Lung Function Changes with Swim Training in Healthy and Allergic Endurance Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Sample
2.3. Procedures
2.3.1. Ethics
2.3.2. Questionnaires
2.3.3. Spirometry Data Collection
2.3.4. Sample Subdivisions
2.3.5. Statistical Analyses
3. Results
3.1. Lung Function Across Sports
3.2. Effects of Allergy and Asthma
3.3. Lung Function Differences Between Swim Training Onset
4. Discussion
4.1. Homogenity of Lung Function Across Sports
4.2. Swim Training Onset Does Not Appear to Influence Lung Function
4.3. Effects of Swim Training in Allergic and Asthmatic Athletes
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SL | On-land seated condition |
PL | On-land prone condition |
SI | Immersed seated condition |
PI | Immersed prone condition |
FVC | Forced vital capacity |
FEV1 | Forced expiratory volume in one second |
PEF | Peak expiratory flow |
FEF25–75% | Fraction of the expiratory flow from 25% to 75% |
STyears | Years of cumulative experience in formal swimming training |
TSFreqtotal | Weekly total training session frequency |
TSFreqswim | Weekly swim training session frequency |
GLI | Global Lung Function Initiative |
BTPS | Standard body temperature, ambient pressure, and gas saturated with water vapor |
ATS | American Thoracic Society |
ERS | European Respiratory Society |
%RV | Percentage of predicted reference values |
RA | Reported physician-diagnosed allergy group |
RAs | Reported physician-diagnosed asthma group |
NRA | Negative reported physician-diagnosed allergy group |
PRA | Positive reported physician-diagnosed allergy group |
NRAs | Negative reported physician-diagnosed asthma group |
PRAs | Positive reported physician-diagnosed asthma group |
ES | Early swim training start group |
NES | Non-early swim training start group |
References
- Lazovic-Popovic, B.; Zlatkovic-Svenda, M.; Durmic, T.; Djelic, M.; Djordjevic Saranovic, S.; Zugic, V. Superior lung capacity in swimmers: Some questions, more answers! Rev. Port. Pneumol. 2016, 22, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Rosser-Stanford, B.; Backx, K.; Lord, R.; Williams, E.M. Static and Dynamic Lung Volumes in Swimmers and Their Ventilatory Response to Maximal Exercise. Lung 2019, 197, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Bernhardsen, G.P.; Stang, J.; Halvorsen, T.; Stensrud, T. Differences in lung function, bronchial hyperresponsiveness and respiratory health between elite athletes competing in different sports. Eur. J. Sport. Sci. 2023, 23, 1480–1489. [Google Scholar] [CrossRef] [PubMed]
- Doherty, M.; Dimitrou, L. Comparison of lung volume in Greek swimmers, land based athletes, and sedentary controls using allometric scaling. Br. J. Sports Med. 1997, 31, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Cordain, L.; Tucker, A.; Moon, D.; Stager, J.M. Lung volumes and maximal respiratory pressures in collegiate swimmers and runners. Res. Q. Exerc. Sport. 1990, 61, 70–74. [Google Scholar] [CrossRef]
