sports Physiol. Perform. 2022, 17, 374–383. [Google Scholar] [CrossRef]
- Bourne, M.N.; Pollard, C.; Messer, D.; Timmins, R.G.; Opar, D.A.; Williams, M.D.; Shield, A.J. Hamstring and gluteal activation during high-speed overground running: Impact of prior strain injury. J. Sports Sci. 2021, 39, 2073–2079. [Google Scholar] [CrossRef]
- Wolski, L.; Pappas, E.; Hiller, C.; Halaki, M.; Fong Yan, A. Is there an association between high-speed running biomechanics and hamstring strain injury? A systematic review. Sports Biomech. 2021, 23, 1313–1339. [Google Scholar] [CrossRef]
- Wilmes, E.; de Ruiter, C.J.; Bastiaansen, B.J.C.; Goedhart, E.A.; Brink, M.S.; van der Helm, F.C.T.; Savelsbergh, G.J.P. Associations between Hamstring Fatigue and Sprint Kinematics during a Simulated Football (Soccer) Match. Med. Sci. Sports Exerc. 2021, 53, 2586–2595. [Google Scholar] [CrossRef] [PubMed]
- Gronwald, T.; Klein, C.; Hoenig, T.; Pietzonka, M.; Bloch, H.; Edouard, P.; Hollander, K. Hamstring injury patterns in professional male football (soccer): A systematic video analysis of 52 cases. Br. J. Sports Med. 2022, 56, 165–171. [Google Scholar] [CrossRef]
- Kenneally-Dabrowski, C.; Brown, N.A.T.; Warmenhoven, J.; Serpell, B.G.; Perriman, D.; Lai, A.K.M.; Spratford, W. Late swing running mechanics influence hamstring injury susceptibility in elite rugby athletes: A prospective exploratory analysis. J. Biomech. 2019, 92, 112–119. [Google Scholar] [CrossRef]
- Askling, C.; Thorstensson, A. Hamstring muscle strain in sprinters. New Stud. Athl. 2008, 23, 67–79. [Google Scholar]
- Jokela, A.; Valle, X.; Kosola, J.; Rodas, G.; Til, L.; Burova, M.; Pleshkov, P.; Andersson, H.; Pasta, G.; Manetti, P.; et al. Mechanisms of Hamstring Injury in Professional Soccer Players: Video Analysis and Magnetic Resonance Imaging Findings. Clin. J. Sport Med. 2022, 33, 217–224. [Google Scholar] [CrossRef]
- Kerin, F.; Farrell, G.; Tierney, P.; McCarthy Persson, U.; De Vito, G.; Delahunt, E. Its not all about sprinting: Mechanisms of acute hamstring strain injuries in professional male rugby union—A systematic visual video analysis. Br. J. Sports Med. 2022, 56, 608–615. [Google Scholar] [CrossRef]
- Della Villa, F.; Buckthorpe, M.; Grassi, A.; Nabiuzzi, A.; Tosarelli, F.; Zaffagnini, S.; Della Villa, S. Systematic video analysis of ACL injuries in professional male football (soccer): Injury mechanisms, situational patterns and biomechanics study on 134 consecutive cases. Br. J. Sports Med. 2020, 54, 1423–1432. [Google Scholar] [CrossRef]
- Rekik, R.N.; Bahr, R.; Cruz, F.; D’Hooghe, P.; Read, P.; Tabben, M.; Chamari, K. 046 The mechanisms of anterior cruciate ligament injuries in male professional football players in the middle east: A systematic video analysis of 15 cases. Br. J. Sports Med. 2021, 55, A19. [Google Scholar]
- Klein, C.; Luig, P.; Henke, T.; Bloch, H.; Platen, P. Nine typical injury patterns in German professional male football (soccer): A systematic visual video analysis of 345 match injuries. Br. J. Sports Med. 2021, 55, 390–396. [Google Scholar] [CrossRef]
- Serner, A.; Mosler, A.B.; Tol, J.L.; Bahr, R.; Weir, A. Mechanisms of acute adductor longus injuries in male football players: A systematic visual video analysis. Br. J. Sports Med. 2019, 53, 158–164. [Google Scholar] [CrossRef]
- Grooms, D.; Appelbaum, G.; Onate, J. Neuroplasticity following anterior cruciate ligament injury: A framework for visual-motor training approaches in rehabilitation. J. Orthop. Sports Phys. Ther. 2015, 45, 381–393. [Google Scholar] [CrossRef]
