The Mental Fatigue Induced by Physical, Cognitive and Combined Effort in Amateur Soccer Players: A Comparative Study Using EEG
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Outcomes and Instruments
2.2.1. EEG Recordings
2.2.2. Heart Rate
2.2.3. Incongruent Stroop Task
2.2.4. Perceived Mental Fatigue
2.2.5. Perceived Mental Load
2.2.6. Psychomotor Performance
2.2.7. Decision-Making in Soccer
2.2.8. EEG Analysis
2.3. Procedures
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Limitations and Future Guidelines
4.2. Practical Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coutts, A.J. Fatigue in football: It’s not a brainless task! J. Sports Sci. 2016, 34, 1296. [Google Scholar] [CrossRef]
- Thompson, C.J.; Fransen, J.; Skorski, S.; Smith, M.R.; Meyer, T.; Barrett, S.; Coutts, A.J. Mental Fatigue in Football: Is it Time to Shift the Goalposts? An Evaluation of the Current Methodology. Sports Med. 2019, 49, 177–183. [Google Scholar] [CrossRef]
- Russell, S.; Jenkins, D.; Rynne, S.; Halson, S.L.; Kelly, V. What is mental fatigue in elite sport? Perceptions from athletes and staff. Eur. J. Sport Sci. 2019, 19, 1367–1376. [Google Scholar] [CrossRef]
- Van Cutsem, J.; Marcora, S.; De Pauw, K.; Bailey, S.; Meeusen, R.; Roelands, B. The Effects of Mental Fatigue on Physical Performance: A Systematic Review. Sports Med. 2017, 47, 1569–1588. [Google Scholar] [CrossRef]
- Smith, M.R.; Thompson, C.; Marcora, S.M.; Skorski, S.; Meyer, T.; Coutts, A.J. Mental Fatigue and Soccer: Current Knowledge and Future Directions. Sports Med. 2018, 48, 1525–1532. [Google Scholar] [CrossRef]
- Coutinho, D.; Gonçalves, B.; Travassos, B.; Wong, D.P.; Coutts, A.J.; E Sampaio, J. Mental fatigue and spatial references impair soccer players’ physical and tactical performances. Front. Psychol. 2017, 8, 1645. [Google Scholar] [CrossRef]
- Badin, O.O.; Smith, M.R.; Conte, D.; Coutts, A.J. Mental Fatigue: Impairment of Technical Performance in Small-Sided Soccer Games. Int. J. Sports Physiol. Perform. 2016, 11, 1100–1105. [Google Scholar] [CrossRef]
- Smith, M.R.; Fransen, J.; Deprez, D.; Lenoir, M.; Coutts, A.J. Impact of mental fatigue on speed and accuracy components of soccer-specific skills. Sci. Med. Footb. 2017, 1, 48–52. [Google Scholar] [CrossRef]
- Gantois, P.; Ferreira, M.E.C.; de Lima-Junior, D.; Nakamura, F.Y.; Batista, G.R.; Fonseca, F.S.; Fortes, L.d.S. Effects of mental fatigue on passing decision-making performance in professional soccer athletes. Eur. J. Sport Sci. 2020, 20, 534–543. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Morales, A.; Díaz-García, J.; Barbosa, C.; Habay, J.; López-Gajardo, M.Á.; García-Calvo, T. Do Cognitive, Physical, and Combined Tasks Induce Similar Levels of Mental Fatigue? Testing the Effects of Different Moderating Variables. Mot. Control 2022, 26, 630–648. [Google Scholar] [CrossRef] [PubMed]