- Zakharova, A.; Gorelov, A.; Miasnikova, T. Computer spirometry: Research of respiratory system functionality and its enhancement in young swimmers. In icSPORTS 2020—Proceedings of the 8th International Conference on Sport Sciences Research and Technology Support, Budapest, Hungary, 5–6 November 2020; SciTePress: Setúbal, Portugal, 2020; pp. 228–233. [Google Scholar]
- Vaccaro, P.; Clarke, D.H. Cardiorespiratory alterations in 9 to 11 years old children following a season of competitive swimming. Med. Sci. Sports 1978, 10, 204–207. [Google Scholar]
- García, I.; Drobnic, F.; Arrillaga, B.; Pons, V.; Viscor, G. Lung capacity and alveolar gas diffusion in aquatic athletes: Implications for performance and health. Apunt. Sports Med. 2021, 56, 209. [Google Scholar] [CrossRef]
- Bostanci, Ö.; Kabadayi, M.; Mayda, M.H.; Yilmaz, A.K.; Yilmaz, C. The differential impact of several types of sports on pulmonary functions and respiratory muscle strength in boys aged 8–12. Isokinet. Exerc. Sci. 2019, 27, 307–312. [Google Scholar] [CrossRef]
- Yilmaz, Ö.F.; Özdal, M. Acute, chronic, and combined pulmonary responses to swimming in competitive swimmers. Respir. Physiol. Neurobiol. 2019, 259, 129–135. [Google Scholar] [CrossRef]
- Deepali, A.; Ravindra, P.; Shobha, M.; Mujumdar, P.; Mandal, M. Duration of Swimming Practice Among Elite Swimmers Exerts Differential Effect on Large and Small Airway Function. Indian J. Physiol. Pharmacol. 2017, 61, 52–57. [Google Scholar]
- Fu, F.H. The effects of physical training on the lung growth of infant rats. Med. Sci. Sports 1976, 8, 226–229. [Google Scholar] [CrossRef] [PubMed]
- Rochat, I.; Côté, A.; Boulet, L.P. Determinants of lung function changes in athletic swimmers. A review. Acta Paediatr. Int. J. Paediatr. 2022, 111, 259–264. [Google Scholar] [CrossRef]
- Courteix, D.; Obert, P.; Lecoq, A.M.; Guenon, P.; Koch, G. Effect of intensive swimming training on lung volumes, airway resistances and on the maximal expiratory flow-volume relationship in prepubertal girls. Eur. J. Appl. Physiol. Occup. Physiol. 1997, 76, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Andrew, G.M.; Becklake, M.R.; Guleria, J.S.; Bates, D.V. Heart and lung functions in swimmers and nonathletes during growth. J Appl Physiol. 1972, 32, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, P.; Andrew, G.M. Influence of growth and athletic training on heart and lung functions. Eur. J. Appl. Physiol. Occup. Physiol. 1976, 36, 27–38. [Google Scholar] [CrossRef]
- Zinman, R.; Gaultier, C. Maximal static pressures and lung volumes in young female swimmers: One year follow-up. Pediatr. Pulmonol. 1987, 3, 145–148. [Google Scholar] [CrossRef]
- Bovard, J.M.; Welch, J.F.; Houghton, K.M.; McKenzie, D.C.; Potts, J.E.; Sheel, A.W. Does competitive swimming affect lung growth? Physiol. Rep. 2018, 6, e13816. [Google Scholar] [CrossRef]
- Armour, J.; Donnelly, P.M.; Bye, P.T.P. The large lungs of elite swimmers: An increased alveolar number? Eur. Respir. J. 1993, 6, 237–247. [Google Scholar] [CrossRef]