- Kakavas, G.; Malliaropoulos, N.; Bikos, G.; Pruna, R.; Valle, X.; Tsaklis, P.; Maffulli, N. Periodization in Anterior Cruciate Ligament Rehabilitation: A Novel Framework. Med. Princ. Pract. 2021, 30, 101–108. [Google Scholar] [CrossRef]
- Kakavs, G.; Forelli, F.; Malliaropoulos, N.; Hewett, T.E.; Tsaklis, P. Periodization in Anterior Cruciate Ligament Rehabilitation: New Framework Versus Old Model? A Clinical Commentary. Int. J. Sports Phys. Ther. 2023, 18, 541–546. [Google Scholar] [CrossRef]
- Montgomery, C.; Blackburn, J.; Withers, D.; Tierney, G.; Moran, C.; Simms, C. Mechanisms of ACL injury in professional rugby union: A systematic video analysis of 36 cases. Br. J. Sports Med. 2018, 52, 994–1001. [Google Scholar] [CrossRef] [PubMed]
- Anguera, M.T.; Blanco, Á.; Losada, J.L.; Hernández, A. La metodología observacional en el deporte: Conceptos básicos. Educ. Fis. Deporte Rev. Digit. 2000, 24, 5. [Google Scholar]
- Bakeman, R.; Gottman, J.M. Observacion de la Interaccion: Introduccion al Analisis Secuencial; Ediciones Morata, S.L.: Las Rozas de Madrid, Spain, 1989; p. 275. [Google Scholar]
- Fortes, A.M.; Gómez, M.A.; Hongyou, L.; Sampedro, J. Validación Inter-operador de VideobserverTM Inter-operator reliability of VideobserverTM Validação Inter-operador de VideobserverTM. Cuad. Psicol. Deporte 2016, 16, 137–152. [Google Scholar]
- Higashihara, A.; Nagano, Y.; Takahashi, K.; Fukubayashi, T. Effects of forward trunk lean on hamstring muscle kinematics during sprinting. J. Sports Sci. 2015, 33, 1366–1375. [Google Scholar] [CrossRef] [PubMed]
- Higashihara, A.; Nagano, Y.; Ono, T.; Fukubayashi, T. Differences in hamstring activation characteristics between the acceleration and maximum-speed phases of sprinting. J. Sports Sci. 2018, 36, 1313–1318. [Google Scholar] [CrossRef]
- Zhong, Y.; Fu, W.; Wei, S.; Li, Q.; Liu, Y. Joint Torque and Mechanical Power of Lower Extremity and Its Relevance to Hamstring Strain during Sprint Running. J. Healthc. Eng. 2017, 2017, 8927415. [Google Scholar] [CrossRef]
- Yu, B.; Queen, R.M.; Abbey, A.N.; Liu, Y.; Moorman, C.T.; Garrett, W.E. Hamstring muscle kinematics and activation during overground sprinting. J. Biomech. 2008, 41, 3121–3126. [Google Scholar] [CrossRef]
- Yu, B.; Liu, H.; Garrett, W.E. Mechanism of hamstring muscle strain injury in sprinting. J. Sport Health Sci. 2017, 6, 130–132. [Google Scholar] [CrossRef]
- Chumanov, E.S.; Heiderscheit, B.C.; Thelen, D.G. Hamstring musculotendon dynamics during stance and swing phases of high-speed running. Med. Sci. Sports Exerc. 2011, 43, 525–532. [Google Scholar] [CrossRef]
- Sun, Y.; Wei, S.; Zhong, Y.; Fu, W.; Li, L.; Liu, Y. How joint torques affect hamstring injury risk in sprinting swing-stance transition. Med. Sci. Sports Exerc. 2015, 47, 373–380. [Google Scholar] [CrossRef]
- Aiello, F.; Di Claudio, C.; Fanchini, M.; Impellizzeri, F.M.; McCall, A.; Sharp, C.; Brown, S.J. Do non-contact injuries occur during high-speed running in elite football? Preliminary results from a novel GPS and video-based method. J. Sci. Med. Sport 2023, 26, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Born, D.P.; Zinner, C.; Düking, P.; Sperlich, B. Multi-Directional Sprint Training Improves Change-Of-Direction Speed and Reactive Agility in Young Highly Trained Soccer Players. J. Sports Sci. Med. 2016, 15, 314–319. [Google Scholar]