- Díaz-García, J.; González-Ponce, I.; Ponce-Bordón, J.C.; López-Gajardo, M.Á.; Ramírez-Bravo, I.; Rubio-Morales, A.; García-Calvo, T. Mental Load and Fatigue Assessment Instruments: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 19, 419. [Google Scholar] [CrossRef]
- Tran, Y.; Craig, A.; Craig, R.; Chai, R.; Nguyen, H. The influence of mental fatigue on brain activity: Evidence from a systematic review with meta-analyses. Psychophysiology 2020, 57, e13554. [Google Scholar] [CrossRef]
- Wascher, E.; Rasch, B.; Sänger, J.; Hoffmann, S.; Schneider, D.; Rinkenauer, G.; Heuer, H.; Gutberlet, I. Frontal theta activity reflects distinct aspects of mental fatigue. Biol. Psychol. 2014, 96, 57–65. [Google Scholar] [CrossRef]
- Boksem, M.A.; Meijman, T.F.; Lorist, M.M. Effects of mental fatigue on attention: An ERP study. Cogn. Brain Res. 2005, 25, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Christie, S.; Di Fronso, S.; Bertollo, M.; Werthner, P. Individual alpha peak frequency in ice hockey shooting performance. Front. Psychol. 2017, 8, 260760. [Google Scholar] [CrossRef] [PubMed]
- Grandy, T.H.; Werkle-Bergner, M.; Chicherio, C.; Lövdén, M.; Schmiedek, F.; Lindenberger, U. Individual alpha peak frequency is related to latent factors of general cognitive abilities. NeuroImage 2013, 79, 10–18. [Google Scholar] [CrossRef]
- Jin, Y.; O’hAlloran, J.P.; Plon, L.; Sandman, C.A.; Potkin, S.G. Alpha EEG predicts visual reaction time. Int. J. Neurosci. 2006, 116, 1035–1044. [Google Scholar] [CrossRef]
- Habay, J.; Van Cutsem, J.; Verschueren, J.; De Bock, S.; Proost, M.; De Wachter, J.; Tassignon, B.; Meeusen, R.; Roelands, B. Mental Fatigue and Sport-Specific Psychomotor Performance: A Systematic Review. Erratum in Sports Med. 2021, 51, 1549–1559. [Google Scholar] [CrossRef]
- West, B.T.; Welch, K.; Galecki, A.; Gillespie, B. Linear Mixed Models: A Practical Guide Using Statistical Software, 3rd ed.; Chapman & Hall: New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Otto, S.R.; Borden, C.K.; McHail, D.G.; Blacker, K.J. EEG as a neural measure of hypoxia-related impairment. Front. Cogn. 2025, 4, 1503028. [Google Scholar] [CrossRef]
- Tanaka, H.; Monahan, K.D.; Seals, D.R. Age-predicted maximal heart rate revisited. J. Am. Coll. Cardiol. 2001, 37, 153–156. [Google Scholar] [CrossRef]
- Smith, M.R.; Coutts, A.J.; Merlini, M.; Deprez, D.; Lenoir, M.; Marcora, S.M. Mental Fatigue Impairs Soccer-Specific Physical and Technical Performance. Med. Sci. Sports Exerc. 2016, 48, 267–276. [Google Scholar] [CrossRef]
- Díaz-García, J.; González-Ponce, I.; Ponce-Bordón, J.C.; López-Gajardo, M.; García-Calvo, T. Diseño y validación del Cuestionario para valorar la Carga Mental en los Deportes de Equipo (CCMDE). Cuad. Psicol. Deporte 2021, 21, 138–145. [Google Scholar] [CrossRef]
- Dinges, D.F.; Powell, J.W. Microcomputer analyses of performance on a portable, simple visual RT task during sustained operations. Behav. Res. Methods Instrum. Comput. 1985, 17, 652–655. [Google Scholar] [CrossRef]