- Sarro, K.J.; Silvatti, A.P.; Barros, R.M.L. Coordination between ribs motion and thoracoabdominal volumes in swimmers during respiratory maneuvers. J. Sports Sci. Med. 2008, 7, 195–200. [Google Scholar]
- Bertholon, J.F.; Carles, J.; Teillac, A. Assessment of ventilatory performance of athletes using the maximal expiratory flow-volume curve. Int. J. Sports Med. 1986, 7, 80–85. [Google Scholar] [CrossRef]
- Bougault, V.; Turmel, J.; Levesque, B.; Boulet, L.P. The Respiratory Health of Swimmers. Sports Med. 2009, 39, 295–312. [Google Scholar] [CrossRef] [PubMed]
- Stang, J.; Stensrud, T.; Mowinckel, P.; Carlsen, K.H. Parasympathetic Activity and Bronchial Hyperresponsiveness in Athletes. Med. Sci. Sports Exerc. 2016, 48, 2100–2107. [Google Scholar] [CrossRef] [PubMed]
- Langdeau, J.B.; Turcotte, H.; Bowie, D.M.; Jobin, J.; Desgagné, P.; Boulet, L.P. Airway Hyperresponsiveness in Elite Athletes. Am. J. Respir. Crit. Care Med. 2000, 161, 1479–1484. [Google Scholar] [CrossRef]
- Carlsen, K.H.; Anderson, S.D.; Bjermer, L.; Bonini, S.; Brusasco, V.; Canonica, W.; Cummiskey, J.; Delgado, L.; Del Giacco, S.R.; Drobnic, F.; et al. Exercise-induced asthma respiratory allergic disorders in elite athletes: Epidemiology mechanisms diagnosis: Part I of the report from the Joint Task Force of the European Respiratory Society, [.E.R.S.].; the European Academy of Allergy Clinical Immunology [EAACI] in cooperation with, G.A.2.L.E.N. Allergy 2008, 63, 387–403. [Google Scholar]
- Thomas, S.; Wolfarth, B.; Wittmer, C.; Nowak, D.; Radon, K. Self-reported asthma and allergies in top athletes compared to the general population—Results of the German part of the GA2LEN-Olympic study 2008. Allergy Asthma Clin. Immunol. 2010, 6, 31. [Google Scholar] [CrossRef]
- Bonini, M.; Braido, F.; Baiardini, I.; Del Giacco, S.; Gramiccioni, C.; Manara, M.; Tagliapietra, G.; Scardigno, A.; Sargentini, V.; Brozzi, M.; et al. AQUA: Allergy questionnaire for athletes. Development and validation. Med. Sci. Sports Exerc. 2009, 41, 1034–1041. [Google Scholar] [CrossRef]
- Fröhlich, M.; Pinart, M.; Keller, T.; Reich, A.; Cabieses, B.; Hohmann, C.; Postma, D.S.; Bousquet, J.; Antó, J.M.; Keil, T.; et al. Is there a sex-shift in prevalence of allergic rhinitis and comorbid asthma from childhood to adulthood? A meta-analysis. Clin. Transl. Allergy 2017, 7, 44. [Google Scholar] [CrossRef] [PubMed]
- Pinart, M.; Keller, T.; Reich, A.; Fröhlich, M.; Cabieses, B.; Hohmann, C.; Postma, D.S.; Bousquet, J.; Antó, J.M.; Keil, T. Sex differences in the prevalence of rhinitis: A systematic review and meta-analysis. Eur. Respir. J. 2016, 48, 1254. [Google Scholar]
- Jensen-Jarolim, E. Gender effects in allergology—Secondary publications and update. World Allergy Organ. J. 2017, 10, 47. [Google Scholar] [CrossRef]
- Eriksson, B.O.; Engström, I.; Karlberg, P.; Lundin, A.; Saltin, B.; Thorén, C. Long-Term Effect of Previous Swimtraining in Girls. A 10-Year Follow-Up of the “Girl Swimmers”. Acta Paediatr. 1978, 67, 285–292. [Google Scholar]