- Loturco, I.; Pereira, L.A.; Fílter, A.; Olivares-Jabalera, J.; Reis, V.P.; Fernandes, V.; Freitas, T.T.; Requena, B. Curve sprinting in soccer: Relationship with linear sprints and vertical jump performance. Biol. Sport 2020, 37, 277–283. [Google Scholar] [CrossRef]
- Fílter, A.; Olivares, J.; Santalla, A.; Nakamura, F.Y.; Loturco, I.; Requena, B. New curve sprint test for soccer players: Reliability and relationship with linear sprint. J. Sports Sci. 2020, 38, 1320–1325. [Google Scholar] [CrossRef]
- Fílter, A.; Olivares-Jabalera, J.; Santalla, A.; Morente-Sánchez, J.; Robles-Rodríguez, J.; Requena, B.; Loturco, I. Curve Sprinting in Soccer: Kinematic and Neuromuscular Analysis. Int. J. Sports Med. 2020, 41, 744–750. [Google Scholar] [CrossRef] [PubMed]
- Dalton, S.L.; Kerr, Z.Y.; Dompier, T.P. Epidemiology of hamstring strains in 25 NCAA sports in the 2009–2010 to 2013–2014 academic years. Am. J. Sports Med. 2015, 43, 2671–2679. [Google Scholar] [CrossRef]
- Kubayi, A. Position-specific physical and technical demands during the 2019 COPA América Football tournament. S. Afr. J. Sports Med. 2021, 33, 1–6. [Google Scholar] [CrossRef]
- Martín-García, A.; Casamichana, D.; Gómez Díaz, A.; Cos, F.; Gabbett, T.J. Differences in the Most Demanding Passages of Play in Football Competition. J. Sports Sci. Med. 2018, 17, 563–570. [Google Scholar]
- Caro, E.; Campos-Vazquez, M.A.; Lapuente-Sagarra, M.; Caparros, T. Analysis of professional soccer players in competitive match play based on submaximum intensity periods. PeerJ 2022, 10, e13309. [Google Scholar] [CrossRef]
- Thoseby, B.D.; Govus, A.; Clarke, A.J.; Middleton, K.; Dascombe, B. Positional and temporal differences in peak match running demands of elite football. Biol. Sport 2023, 40, 311–319. [Google Scholar] [CrossRef]
- Oliva-Lozano, J.M.; Rojas-Valverde, D.; Gómez-Carmona, C.D.; Fortes, V.; Pino-Ortega, J. Worst case scenario match analysis and contextual variables in professional soccer players: A longitudinal study. Biol. Sport 2020, 37, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Calderón, B.; Morcillo, J.A.; Chena, M.; Castillo-Rodríguez, A. Comparison of training and match load between metabolic and running speed metrics of professional Spanish soccer players by playing position. Biol. Sport 2022, 39, 933–941. [Google Scholar] [CrossRef] [PubMed]
- Clemente, F.M.; Rabbani, A.; Conte, D.; Castillo, D.; Afonso, J.; Clark, C.C.T.; Nikolaidis, P.T.; Rosemann, T.; Knechtle, B. Training/match external load ratios in professional soccer players: A full-season study. Int. J. Environ. Res. Public Health 2019, 16, 3057. [Google Scholar] [CrossRef] [PubMed]
Contact | No. of Cases | Percentage | Specific Position | No. of Cases | Percentage | Ball | No. of Cases | Percentage | Time of injury | No. of Cases | Percentage | Situation | No. of Cases | Percentage |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CI | 13 | 17% | CD | 21 | 27% | NO | 9 | 12% | 1 HALF-END | 13 | 17% | DEFEN | 40 | 51% |
NCI | 65 | 83% | FB/WB | 22 | 28% | YES | 69 | 88% | 1 HALF-MID | 18 | 23% | OFFEN | 38 | 49% |
STR | 7 | 9% | 1 HALF-BEG | 8 | 10% | |||||||||
WIN/WMF | 18 | 23% | 2 HALF-END | 9 | 12% | |||||||||
STR | 8 | 10% | 2 HALF-MID | 16 | 21% | |||||||||
SE-STR | 1 | 1% | 2 HALF-BEG | 14 | 18% | |||||||||
GK | 1 | 1% |
Injury Pattern | No. of Cases | Percentage | Trajectory | No. of Cases | Percentage | Technical Action | No. of Cases | Percentage |
---|---|---|---|---|---|---|---|---|
COMB1 | 5 | 6% | CURV | 22 | 52% | CRO | 2 | 3% |