- Mortimer, H.; Dallaway, N.; Ring, C. Effects of isolated and combined mental and physical fatigue on motor skill and endurance exercise performance. Psychol. Sport Exerc. 2024, 75, 102720. [Google Scholar] [CrossRef]
- Machado, G.; da Costa, I.T. TacticUP Video Test for Soccer: Development and Validation. Front. Psychol. 2020, 11, 538971. [Google Scholar] [CrossRef] [PubMed]
- Ghojazadeh, M.; Farahbakhsh, M.; Sahrai, H.; Beheshti, R.; Norouzi, A.; Sadeghi-Bazargani, H. The activity of different brain regions in fatigued and drowsy drivers: A systematic review based on EEG findings. J. Res. Clin. Med. 2024, 12, 20. [Google Scholar] [CrossRef]
- Bazanova, O.M. Individual alpha peak frequency variability and reproducibility in various experimental conditions. Zhurnal Vyss. Nervn. Deiatelnosti Im. IP Pavlov. 2011, 61, 102–111. [Google Scholar]
- Klimesch, W. EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Res. Rev. 1999, 29, 169–195. [Google Scholar] [CrossRef]
- Ajjimaporn, A.; Noppongsakit, P.; Ramyarangsi, P.; Siripornpanich, V.; Chaunchaiyakul, R. A low-dose of caffeine suppresses EEG alpha power and improves working memory in healthy University males. Physiol. Behav. 2022, 256, 113955. [Google Scholar] [CrossRef]
- Jacquet, T.; Poulin-Charronnat, B.; Bard, P.; Lepers, R. Physical activity and music to counteract mental fatigue. Neuroscience 2021, 478, 75–88. [Google Scholar] [CrossRef]
- Van Cutsem, J.; Marcora, S. The Effects of Mental Fatigue on Sport Performance: An Update. In Motivation and Self-Regulation in Sport and Exercise, 1st ed.; Routledge: London, UK, 2021; pp. 134–148. [Google Scholar]
- Oberste, M.; de Waal, P.; Joisten, N.; Walzik, D.; Egbringhoff, M.; Javelle, F.; Bloch, W.; Zimmer, P. Acute aerobic exercise to recover from mental exhaustion—A randomized controlled trial. Physiol. Behav. 2021, 241, 113588. [Google Scholar] [CrossRef] [PubMed]
- Hülsdünker, T.; Strüder, H.K.; Mierau, A. Neural Correlates of Expert Visuomotor Performance in Badminton Players. Med. Sci. Sports Exerc. 2016, 48, 2125–2134. [Google Scholar] [CrossRef] [PubMed]
- Barwick, F.; Arnett, P.; Slobounov, S. EEG correlates of fatigue during administration of a neuropsychological test battery. Clin. Neurophysiol. 2012, 123, 278–284. [Google Scholar] [CrossRef]
- Smith, M.R.; Zeuwts, L.; Lenoir, M.; Hens, N.; De Jong, L.M.S.; Coutts, A.J. Mental fatigue impairs soccer-specific decision-making skill. J. Sports Sci. 2016, 34, 1297–1304. [Google Scholar] [CrossRef]
- Raab, M.; Laborde, S. When to blink and when to think: Preference for intuitive decisions results in faster and better tactical choices. Res. Q. Exerc. Sport 2011, 82, 89–98. [Google Scholar] [CrossRef]
- Staiano, W.; Merlini, M.; Romagnoli, M.; Kirk, U.; Ring, C.; Marcora, S. Brain Endurance Training Improves Physical, Cognitive, and Multitasking Performance in Professional Football Players. Int. J. Sports Physiol. Perform. 2022, 17, 1732–1740. [Google Scholar] [CrossRef]