- Netaji Kate, N.; Chandrika, G.T.; Ambareesha, K.; Madhuri, A.; Suresh, M.; Chandrashekar, M. The Effect of Short, Intermediate and Long Duration of Swimming on Pulmonary Function Tests. IOSR J. Pharm Biol. Sci. 2012, 4, 18–20. [Google Scholar] [CrossRef]
- Stanojevic, S.; Kaminsky, D.A.; Miller, M.R.; Thompson, B.; Aliverti, A.; Barjaktarevic, I.; Cooper, B.G.; Culver, B.; Derom, E.; Hall, G.L.; et al. ERS/ATS technical standard on interpretive strategies for routine lung function tests. Eur. Respir. J. 2022, 60, 2101499. [Google Scholar] [CrossRef]
- Quanjer, P.H.; Stanojevic, S.; Cole, T.J.; Baur, X.; Hall, G.L.; Culver, B.H.; Enright, P.L.; Hankinson, J.L.; Ip, M.S.M.; Zheng, J.; et al. Multi-ethnic reference values for spirometry for the 3–95-yr age range: The global lung function 2012 equations. Eur. Respir. J. 2012, 40, 1324–1343. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Cohen, J., Ed.; Lwarence Erlbaum Associates: New York, NY, USA, 1988; 567p. [Google Scholar]
- Huang, S.W.; Veiga, R.; Sila, U.; Reed, E.; Hines, S. The Effect of Swimming in Asthmatic Children—Participants in a Swimming Program in the City of Baltimore. J. Asthma 1989, 26, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Mickleborough, T.D.; Nichols, T.; Lindley, M.R.; Chatham, K.; Ionescu, A.A. Inspiratory flow resistive loading improves respiratory muscle function and endurance capacity in recreational runners. Scand. J. Med. Sci. Sports. 2010, 20, 458–468. [Google Scholar] [CrossRef]
- Pherwani, A.V.; Desai, A.G.; Solepure, A.B. A study of pulmonary function of competitive swimmers. Indian J. Physiol. Pharmacol. 1989, 33, 228–232. [Google Scholar]
- Gorai, S.; Chattaraj, W.; Samajdar, K. Effects of a Swimming Training Session on Pulmonary Functions in Young Adult Beginners. Int. J. Contemp. Med. Res. 2019, 6, 2454–7379. [Google Scholar] [CrossRef]
- Lomax, M.E.; McConnell, A.K. Inspiratory muscle fatigue in swimmers after a single 200 m swim. J. Sports Sci. 2003, 21, 659–664. [Google Scholar] [CrossRef] [PubMed]
- Pellegrino, R.; Brusasco, V. Lung hyperinflation and flow limitation in chronic airway obstruction. Eur. Respir. J. 1997, 10, 543–549. [Google Scholar] [CrossRef]
- Kosmas, E.N.; Milic-Emili, J.; Polychronaki, A.; Dimitroulis, I.; Retsou, S.; Gaga, M.; Koutsoukou, A.; Roussos, C.; Koulouris, N.G. Exercise-induced flow limitation, dynamic hyperinflation and exercise capacity in patients with bronchial asthma. Eur. Respir. J. 2004, 24, 378–384. [Google Scholar] [CrossRef]
- Jain, V.V.; Abejie, B.; Bashir, M.H.; Tyner, T.; Vempilly, J. Lung Volume Abnormalities and its Correlation to Spirometric and Demographic Variables in Adult Asthma. J. Asthma 2013, 50, 600–605. [Google Scholar] [CrossRef] [PubMed]
- Helenius, I.J.; Tikkanen, H.O.; Haahtela, T. Association between type of training and risk of asthma in elite athletes. Thorax 1997, 52, 157. [Google Scholar] [CrossRef] [PubMed]
- Brudno, D.S.; Wagner, J.M.; Rupp, N.T. Length of postexercise assessment in the determination of exercise-induced bronchospasm. Ann. Allergy 1994, 73, 227–231. [Google Scholar] [PubMed]