COMB2 | 20 | 26% | LIN | 20 | 48% | CON | 4 | 5% |
SP | 42 | 54% | DRI | 1 | 1% | |||
ST-OC | 5 | 6% | CLE | 2 | 3% | |||
ST-CC | 6 | 8% | DIS | 28 | 36% | |||
Ø | 29 | 37% | ||||||
PAS | 10 | 13% | ||||||
STE | 2 | 3% |
Injury Pattern | Contact | Specific Position | Ball | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CI | NCI | CD | FB/WB | STR | WIN/WMF | CMF | GK | SE-STR | YES | NO | ||||||||||||||||
COMB1 (n = 5) | 1 (20%) | 4 (80%) | 2 (40%) | 2 (40%) | - | 1 (20%) | - | - | - | 5 (100%) | - | |||||||||||||||
COMB2 (n = 20) | 7 (35%) | 13 (65%) | 3 (15%) | 8 (40%) | 3 (15%) | 4 (20%) | 2 (10%) | - | - | 20 (100%) | - | |||||||||||||||
SP (n = 42) | 2 (5%) | 40 (95%) | 14 (33%) | 11 (26%) | 3 (7%) | 8 (19%) | 5 (12%) | - | 1 (2%) | 33 (79%) | 9 (21%) | |||||||||||||||
ST-OC (n = 5) | - | 5 (100%) | 2 (40%) | 1 (20%) | - | 1 (20%) | - | 1 (20%) | - | 5 (100%) | - | |||||||||||||||
ST-CC (n = 6) | 3 (50%) | 3 (50%) | - | - | 1 (17%) | 4 (67%) | 1 (17%) | - | - | 6 (100%) | - | |||||||||||||||
Moment | Situation | Technical Action | ||||||||||||||||||||||||
1 HALF END | 1 HALF MID | 1 HALF BEG | 2 HALF END | 2 HALF MID | 2 HALF BEG | DEFEN | OFFEN | CRO | CON | DRI | CLE | DIS | Ø | PAS | STE | |||||||||||
1 (20%) | 3 (60%) | - | 1 (20%) | - | - | 4 (80%) | 1 (20%) | - | 2 (40%) | - | - | 1 (20%) | 1 (20%) | 1 (20%) | - | |||||||||||
4 (20%) | 6 (30%) | 1 (5%) | 2 (10%) | 5 (25%) | 2 (10%) | 8 (40%) | 12 (60%) | 1 (5%) | 1 (5%) | - | 1 (5%) | 7 (35%) | 2 (10%) | 6 (30%) | 2 (10%) | |||||||||||
7 (17%) | 6 (14%) | 5 (12%) | 5 (12%) | 7 (17%) | 12 (29%) | 25 (60%) | 17 (40%) | - | - | 1 (2%) | - | 16 (38%) | 25 (60%) | - | - | |||||||||||
- | - | 1 (20%) | 1 (20%) | 3 (60%) | - | 1 (20%) | 4 (80%) | - | 1 (20%) | - | 1 (20%) | - | - | 3 (60%) | - | |||||||||||
1 (17%) | 3 (50%) | 1 (17%) | - | 1 (17%) | - | 2 (33%) | 4 (67%) | 1 (17%) | - | - | - | 4 (67%) | 1 (17%) | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gandarias-Madariaga, A.; Martínez-Serrano, A.; Alcaraz, P.E.; Calleja-González, J.; López del Campo, R.; Resta, R.; Zubillaga-Zubiaga, A. Hamstring Strain Injury Patterns in Spanish Professional Male Football (Soccer): A Systematic Video Analysis of 78 Match Injuries. J. Funct. Morphol. Kinesiol. 2025, 10, 201. https://doi.org/10.3390/jfmk10020201
Gandarias-Madariaga A, Martínez-Serrano A, Alcaraz PE, Calleja-González J, López del Campo R, Resta R, Zubillaga-Zubiaga A. Hamstring Strain Injury Patterns in Spanish Professional Male Football (Soccer): A Systematic Video Analysis of 78 Match Injuries. Journal of Functional Morphology and Kinesiology. 2025; 10(2):201. https://doi.org/10.3390/jfmk10020201
Chicago/Turabian StyleGandarias-Madariaga, Aitor, Antonio Martínez-Serrano, Pedro E. Alcaraz, Julio Calleja-González, Roberto López del Campo, Ricardo Resta, and Asier Zubillaga-Zubiaga. 2025. "Hamstring Strain Injury Patterns in Spanish Professional Male Football (Soccer): A Systematic Video Analysis of 78 Match Injuries" Journal of Functional Morphology and Kinesiology 10, no. 2: 201. https://doi.org/10.3390/jfmk10020201
APA StyleGandarias-Madariaga, A., Martínez-Serrano, A., Alcaraz, P. E., Calleja-González, J., López del Campo, R., Resta, R., & Zubillaga-Zubiaga, A. (2025). Hamstring Strain Injury Patterns in Spanish Professional Male Football (Soccer): A Systematic Video Analysis of 78 Match Injuries. Journal of Functional Morphology and Kinesiology, 10(2), 201. https://doi.org/10.3390/jfmk10020201