- Xiang, M.-Q.; Hou, X.-H.; Liao, B.-G.; Liao, J.-W.; Hu, M. The effect of neurofeedback training for sport performance in athletes: A meta-analysis. Psychol. Sport Exerc. 2018, 36, 114–122. [Google Scholar] [CrossRef]
Variable | Protocol | Pre (Emmean ± SE) | Post (Emmean ± SE) | Main Effects | p-Value | |
---|---|---|---|---|---|---|
Perceived MF (a.u.) | COG | 41.50 ± 0.42 | 82.30 ± 0.42 | Protocol: F(2, 72) = 12.06 | <0.001 *** | 0.290 |
PHYS | 33.80 ± 0.42 | 53.80 ± 0.42 | Time: F(1, 72) = 155.33 | <0.001 *** | 0.710 | |
COMB | 31.50 ± 0.42 | 83.10 ± 0.42 | Protocol × Time Interaction: F(2, 72) = 7.05 | 0.002 ** | 0.230 | |
Perceived Cognitive Load (a.u.) | COG | - | 8.15 ± 0.32 | Protocol: F(2, 24) = 52.17 | <0.001 *** | 0.840 |
PHYS | - | 4.08 ± 0.32 | ||||
COMB | - | 7.62 ± 0.32 | ||||
Reaction Time (ms) | COG | 380 ± 8.80 | 403 ± 8.80 | Protocol: F(2, 60) = 6.11 | 0.004 ** | 0.170 |
PHYS | 383 ± 8.80 | 374 ± 8.80 | Time: F(1, 60) = 2.35 | 0.130 | 0.040 | |
COMB | 396 ± 8.80 | 408 ± 8.80 | Protocol × Time Interaction: F(2, 60) = 3.02 | 0.056 | 0.090 |
Perceived MF | Perceived Cognitive Load | Reaction Time | |||||||
---|---|---|---|---|---|---|---|---|---|
Comparisons | p-Value | Cohen’s d | CI (95%) | p-Value | Cohen’s d | CI (95%) | p-Value | Cohen’s d | CI (95%) |
Inter-protocol (Pre) | |||||||||
COG vs. PHYS | 0.714 | 0.183 | [−0.07, 0.44] | - | - | - | 0.998 | −0.049 | [−0.30, 0.20] |
COG vs. COMB | 0.443 | 0.239 | [−0.02, 0.49] | - | - | - | 0.512 | −0.224 | [−0.48, 0.03] |
PHYS vs. COMB | 0.998 | −0.055 | [−0.31, 0.20] | - | - | - | 0.752 | 0.175 | [−0.08, 0.43] |
Inter-protocol (Post) | |||||||||
COG vs. PHYS | <0.001 *** | 0.679 | [0.40, 0.96] | <0.001 *** | 2.07 | [1.38, 2.77] | 0.039 * | 0.392 | [0.13, 0.65] |
COG vs. COMB | 1.00 | −0.018 | [−0.27, 0.23] | 0.387 | 0.274 | [−0.12, 0.67] | 0.994 | −0.070 | [−0.32, 0.18] |
PHYS vs. COMB | <0.001 *** | 0.698 | [0.42, 0.98] | <0.001 *** | 1.80 | [1.16, 2.43] | 0.009 ** | 0.462 | [0.20, 0.73] |
Intra-protocol | |||||||||
PRE vs. POST (COG) | <0.001 *** | −0.973 | [−1.28, −0.67] | - | - | - | 0.164 | −0.313 | [−0.57, −0.06] |
PRE vs. POST (PHYS) | 0.006 ** | −0.477 | [−0.74, −0.21] | - | - | - | 0.917 | 0.129 | [−0.12, 0.38] |
PRE vs. POST (COMB) | <0.001 *** | −1.23 | [−1.56, −0.90] | - | - | - | 0.821 | −0.158 | [−0.41, 0.09] |
Variable | Protocol | Pre (Emmean ± SE) | Post (Emmean ± SE) | Main Effects | p-Value | |
---|---|---|---|---|---|---|
IAPF (Hz) | COG | 9.95 ± 0.12 | 9.87 ± 0.13 | Protocol: F(2, 60) = 2.19 | 0.121 | 0.070 |
PHYS | 9.94 ± 0.12 | 9.99 ± 0.13 | Time: F(1, 60) = 0.72 | 0.400 | 0.010 | |
COMB | 9.93 ± 0.12 | 9.91 ± 0.13 | Protocol × Time Interaction: F(2, 60) = 3.92 | 0.031 * | 0.080 | |
α midline power-Fz (μV2) | COG | 1.51 ± 0.43 | 1.86 ± 0.43 | Protocol: F(2, 60) = 0.81 | 0.449 | 0.030 |
PHYS | 1.69 ± 0.43 | 1.89 ± 0.43 | Time: F(1, 60) = 4.91 | 0.030 * | 0.080 | |
COMB | 1.78 ± 0.43 | 1.88 ± 0.43 | Protocol × Time Interaction: F(2, 60) = 0.51 | 0.603 | 0.020 | |
