Impact of an Eight-Week Plyometric Training Intervention on Neuromuscular Performance, Musculotendinous Stiffness, and Directional Speed in Elite Polish Badminton Athletes
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Testing Procedures
2.2.1. Sprint Test
2.2.2. Analysis of Plyometric Parameters
2.2.3. Squat Jump, Countermovement Jump, Single Leg Jump, and Hop Test
2.3. Training Procedures
Progressive Structure
2.4. Statistical Methods
3. Results
3.1. 5 m Sprint, Slide-Step 5 m Left and Right, and Cross-Step 5 m Left and Right
3.1.1. Squat Jump, Countermovement Jump, Single Leg CMJ Left and Right
3.1.2. Hop Test
3.2. Formatting of Mathematical Components
3.2.1. Repeated Measures ANOVA Model
3.2.2. Effect Size (Partial Eta-Squared)
3.2.3. A Priori Power Analysis
3.2.4. Reactive Strength Index (RSI)
3.2.5. Theorem-Type Statement
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EG | Experimental Group |
CG | Control Group |
SJ | Squat Jump |
CMJ | Countermovement Jump |
slCMJ | Singe Leg Countermovement Jump |
RSI | Reactive Strength Index |
References
- Malwanage, K.T.; Senadheera, V.V.; Dassanayake, T.L. Effect of balance training on footwork performance in badminton: An interventional study. PLoS ONE 2022, 17, e0277775. [Google Scholar] [CrossRef]
- Uzu, R.; Shinya, M.; Oda, S. A split-step shortens the time to perform a choice reaction step-and-reach movement in a simulated tennis task. J. Sports Sci. 2009, 27, 1233–1240. [Google Scholar] [CrossRef]
- Kuo, K.P.; Liao, C.C.; Kao, C.C. Improving special ability performance of badminton players through a visual reaction training system. Healthcare 2022, 10, 1454. [Google Scholar] [CrossRef]
- Phomsoupha, M.; Laffaye, G. The science of badminton: Game characteristics, anthropometry, physiology, visual fitness and biomechanics. Sports Med. 2015, 45, 473–495. [Google Scholar] [CrossRef]
- Lam, W.K.; Wong, D.W.; Lee, W.C. Biomechanics of lower limb in badminton lunge: A systematic scoping review. PeerJ 2020, 8, e10300. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, L.; Jiang, H.; Yu, L.; Wu, H.; Mei, Q. Biomechanical effects of the badminton split-step on forecourt lunging footwork. Bioengineering 2024, 11, 501. [Google Scholar] [CrossRef]
- Yu, L.; Mohamad, N.I. Development of badminton-specific footwork training from traditional physical exercise to novel intervention approaches. Phys. Act. Health 2022, 6, 219–225. [Google Scholar] [CrossRef]
- Borkar, P. Effect of core stability exercises on dynamic balance and agility in amateur badminton players. Int. J. Phys. Educ. Sports Health 2022, 9, 322–326. [Google Scholar] [CrossRef]
- Ma, S.; Soh, K.G.; Japar, S.B.; Liu, C.; Luo, S.; Mai, Y.; Wang, X.; Zhai, M. Effect of core strength training on the badminton player’s performance: A systematic review & meta-analysis. PLoS ONE 2024, 19, e0305116. [Google Scholar] [CrossRef]
- Martín-Fuentes, I.; Oliva-Lozano, J.M.; Muyor, J.M. Evaluation of the lower limb muscles’ electromyographic activity during the leg press exercise and its variants: A systematic review. Int. J. Environ. Res. Public Health 2020, 17, 4626. [Google Scholar] [CrossRef]
- Tsolakis, C.; Kostaki, E.; Vagenas, G. Anthropometric, flexibility, strength-power, and sport-specific correlates in elite fencing. Percept. Mot. Skills 2010, 110, 1015–1028. [Google Scholar] [CrossRef] [PubMed]