- Ramachandran, H.J.; Jiang, Y.; Shan, C.H.; Tam, W.W.S.; Wang, W. A systematic review and meta-analysis on the effectiveness of swimming on lung function and asthma control in children with asthma. Int. J. Nurs. Stud. 2021, 120, 103953. [Google Scholar] [CrossRef]
- Bar-Or, O.; Inbar, O. Swimming and Asthma. Sports Med. 1992, 14, 397–405. [Google Scholar] [CrossRef]
Swimmers | Triathletes | Runners | Test Value | Significance | |
---|---|---|---|---|---|
STyears | 22.93 ± 8.29 **b | 13.07 ± 8.40 | 5.73 ± 8.29 | H = 20.654 | p < 0.001 ** |
TSFreqTotal | 4.60 ± 2.26 | 6.67 ± 2.87 | 5.27 ± 1.94 | F = 2.922 | p = 0.065 |
TSFreqswim | 2.40 ± 0.91 **a | 2.40 ± 0.83 **c | 0.20 + 0.56 | H = 27.995 | p < 0.001 ** |
Swimmers | Triathletes | Runners | Test Value | Significance | ||
---|---|---|---|---|---|---|
FVCSL | Z-score | 0.91 ± 1.16 | 0.51 ± 0.78 | 0.62 ± 0.48 | F = 0.872 | p = 0.426 |
%RV | 111.53 ± 14.85 | 106.40 ± 10.16 | 108.00 ± 6.00 | F = 0.863 | p = 0.429 | |
FVCPL | Z-score | 0.21 ± 1.13 | −0.13 ± 0.74 | −0.05 ± 0.44 | F = 0.714 | p = 0.496 |
%RV | 102.67 ± 14.34 | 98.33 ± 9.66 | 99.40 ± 5.53 | F = 0.697 | p = 0.504 | |
FVCSI | Z-score | −0.27 ± 1.17 | −0.73 ± 0.66 | −0.68 ± 0.64 | F = 0.943 | p = 0.288 |
%RV | 96.73 ± 14.78 | 90.60 ± 8.42 | 91.53 ± 7.68 | F = 1.411 | p = 0.255 | |
FVCPI | Z-score | 0.08 ± 1.34 | −0.43 ± 0.66 | −0.39 ± 0.60 | F = 1.223 | p = 0.254 |
%RV | 101.07 ± 17.02 | 94.40 ± 8.49 | 95.13 ± 7.49 | F = 1.439 | p = 0.249 | |
FEV1SL | Z-score | 0.83 ± 1.12 | 0.55 ± 0.73 | 0.30 ± 0.87 | F = 1.226 | p = 0.304 |
%RV | 110.13 ± 13.86 | 106.80 ± 9.07 | 103.53 ± 10.73 | F = 1.258 | p = 0.295 | |
FEV1PL | Z-score | 0.14 ± 1.10 | −0.06 ± 0.65 | −0.41 ± 0.74 | F = 1.789 | p = 0.180 |
%RV | 101.87 ± 14.02 | 99.13 ± 8.18 | 94.93 ± 7.60 | F = 1.709 | p = 0.193 | |
FEV1SI | Z-score | −0.40 ± 1.29 | −0.71 ± 0.53 | −1.00 ± 0.74 | F = 1.594 | p = 0.215 |
%RV | 95.07 ± 16.24 | 90.93 ± 6.60 | 87.40 ± 9.45 | F = 1.671 | p = 0.200 | |
FEV1PI | Z-score | 0.04 ± 1.22 | −0.43 ± 0.66 | −0.58 ± 0.78 | F = 1.838 | p = 0.172 |
%RV | 100.60 ± 15.18 | 94.47 ± 8.35 | 92.67 ± 9.78 | F = 1.967 | p = 0.153 | |
FEV1/FVCSL | Z-score | −0.10 ± 1.07 | 0.05 ± 0.80 | −0.55 ± 0.94 | F = 1.611 | p = 0.212 |
%RV | 98.87 ± 8.04 | 100.27 ± 5.97 | 95.60 ± 7.48 | F = 1.651 | p = 0.204 | |
FEV1/FVCPL | Z-score | −0.04 ± 1.26 | 0.15 ± 1.03 | −0.61 ± 0.83 | F = 2.085 | p = 0.137 |
%RV | 99.27 ± 9.46 | 100.87 ± 7.58 | 95.07 ± 6.32 | F = 2.161 | p = 0.128 | |
FEV1/FVCSI | Z-score | −0.22 ± 1.13 | 0.07 ± 0.88 | −0.59 ± 0.89 | H = 4.008 | p = 0.135 |
%RV | 97.93 ± 8.71 | 100.27 ± 6.29 | 95.13 ± 6.77 | H = 4.511 | p = 0.105 | |
FEV1/FVCPI | Z-score | 0.02 ± 1.27 | 0.04 ± 1.02 | −0.36 ± 0.85 | F = 0.667 | p = 0.519 |
%RV | 99.53 ± 9.70 | 99.93 ± 7.55 | 96.93 ± 6.55 | F = 0.616 | p = 0.545 | |
FEF25–75%SL | Z-score | 0.27 ± 0.97 | 0.20 ± 0.66 | −0.23 ± 0.90 | F = 1.483 | p = 0.239 |
%RV | 111.00 ± 32.59 | 107.67 ± 20.46 | 94.53 ± 26.57 | F = 1.560 | p = 0.222 | |
FEF25–75%PL | Z-score | 0.05 ± 1.19 | 0.04 ± 0.81 | −0.57 ± 0.75 | F = 2.144 | p = 0.130 |