α midline power-Cz (μV2) | COG | 1.51 ± 0.26 | 1.71 ± 0.26 | Protocol: F(2, 60) = 0.27 | 0.766 | 0.009 |
PHYS | 1.61 ± 0.26 | 1.70 ± 0.26 | Time: F(1, 60) = 2.53 | 0.117 | 0.040 | |
COMB | 1.61 ± 0.26 | 1.77 ± 0.26 | Protocol × Time Interaction: F(2, 60) = 0.13 | 0.879 | 0.004 | |
α midline power-Pz (μV2) | COG | 0.69 ± 0.15 | 0.84 ± 0.15 | Protocol: F(2, 60) = 0.74 | 0.481 | 0.020 |
PHYS | 0.80 ± 0.15 | 0.86 ± 0.15 | Time: F(1, 60) = 4.91 | 0.030 * | 0.070 | |
COMB | 0.74 ± 0.15 | 0.81 ± 0.15 | Protocol × Time Interaction: F(2, 60) = 0.43 | 0.650 | 0.010 | |
α midline power-Oz (μV2) | COG | 2.37 ± 0.59 | 2.82 ± 0.59 | Protocol: F(2, 60) = 4.76 | 0.062 | 0.140 |
PHYS | 2.17 ± 0.59 | 2.12 ± 0.59 | Time: F(1, 60) = 0.28 | 0.598 | 0.005 | |
COMB | 3.18 ± 0.59 | 3.23 ± 0.59 | Protocol × Time Interaction: F(2, 60) = 0.29 | 0.745 | 0.010 | |
θ midline power-Fz (μV2) | COG | 0.74 ± 0.09 | 0.71 ± 0.09 | Protocol: F(2, 60) = 2.08 | 0.134 | 0.060 |
PHYS | 0.95 ± 0.09 | 0.09 ± 0.09 | Time: F(1, 60) = 0.11 | 0.744 | 0.002 | |
COMB | 0.87 ± 0.09 | 0.86 ± 0.09 | Protocol × Time Interaction: F(2, 60) = 0.003 | 0.997 | 0.009 | |
θ midline power-Cz (μV2) | COG | 0.62 ± 0.07 | 0.64 ± 0.07 | Protocol: F(2, 60) = 1.15 | 0.322 | 0.040 |
PHYS | 0.74 ± 0.07 | 0.77 ± 0.07 | Time: F(1, 60) = 0.03 | 0.851 | 0.006 | |
COMB | 0.66 ± 0.07 | 0.71 ± 0.07 | Protocol × Time Interaction: F(2, 60) = 0.14 | 0.868 | 0.005 | |
θ midline power-Pz (μV2) | COG | 0.56 ± 0.09 | 0.62 ± 0.09 | Protocol: F(2, 60) = 0.793 | 0.457 | 0.030 |
PHYS | 0.61 ± 0.09 | 0.79 ± 0.09 | Time: F(1, 60) = 0.088 | 0.768 | 0.001 | |
COMB | 0.62 ± 0.09 | 0.72 ± 0.09 | Protocol × Time Interaction: F(2, 60) = 0.185 | 0.832 | 0.006 | |
θ midline power-Oz (μV2) | COG | 0.44 ± 0.08 | 0.45 ± 0.08 | Protocol: F(2, 60) = 1.82 | 0.170 | 0.060 |
PHYS | 0.56 ± 0.08 | 0.62 ± 0.08 | Time: F(1, 60) = 0.32 | 0.574 | 0.005 | |
COMB | 0.57 ± 0.08 | 0.65 ± 0.08 | Protocol × Time Interaction: F(2, 60) = 0.18 | 0.838 | 0.006 |
Variable | Protocol | Pre (Emmean ± SE) | Post (Emmean ± SE) | Main Effects | p-Value | |
---|---|---|---|---|---|---|
θ midline power-Fz (μV2) | COG | 0.74 ± 0.09 | 0.71 ± 0.09 | Protocol: F(2, 60) = 5.88 | 0.467 | 0.160 |
PHYS | 0.95 ± 0.09 | 0.95 ± 0.09 | Time: F(1, 60) = 0.08 | 0.782 | 0.001 | |
COMB | 0.87 ± 0.09 | 0.86 ± 0.09 | Protocol × Time Interaction: F(2, 60) = 0.02 | 0.023 | 0.007 | |
θ midline power-Cz (μV2) | COG | 0.62 ± 0.07 | 0.64 ± 0.07 | Protocol: F(2, 60) = 3.15 | 0.502 | 0.090 |
PHYS | 0.74 ± 0.07 | 0.77 ± 0.07 | Time: F(1, 60) = 0.53 | 0.469 | 0.009 | |
COMB | 0.66 ± 0.07 | 0.71 ± 0.07 | Protocol × Time Interaction: F(2, 60) = 0.04 | 0.959 | 0.001 | |
θ midline power-Pz (μV2) | COG | 0.56 ± 0.09 | 0.62 ± 0.09 | Protocol: F(2, 60) = 1.12 | 0.333 | 0.040 |
PHYS | 0.61 ± 0.09 | 0.79 ± 0.09 | Time: F(1, 60) = 2.99 | 0.089 | 0.050 | |
COMB | 0.62 ± 0.09 | 0.72 ± 0.09 | Protocol × Time Interaction: F(2, 60) = 0.31 | 0.732 | 0.010 | |