- Brumitt, J.; Cuddeford, T. Current concepts of muscle and tendon adaptation to strength and conditioning. Int. J. Sports Phys. Ther. 2015, 10, 748–759. [Google Scholar] [PubMed Central]
- Hirschman, C.E.; Montgomery, J.R.; Grabowski, A.M. The contribution of lower-limb joint quasi-stiffness to theoretical leg stiffness during level, uphill and downhill running at different speeds. R. Soc. Open Sci. 2024, 11, 231133. [Google Scholar] [CrossRef]
- Kariyama, Y. Effect of jump direction on joint kinetics of take-off legs in double-leg rebound jumps. Sports 2019, 7, 183. [Google Scholar] [CrossRef]
- Gervasi, M.; Benelli, P.; Venerandi, R.; Fernández-Peña, E. Relationship between muscle-tendon stiffness and drop jump performance in young male basketball players during developmental stages. Int. J. Environ. Res. Public Health 2022, 19, 17017. [Google Scholar] [CrossRef]
- Hung, C.L.; Hung, M.H.; Chang, C.Y.; Wang, H.H.; Ho, C.S.; Lin, K.C. Influences of lateral jump smash actions in different situations on the lower extremity load of badminton players. J. Sports Sci. Med. 2020, 19, 264–270. [Google Scholar] [PubMed Central]
- Dallas, G.C.; Pappas, P.; Ntallas, C.G.; Paradisis, G.P.; Exell, T.A. The effect of four weeks of plyometric training on reactive strength index and leg stiffness is sport dependent. J. Sports Med. Phys. Fit. 2020, 60, 979–984. [Google Scholar] [CrossRef]
- Ramirez-Campillo, R.; Thapa, R.K.; Afonso, J.; Perez-Castilla, A.; Bishop, C.; Byrne, P.J.; Granacher, U. Effects of plyometric jump training on the reactive strength index in healthy individuals across the lifespan: A systematic review with meta-analysis. Sports Med. 2023, 53, 1029–1053. [Google Scholar] [CrossRef]
- Davies, G.; Riemann, B.L.; Manske, R. Current concepts of plyometric exercise. Int. J. Sports Phys. Ther. 2015, 10, 760–786. [Google Scholar] [PubMed Central]
- Born, D.P.; Zinner, C.; Düking, P.; Sperlich, B. Multi-directional sprint training improves change-of-direction speed and reactive agility in young highly trained soccer players. J. Sports Sci. Med. 2016, 15, 314–319. [Google Scholar] [PubMed Central]
- Padrón-Cabo, A.; Rey, E.; Kalén, A.; Costa, P.B. Effects of training with an agility ladder on sprint, agility, and dribbling performance in youth soccer players. J. Hum. Kinet. 2020, 73, 219–228. [Google Scholar] [CrossRef]
- Rebelo, A.; Pereira, J.R.; Martinho, D.V.; Duarte, J.P.; Coelho-E-Silva, M.J.; Valente-Dos-Santos, J. How to improve the reactive strength index among male athletes? A systematic review with meta-analysis. Healthcare 2022, 10, 593. [Google Scholar] [CrossRef] [PubMed]
- Chandra, S.; Sharma, A.; Malhotra, N.; Rizvi, M.; Kumari, S. Effects of plyometric training on the agility, speed, and explosive power of male collegiate badminton players. J. Lifestyle Med. 2023, 13, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Bhosale, N.; Yeole, U.; Chavarkar, M. Effect of plyometric training on jumping performance and agility in badminton players. Indian J. Public Health Res. Dev. 2020, 11, 532–537. [Google Scholar] [CrossRef]
- Shedge, S.; Ramteke, S.; Jaiswal, P. Optimizing agility and athletic proficiency in badminton athletes through plyometric training: A review. Cureus 2024, 16, e52596. [Google Scholar] [CrossRef]