θ midline power-Oz (μV2) | COG | 0.44 ± 0.08 | 0.45 ± 0.08 | Protocol: F(2, 60) = 3.44 | 0.386 | 0.100 |
PHYS | 0.56 ± 0.08 | 0.62 ± 0.08 | Time: F(1, 60) = 0.85 | 0.360 | 0.010 | |
COMB | 0.57 ± 0.08 | 0.65 ± 0.08 | Protocol × Time Interaction: F(2, 60) = 0.13 | 0.878 | 0.004 |
IAPF | α midline power-Fz | α midline power-Cz | α midline power-Pz | α midline power-Oz | |||||||||||
Comparisons | p-value | Cohen’s d | CI (95%) | p-value | Cohen’s d | CI (95%) | p-value | Cohen’s d | CI (95%) | p-value | Cohen’s d | CI (95%) | p-value | Cohen’s d | CI (95%) |
Inter-protocol (Pre) | |||||||||||||||
COG vs. PHYS | 0.999 | 0.027 | [−0.22, 0.28] | 0.905 | −0.133 | [−0.38, 0.12] | 0.986 | −0.084 | [−0.33, 0.16] | 0.709 | −0.184 | [−0.44, 0.07] | 0.998 | 0.052 | [−0.20, 0.30] |
COG vs. COMB | 0.995 | 0.068 | [−0.18, 0.32] | 0.610 | −0.205 | [−0.46, 0.05] | 0.989 | −0.081 | [−0.33, 0.17] | 0.988 | −0.082 | [−0.33, 0.16] | 0.562 | −0.214 | [−0.47, 0.04] |
PHYS vs. COMB | 0.996 | −0.041 | [−0.29, 0.21] | 0.993 | 0.071 | [−0.18, 0.32] | 1.000 | −0.003 | [−0.25, 0.25] | 0.968 | −0.102 | [−0.35, 0.15] | 0.321 | 0.266 | [0.01, 0.52] |
Inter-protocol (Post) | |||||||||||||||
COG vs. PHYS | 0.021 * | −0.376 | [−0.63, −0.12] | 1.000 | −0.025 | [−0.28, 0.22] | 1.000 | 0.006 | [−0.24, 0.25] | 1.000 | −0.023 | [−0.27, 0.22] | 0.707 | 0.185 | [−0.07, 0.44] |
COG vs. COMB | 0.961 | −0.107 | [−0.36, 0.14] | 1.000 | −0.021 | [−0.27, 0.23] | 0.998 | −0.052 | [−0.30, 0.20] | 0.999 | 0.046 | [−0.20, 0.30] | 0.956 | −0.110 | [−0.36, 0.14] |
PHYS vs. COMB | 0.311 | −0.269 | [−0.52,−0.01] | 1.000 | −0.004 | [−0.25, 0.25] | 0.994 | 0.059 | [−0.19, 0.31] | 0.994 | −0.069 | [−0.32, 0.18] | 0.217 | 0.295 | [0.04, 0.55] |
Intra-protocol | |||||||||||||||
PRE vs. POST (COG) | 0.040 * | 0.256 | [0.07, 0.51] | 0.047 * | −0.262 | [−0.52,−0.01] | 0.823 | −0.158 | [−0.41, 0.09] | 0.043 * | −0.251 | [−0.51, 0.03] | 0.939 | −0.119 | [−0.37, 0.13] |
PRE vs. POST (PHYS) | 0.862 | −0.147 | [−0.40, 0.10] | 0.837 | −0.154 | [−0.41, 0.10] | 0.995 | −0.067 | [−0.32, 0.18] | 0.385 | −0.255 | [−0.53, 0.05] | 1.000 | 0.014 | [−0.24, 0.26] |
PRE vs. POST (COMB) | 0.989 | 0.081 | [−0.17, 0.33] | 0.989 | −0.079 | [−0.33, 0.17] | 0.914 | −0.130 | [−0.38, 0.12] | 0.930 | −0.123 | [−0.37, 0.13] | 1.000 | −0.014 | [−0.26, 0.24] |
θ midline power-Fz | θ midline power-Cz | θ midline power-Pz | θ midline power-Oz | ||||||||||||
Comparisons | p-value | Cohen’s d | CI (95%) | p-value | Cohen’s d | CI (95%) | p-value | Cohen’s d | CI (95%) | p-value | Cohen’s d | CI (95%) | |||
Inter-protocol (Pre) | |||||||||||||||
COG vs. PHY | 0.670 | −0.193 | [−0.45, 0.06] | 0.829 | −0.156 | [−0.41, 0.09] | 0.978 | −0.093 | [−0.34, 0.16] | 0.995 | −0.068 | [−0.32, 0.18] | |||
COG vs. COMB | 0.981 | −0.090 | [−0.34, 0.16] | 1.00 | 0.012 | [−0.24, 0.26] | 0.999 | −0.030 | [−0.28, 0.22] | 0.773 | −0.170 | [−0.42, 0.08] | |||
PHY vs. COMB | 0.968 | −0.102 | [−0.35, 0.15] | 0.788 | −0.086 | [−0.34, 0.16] | 0.996 | −0.063 | [−0.31, 0.19] | 0.968 | 0.102 | [−0.15, 0.35] | |||
Inter-protocol (Post) | |||||||||||||||
COG vs. PHY | 0.733 | −0.179 | [−0.43, 0.07] | 0.994 | −0.070 | [−0.32, 0.18] | 0.988 | −0.081 | [−0.33, 0.17] | 0.999 | 0.035 | [−0.21, 0.29] | |||
COG vs. COMB | 0.985 | −0.086 | [−0.34, 0.16] | 1.00 | 0.015 | [−0.23, 0.27] | 0.993 | 0.072 | [−0.18, 0.32] | 0.864 | −0.147 | [−0.40, 0.10] | |||
PHY vs. COMB | 0.979 | −0.093 | [−0.34, 0.16] | 0.985 | −0.085 | [−0.34, 0.17] | 0.841 | −0.153 | [−0.40, 0.09] | 0.720 | 0.182 | [−0.07, 0.43] | |||
Intra-protocol | |||||||||||||||
PRE vs. POST (COG) | 1.000 | 0.019 | [−0.23, 0.27] | 1.000 | −0.016 | [−0.27, 0.23] | 1.000 | −0.016 | [−0.27, 0.23] | 0.986 | −0.085 | [−0.34, 0.17] | |||
PRE vs. POST (PHY) | 0.999 | 0.032 | [−0.22, 0.28] | 0.994 | 0.070 | [−0.18, 0.32] | 1.000 | −0.004 | [−0.25, 0.25] | 1.000 | 0.019 | [−0.23, 0.27] | |||
PRE vs. POST (COMB) | 1.000 | 0.023 | [−0.23, 0.27] | 1.000 | −0.011 | [−0.26, 0.24] | 0.985 | 0.086 | [−0.16, 0.34] | 0.997 | −0.061 | [−0.31, 0.19] |
θ Midline Power-Fz | θ Midline Power-Cz | θ Midline Power-Pz | θ Midline Power-Oz | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Comparisons | p-Value | Cohen’s d | CI (95%) | p-Value | Cohen’s d | CI (95%) | p-Value | Cohen’s d | CI (95%) | p-Value | Cohen’s d | CI (95%) |
Inter-protocol (Pre) | ||||||||||||
COG vs. PHY | 0.231 | −0.290 | [−0.55, −0.03] | 0.523 | −0.222 | [−0.48, 0.03] | 0.997 | −0.060 | [−0.31, 0.19] | 0.785 | −0.167 | [−0.42, 0.09] |
COG vs. COMB | 0.710 | −0.184 | [−0.44, 0.07] | 0.991 | 0.077 | [−0.33, 0.17] | 0.992 | −0.075 | [−0.33, 0.18] | 0.772 | −0.171 | [−0.42, 0.08] |
PHY vs. COMB | 0.962 | −0.106 | [−0.36, 0.14] | 0.870 | −0.145 | [−0.40, 0.11] | 1.000 | 0.015 | [−0.24, 0.26] | 1.000 | 0.003 | [−0.25, 0.25] |
Inter-protocol (Post) | ||||||||||||
COG vs. PHY | 0.126 | −0.329 | [−0.59,−0.07] | 0.461 | −0.235 | [−0.49, 0.02] | 0.624 | −0.202 | [−0.45, 0.05] | 0.509 | −0.225 | [−0.48, 0.03] |
COG vs. COMB | 0.636 | −0.199 | [−0.45, 0.05] | 0.919 | −0.128 | [−0.38, 0.12] | 0.932 | −0.122 | [−0.37, 0.13] | 0.335 | −0.263 | [−0.52,−0.01] |
PHY vs. COMB | 0.914 | −0.130 | [−0.38, 0.12] | 0.961 | −0.107 | [−0.36, 0.14] | 0.989 | −0.079 | [−0.33, 0.17] | 0.999 | 0.038 | [−0.21, 0.29] |
Intra-protocol | ||||||||||||
PRE vs. POST (COG) | 0.999 | 0.039 | [−0.21, 0.30] | 0.999 | −0.033 | [−0.28, 0.22] | 0.996 | −0.066 | [−0.32, 0.18] | 1.000 | −0.019 | [−0.27, 0.23] |
PRE vs. POST (PHY) | 1.000 | −0.001 | [−0.25, 0.25] | 0.999 | −0.046 | [−0.30, 0.20] | 0.596 | −0.208 | [−0.46, 0.04] | 0.991 | −0.076 | [−0.33, 0.17] |
PRE vs. POST (COMB) | 1.000 | 0.023 | [−0.23, 0.27] | 0.987 | −0.084 | [−0.33, 0.17] | 0.950 | −0.113 | [−0.36, 0.14] | 0.955 | −0.111 | [−0.36, 0.14] |
Variable | Protocol | Descriptive Statistics (Emmean ± SE) | Main Effects | p-Value | |
---|---|---|---|---|---|