- Albayati, M.; Kaya, Y. The effect of 12-week different training methods applied to badminton athletes on some basic motoric properties. Eur. J. Fit. Nutr. Sport Med. Stud. 2023, 3, 46–54. [Google Scholar] [CrossRef]
- Dallas, C.; Milosis, D.; Voiatzi, J.; Siatras, T.; Tzavela, I.; Dallas, G. The effect of a 6-week plyometric training on agility, jump height, and dynamic balance in young artistic and rhythmic gymnasts. Acta Gymnica 2025, 55, e2025.002. [Google Scholar] [CrossRef]
- Kumar, D.; Dhull, S.; Nara, K.; Kumar, P. Determining the optimal duration of plyometric training for enhancing vertical jump performance: A systematic review and meta-analysis. Health Sport Rehabil. 2023, 9, 118–133. [Google Scholar] [CrossRef]
- Xie, L.; Chen, J.; Dai, J.; Zhang, W.; Chen, L.; Sun, J.; Gao, X.; Song, J.; Shen, H. Exploring the potent enhancement effects of plyometric training on vertical jumping and sprinting ability in sports individuals. Front. Physiol. 2024, 15, 1435011. [Google Scholar] [CrossRef]
- Slimani, M.; Chamari, K.; Miarka, B.; Del Vecchio, F.; Chéour, F. Effects of plyometric training on physical fitness in team sport athletes: A systematic review. J. Hum. Kinet. 2016, 53, 231–247. [Google Scholar] [CrossRef]
- Booth, M.; Orr, R. Effects of plyometric training on sports performance. Strength Cond. J. 2016, 38, 30–37. [Google Scholar] [CrossRef]
- Turner, A.; Jeffreys, I. The stretch-shortening cycle: Proposed mechanisms and methods for enhancement. Strength Cond. J. 2010, 32, 87–99. [Google Scholar] [CrossRef]
- Phomsoupha, M.; Laffaye, G. A multiple repeated sprint ability test with four changes of direction for badminton players (part 2): Predicting skill level with anthropometry, strength, shuttlecock and displacement velocity. J. Strength Cond. Res. 2017, 34, 203–211. [Google Scholar] [CrossRef]
- Ramirez-Campillo, R.; Meylan, C.; Álvarez, C.; Henríquez-Olguín, C.; Martínez, C.; Cañas-Jamett, R.; David, C.A.; Mikel, I. Effects of in-season low-volume high-intensity plyometric training on explosive actions and endurance of young soccer players. J. Strength Cond. Res. 2014, 28, 1335–1342. [Google Scholar] [CrossRef]
- Liu, G.; Wang, X.; Xu, Q. Microdosing plyometric training enhances jumping performance, reactive strength index, and acceleration among youth soccer players: A randomized controlled study design. J. Sports Sci. Med. 2024, 23, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Ozmen, T.; Aydoğmuş, M. Effect of plyometric training on jumping performance and agility in adolescent badminton players. Turk. J. Sport Exerc. 2017, 19, 222–227. [Google Scholar] [CrossRef]
- Bogdanis, G.; Tsoukos, A.; Kaloheri, O.; Terzis, G.; Veligekas, P.; Brown, L.E. Comparison between unilateral and bilateral plyometric training on single- and double-leg jumping performance and strength. J. Strength Cond. Res. 2019, 33, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Sun, M.; Wang, X.; Xu, Q. Unilateral plyometric jump training shows significantly more effective than bilateral training in improving both time to stabilization and peak landing force in single-leg land and hold test: A randomized multi-arm study conducted among young male basketball players. J. Sports Sci. Med. 2024, 23, 647–655. [Google Scholar] [CrossRef]