Response Time/Ratio Score (Total Actions) | COG | 0.431 ± 0.103 | Protocol: F(3, 36) = 0.685 | 0.567 | 0.050 |
PHYS | 0.547 ± 0.103 | ||||
COMB | 0.460 ± 0.103 | ||||
BS | 0.402 ± 0.103 | ||||
Response Time/Ratio Score (Offensive Actions) | COG | 0.450 ± 0.096 | Protocol: F(3, 36) = 0.119 | 0.948 | 0.010 |
PHYS | 0.470 ± 0.096 | ||||
COMB | 0.418 ± 0.096 | ||||
BS | 0.428 ± 0.096 | ||||
Response Time/Ratio Score (Defensive Actions) | COG | 0.464 ± 0.086 | Protocol: F(3, 36) = 0.629 | 0.601 | 0.050 |
PHYS | 0.551 ± 0.086 | ||||
COMB | 0.485 ± 0.086 | ||||
BS | 0.441 ± 0.086 |
Response Time/Ratio Score (Total Actions) | Response Time/Ratio Score (Offensive Actions) | Response Time/Ratio Score (Defensive Actions) | |||||||
---|---|---|---|---|---|---|---|---|---|
Comparisons | p-Value | Cohen’s d | CI (95%) | p-Value | Cohen’s d | CI (95%) | p-Value | Cohen’s d | CI (95%) |
Inter-protocol (Pre) | |||||||||
COG vs. PHYS | 0.703 | −0.180 | [−0.50, 0.14] | 0.997 | −0.034 | [−0.36, 0.29] | 0.734 | −0.171 | [−0.49, 0.15] |
COG vs. COMB | 0.993 | −0.044 | [−0.37, 0.28] | 0.987 | 0.056 | [−0.27, 0.38] | 0.994 | −0.042 | [−0.36, 0.28] |
PHYS vs. COMB | 0.848 | −0.135 | [−0.46, 0.19] | 0.948 | −0.091 | [−0.41, 0.23] | 0.864 | −0.130 | [−0.45, 0.19] |
COG vs. BS | 0.993 | 0.046 | [−0.28, 0.37] | 0.995 | 0.039 | [−0.28, 0.36] | 0.993 | 0.046 | [−0.28, 0.37] |
COMB vs. BS | 0.948 | 0.090 | [−0.23, 0.41] | 0.999 | −0.017 | [−0.34, 0.30] | 0.952 | 0.087 | [−0.23, 0.41] |
PHYS vs. BS | 0.534 | 0.226 | [−0.10, 0.55] | 0.971 | 0.074 | [−0.25, 0.40] | 0.567 | 0.217 | [−0.11, 0.54] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubio-Morales, A.; Díaz-García, J.; Berchicci, M.; Morenas-Martín, J.; del Campo, V.L.; García-Calvo, T. The Mental Fatigue Induced by Physical, Cognitive and Combined Effort in Amateur Soccer Players: A Comparative Study Using EEG. J. Funct. Morphol. Kinesiol. 2025, 10, 373. https://doi.org/10.3390/jfmk10040373
Rubio-Morales A, Díaz-García J, Berchicci M, Morenas-Martín J, del Campo VL, García-Calvo T. The Mental Fatigue Induced by Physical, Cognitive and Combined Effort in Amateur Soccer Players: A Comparative Study Using EEG. Journal of Functional Morphology and Kinesiology. 2025; 10(4):373. https://doi.org/10.3390/jfmk10040373
Chicago/Turabian StyleRubio-Morales, Ana, Jesús Díaz-García, Marika Berchicci, Jesús Morenas-Martín, Vicente Luis del Campo, and Tomás García-Calvo. 2025. "The Mental Fatigue Induced by Physical, Cognitive and Combined Effort in Amateur Soccer Players: A Comparative Study Using EEG" Journal of Functional Morphology and Kinesiology 10, no. 4: 373. https://doi.org/10.3390/jfmk10040373
APA StyleRubio-Morales, A., Díaz-García, J., Berchicci, M., Morenas-Martín, J., del Campo, V. L., & García-Calvo, T. (2025). The Mental Fatigue Induced by Physical, Cognitive and Combined Effort in Amateur Soccer Players: A Comparative Study Using EEG. Journal of Functional Morphology and Kinesiology, 10(4), 373. https://doi.org/10.3390/jfmk10040373