- Oliver, J.; Ramachandran, A.; Singh, U.; Ramirez-Campillo, R.; Lloyd, R. The effects of strength, plyometric and combined training on strength, power and speed characteristics in high-level, highly trained male youth soccer players: A systematic review and meta-analysis. Sports Med. 2023, 54, 623–643. [Google Scholar] [CrossRef]
- Gehri, D.; Ricard, M.; Kleiner, D.; Kirkendall, D. A comparison of plyometric training techniques for improving vertical jump ability and energy production. J. Strength Cond. Res. 1998, 12, 85–89. [Google Scholar] [CrossRef]
- Wu, Y.; Lien, Y.; Lin, K.; Shih, T.; Wang, T.; Wang, H. Relationships between three potentiation effects of plyometric training and performance. Scand. J. Med. Sci. Sports 2010, 20, e80–e86. [Google Scholar] [CrossRef]
- Abian, P.; Del Coso, J.; Salinero, J.; Gallo-Salazar, C.; Areces, F.; Ruiz-Vicente, D.; Lara, B.; Soriano, L.; Muñoz, V.; Abián-Vicén, J. The ingestion of a caffeinated energy drink improves jump performance and activity patterns in elite badminton players. J. Sports Sci. 2015, 33, 1042–1050. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Teng, J.; Fekete, G.; Mei, Q.; Zhao, J.; Yang, F.; Gu, Y. Influence of torsional stiffness in badminton footwear on lower limb biomechanics. J. Sports Sci. Med. 2024, 23, 196–208. [Google Scholar] [CrossRef] [PubMed]
- Freitas, T.; Martínez-Rodríguez, A.; Calleja-González, J.; Alcaraz, P. Short-term adaptations following complex training in team-sports: A meta-analysis. PLoS ONE 2017, 12, e0180223. [Google Scholar] [CrossRef] [PubMed]
- Prvulović, N.; Pantelić, S.; Stanković, R.; Bubanj, S. Effects of plyometric programs on biomechanical parameters in track and field, basketball and volleyball: A systematic review. Facta Univ. Teach Learn Teach Educ. 2022, 6, 103–117. [Google Scholar] [CrossRef]
- Söhnlein, Q.; Müller, E.; Stöggl, T. The effect of 16-week plyometric training on explosive actions in early to mid-puberty elite soccer players. J. Strength Cond. Res. 2014, 28, 2105–2114. [Google Scholar] [CrossRef]
Types | Group | M ± SD (−95%; 95% CI) | Main Effects and Interaction for MANOVA with Repeated Measures F/p/η2 | |
---|---|---|---|---|
Before | After | |||
5 m Sprint [s] | EG | 1.14 ± 0.11 (1.08; 1.19) | 1.13 ± 0.15 (1.05; 1.21) | Group: F = 1.82; p = 0.19; η2 = 0.06 Before–After: F < 0.0001; p = 0.98; η2 < 0.001 Group Before–After: F = 0.25; p = 0.62; η2 = 0.001 |
CG | 1.08 ± 0.07 (1.04; 1.12) | 1.09 ± 0.06 (1.05; 1.12) | ||
10 m Sprint [s] | EG | 1.92 ± 0.16 * (1.84; 2.01) | 1.90 ± 0.16 * (1.81; 1.99) | Group: F = 0.18; p = 0.68; η2 = 0.01 Before–After: F = 0.83; p = 0.37; η2 = 0.03 Group Before–After: F = 4.57; p = 0.041; η2 = 0.13 |
CG | 1.89 ± 0.12 (1.82; 1.95) | 1.90 ± 0.13 (1.82; 1.97) | ||
Slide-Step 5 m [s] Left | EG | 1.47 ± 0.11 * (1.41; 1.53) | 1.42 ± 0.12 * (1.36; 1.49) | Group: F = 0.001; p = 0.97; η2 < 0.0001 Before–After: F = 3.60; p = 0.068; η2 = 0.11 Group Before–After: F = 6.30; p = 0.018; η2 = 0.18 |
CG | 1.44 ± 0.11 (1.39; 1.50) | 1.45 ± 0.09 (1.40; 1.50) | ||
Slide-Step 5 m [s] Right | EG | 1.46 ± 0.13 (1.39; 1.53) | 1.43 ± 0.13 (1.36; 1.50) | Group: F = 0.95; p = 0.34; η2 = 0.033 Before–After: F = 1.79; p = 0.19; η2 = 0.060 Group Before–After: F = 0.55; p = 0.46; η2 = 0.019 |
CG | 1.49 ± 0.13 (1.42; 1.56) | 1.48 ± 0.11 (1.42; 1.54) | ||
Cross-Step 5 m [s] Left | EG | 1.28 ± 0.10 (1.22; 1.33) | 1.26 ± 0.11 (1.19; 1.32) | Group: F = 3.00; p = 0.094; η2 = 0.097 Before–After: F = 1.46; p = 0.24; η2 = 0.050 Group Before–After: F = 1.66; p = 0.21; η2 = 0.056 |
CG | 1.33 ± 0.09 (1.28; 1.37) | 1.33 ± 0.09 (1.28; 1.38) | ||
Cross-Step 5 m [s] Right | EG | 1.26 ± 0.10 (1.20; 1.32) | 1.25 ± 0.14 (1.17; 1.33) | Group: F = 3.95; p = 0.06; η2 = 0.12 Before–After: F = 0.06; p = 0.81; η2 = 0.002 Group Before–After: F = 0.03; p = 0.86; η2 = 0.001 |
CG | 1.34 ± 0.11 (1.28; 1.40) | 1.34 ± 0.10 (1.28; 1.39) |
Types | Parameters | G | Before | After | Main Effects and Interaction for MANOVA with Repeated Measures F/p/η2 |
---|---|---|---|---|---|
M ± SD (−95%; 95% CI) | M ± SD (−95%; 95% CI) | ||||
SJ | Height [cm] | EG | 31.09 ± 6.73 *** (27.36; 34.81) | 33.10 ± 6.84 *** (29.31; 36.88) | Group: F = 0.95; p = 0.34; η2 = 0.029 Before–After: F = 21.68; p = 0.0001; η2 = 0.44 Group Before–After: F = 25.08; p < 0.0001; η2 = 0.47 |
CG | 34.40 ± 5.93 (31.12; 37.68) | 34.33 ± 6.03 (30.99; 37.67) | |||
Power [W] | EG | 754.46 ± 164.20 *** (663.53; 845.39) | 779.37 ± 168.48 *** (686.07; 872.68) | Group: F = 0.48; p = 0.50; η2 = 0.020 Before–After: F = 25.59; p = 0.0001; η2 = 0.42 Group Before–After: F = 24.31; p < 0.0001; η2 = 0.46 | |
CG | 808.78 ± 162.16 (718.98; 898.58) | 807.75 ± 162.46 (717.78; 897.72) | |||
CMJ | Height [cm] | EG | 35.00 ± 7.07 *** (31.08; 38.91) | 37.96 ± 7.42 *** (33.85; 42.07) | Group: F = 0.02; p = 0.88; η2 = 0.001 Before–After: F = 24.32; p < 0.0001; η2 = 0.46 Group Before–After: F = 34.00; p < 0.0001; η2 = 0.55 |
CG | 36.97 ± 6.43 (33.41; 40.53) | 36.72 ± 6.20 (33.29; 40.16) | |||
Power [W] | EG | 796.21 ± 164.74 *** (704.98; 887.44) | 839.89 ± 185.31 *** (737.27; 942.51) | Group: F = 0.10; p = 0.75; η2 = 0.004 Before–After: F = 10.87; p = 0.0027; η2 = 0.28 Group Before–After: F = 14.06; p = 0.0008; η2 = 0.33 | |
CG | 839.51 ± 173.96 (743.17; 935.84) | 836.70 ± 172.17 (741.36; 932.05) |
Types | Parameters | G | Before | After | Main Effects and Interaction for MANOVA with Repeated Measures F/p/η2 |
---|---|---|---|---|---|
M ± SD (−95%; 95% CI) | M ± SD (−95%; 95% CI) | ||||
slCMJleft | Height [cm] | EG | 16.70 ± 4.60 *** (14.16; 19.25) | 19.46 ± 5.55 *** (16.39; 22.54) | Group: F = 0.29; p = 0.60; η2 = 0.099 Before–After: F = 15.94; p = 0.0004; η2 = 0.36 Group Before–After: F = 19.40; p = 0.0001; η2 = 0.41 |
CG | 19.08 ± 4.13 (16.79; 21.36) | 18.94 ± 4.89 (16.23; 21.65) | |||
Power [W] | EG | 549.51 ± 116.93 *** (484.76; 614.26) | 593.21 ± 128.46 *** (522.07; 664.35) | Group: F = 0.40; p = 0.53; η2 = 0.01 Before–After: F = 15.86; p = 0.0004; η2 = 0.36 Group Before–After: F = 14.53; p = 0.0007; η2 = 0.34 | |
CG | 597.82 ± 108.98 (537.47; 658.18) | 598.78 ± 117.45 (533.73; 663.82) | |||
slCMJright | Height [cm] | EG | 19.38 ± 5.82 ** (16.15; 22.60) | 21.09 ± 6.04 ** (17.74; 24.43) | Group: F = 0.21; p = 0.65; η2 = 0.007 Before–After: F = 4.86; p = 0.036; η2 = 0.15 Group Before–After: F = 10.60; p = 0.0030; η2 = 0.27 |
CG | 21.33 ± 5.22 (18.44; 24.23) | 21.01 ± 5.81 (17.79; 24.22) | |||
Power [W] | EG | 591.88 ± 138.11 ** (515.39; 668.36) | 617.59 ± 144.44 ** (537.60; 697.58) | Group: F = 0.28; p = 0.60; η2 = 0.01 Before–After: F = 3.91; p = 0.058; η2 = 0.12 Group Before–After: F = 9.89; p = 0.0039; η2 = 0.26 | |
CG | 634.40 ± 134.56 (559.89; 708.92) | 628.54 ± 142.24 (549.77; 707.31) |
Parameters | Group | Main Effects and Interaction for MANOVA with Repeated Measures F/p/η2 | ||
---|---|---|---|---|
EG | CG | |||
M ± SD (95%; 95% CI) | M ± SD (95%; 95% CI) | |||
Height [cm] | 1a | 26.74 ± 3.06 (24.97; 28.51) | 24.31 ± 7.72 (19.85; 28.76) | Group: F = 0.70; p = 0.41; η2 = 0.026 Before–After: F = 1.05; p = 0.37; η2 = 0.039 Group Before–After: F = 0.85; p = 0.47; η2 = 0.031 |
1b | 26.58 ± 3.95 (24.30; 28.87) | 29.16 ± 15.12 (20.43; 37.89) | ||
1c | 28.12 ± 4.16 (25.72; 30.53) | 25.69 ± 9.39 (20.27; 31.12) | ||
1d | 36.17 ± 35.89 (15.45; 56.90) | 27.20 ± 6.70 (23.34; 31.07) | ||
RSI [cm/s] | 1a | 1.06 ± 0.20 (0.95; 1.18) | 0.99 ± 0.43 (0.74; 1.23) | Group: F = 0.43; p = 0.52; η2 = 0.016 Before–After: F = 1.75; p = 0.16; η2 = 0.063 Group Before–After: F = 0.71; p = 0.55; η2 = 0.027 |
1b | 1.21 ± 0.32 (1.02; 1.40) | 1.33 ± 0.87 (0.82; 1.83) | ||
1c | 1.25 ± 0.30 (1.08; 1.43) | 1.12 ± 0.54 (0.80; 1.43) | ||
1d | 1.46 ± 1.05 (0.85; 2.06) | 1.18 ± 0.42 (0.94; 1.42) | ||
Power [W] | 1a | 1121.54 ± 385.88 (898.74; 1344.34) | 1007.70 ± 358.86 (800.50; 1214.90) | Group: F = 2.70; p = 0.11; η2 = 0.09 Before–After: F = 3.79; p = 0.01; η2 = 0.13 Group Before–After: F = 0.58; p = 0.63; η2 = 0.02 |
1b | 1377.68 ± 354.66 (1172.91; 1582.46) | 1181.25 ± 447.07 (923.12; 1439.38) | ||
1c | 1401.98 ± 459.88 (1136.46; 1667.51) | 1175.67 ± 458.77 (910.78; 1440.55) | ||
1d | 1501.20 ± 660.08 (1120.08; 1882.32) | 1160.54 ± 414.02 (921.49; 1399.59) | ||
Musculotendinous Stiffness [N/m] | 1a | 13,605.30 ± 4392.73 (11,069.01; 16,141.59) | 11,838.15 ± 4027.11 (9512.97; 14,163.34) | Group: F = 2.15; p = 0.16; η2 = 0.076 Before–After: F = 10.46; p < 0.0001; η2 = 0.29 Group Before–After: F = 0.18; p = 0.91; η2 = 0.0069 |
1b | 15,317.13 ± 3435.42 (13,333.57; 17,300.68) | 13,211.77 ± 4789.01 (10,446.68; 15,976.86) | ||
1c | 16,910.75 ± 4940.17 (14,058.38; 19,763.12) | 14,656.68 ± 3974.47 (12,361.88; 16,951.47) | ||
1d | 15,365.27 ± 3955.07 (13,081.68; 17,648.86) | 12,804.93 ± 4716.03 (10,081.97; 15,527.88) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gepfert, M.; Gołaś, A.; Roczniok, R.; Walencik, J.; Węgrzynowicz, K.; Zając, A. Impact of an Eight-Week Plyometric Training Intervention on Neuromuscular Performance, Musculotendinous Stiffness, and Directional Speed in Elite Polish Badminton Athletes. J. Funct. Morphol. Kinesiol. 2025, 10, 304. https://doi.org/10.3390/jfmk10030304
Gepfert M, Gołaś A, Roczniok R, Walencik J, Węgrzynowicz K, Zając A. Impact of an Eight-Week Plyometric Training Intervention on Neuromuscular Performance, Musculotendinous Stiffness, and Directional Speed in Elite Polish Badminton Athletes. Journal of Functional Morphology and Kinesiology. 2025; 10(3):304. https://doi.org/10.3390/jfmk10030304
Chicago/Turabian StyleGepfert, Mariola, Artur Gołaś, Robert Roczniok, Jan Walencik, Kamil Węgrzynowicz, and Adam Zając. 2025. "Impact of an Eight-Week Plyometric Training Intervention on Neuromuscular Performance, Musculotendinous Stiffness, and Directional Speed in Elite Polish Badminton Athletes" Journal of Functional Morphology and Kinesiology 10, no. 3: 304. https://doi.org/10.3390/jfmk10030304
APA StyleGepfert, M., Gołaś, A., Roczniok, R., Walencik, J., Węgrzynowicz, K., & Zając, A. (2025). Impact of an Eight-Week Plyometric Training Intervention on Neuromuscular Performance, Musculotendinous Stiffness, and Directional Speed in Elite Polish Badminton Athletes. Journal of Functional Morphology and Kinesiology, 10(3), 304. https://doi.org/10.3390/jfmk10030304