%RV | 106.33 ± 40.33 | 103.20 ± 24.62 | 85.20 ± 21.63 | F = 2.168 | p = 0.127 | |
FEF25–75%SI | Z-score | −0.29 ± 1.32 | −0.24 ± 0.76 | −0.85 ± 0.82 | H = 5.257 | p = 0.072 |
%RV | 97.60 ± 43.44 | 95.07 ± 21.35 | 78.27 ± 21.99 | H = 5.848 | p = 0.054 | |
FEF25–75%PI | Z-score | 0.02 ± 1.18 | −0.16 ± 0.87 | −0.51 ± 0.86 | F = 1.130 | p = 0.333 |
%RV | 105.53 ± 38.81 | 97.67 ± 25.39 | 87.47 ± 23.87 | F = 1.357 | p = 0.268 |
Correlations | STyears | |
---|---|---|
FVCSL | yz-score | r = 0.169; p = 0.266 |
%RV | r = 0.164; p = 0.281 | |
FVCPL | z-score | r = 0.213; p = 0.160 |
%RV | r = 0.210; p = 0.166 | |
FVCSI | z-score | r = 0.337; p = 0.023 * |
%RV | r = 0.341; p = 0.022 * | |
FVCPI | z-score | r = 0.212; p = 0.163 |
%RV | r = 0.218; p = 0.149 | |
FEV1SL | z-score | r = 0.278; p = 0.064 |
%RV | r = 0.277; p = 0.066 | |
FEV1PL | z-score | r = 0.277; p = 0.066 |
%RV | r = 0.262; p = 0.082 | |
FEV1SI | z-score | r = 0.340; p = 0.022 * |
%RV | r = 0.347; p = 0.020 * | |
FEV1PI | z-score | r = 0.239; p = 0.114 |
%RV | r = 0.250; p = 0.097 | |
FEV1/FVCSL | z-score | r = 0.083; p = 0.589 |
%RV | r = 0.084; p = 0.583 | |
FEV1/FVCPL | z-score | r = 0.035; p = 0.817 |
%RV | r = 0.050; p = 0.745 | |
FEV1/FVCSI | z-score | r = 0.004; p = 0.980 |
%RV | r = 0.003; p = 0.987 | |
FEV1/FVCPI | z-score | r = −0.019; p = 0.904 |
%RV | r = −0.009; p = 0.954 | |
FEF25–75%SL | z-score | r = 0.172; p = 0.259 |
%RV | r = 0.179; p = 0.239 | |
FEF25–75%PL | z-score | r = 0.117; p = 0.443 |
%RV | r = 0.103; p = 0.501 | |
FEF25–75%SI | z-score | r = 0.149; p = 0.329 |
%RV | r = 0.153; p = 0.315 | |
FEF25–75%PI | z-score | r = 0.095; p = 0.536 |
%RV | r = 0.087; p = 0.572 |
Correlations | STyears | ||||
---|---|---|---|---|---|
NRA | NRAs | PRA | PRAs | ||
FVCSL | z-score | r = 0.348; p = 0.065 | r = 0.241; p = 0.157 | r = −0.057; p = 0.833 | r = −0.243; p = 0.529 |
%RV | r = 0.349; p = 0.064 | r = 0.238; p = 0.163 | r = −0.081; p = 0.766 | r = 0.070; p = 0.859 | |
FVCPL | z-score | r = 0.296; p = 0.119 | r = 0.258; p = 0.128 | r = 0.050; p = 0.854 | r = −0.350; p = 0.356 |
%RV | r = 0.295; p = 0.120 | r = 0.254; p = 0.135 | r = 0.048; p = 0.859 | r = −0.063; p = 0.873 | |
FVCSI | z-score | r = 0.469; p = 0.010 * | r = 0.380; p = 0.022 * | r = 0.062; p = 0.820 | r = 0.133; p = 0.732 |
%RV | r = 0.468; p = 0.010 * | r = 0.382; p = 0.022 * | r = 0.069; p = 0.800 | r = 0.163; p = 0.676 | |
FVCPI | z-score | r = 0.320; p = 0.091 | r = 0.314; p = 0.062 | r = 0.063; p = 0.818 | r = −0.367; p = 0.322 |
%RV | r = 0.333; p = 0.078 | r = 0.319; p = 0.058 | r = 0.058; p = 0.832 | r = −0.082; p = 0.833 | |
FEV1SL | z-score | r = 0.224; p = 0.244 | r = 0.226; p = 0.185 | r = 0.406; p = 0.119 | r = 0.650; p = 0.058 |
%RV | r = 0.242; p = 0.206 | r = 0.222; p = 0.193 | r = 0.412; p = 0.13 | r = 0.590; p = 0.094 | |
FEV1PL | z-score | r = 0.185; p = 0.337 | r = 0.233; p = 0.171 | r = 0.467; p = 0.068 | r = 0.400; p = 0.286 |
%RV | r = 0.144; p = 0.456 | r = 0.203; p = 0.235 | r = 0.485; p = 0.057 | r = 0.449; p = 0.225 | |
FEV1SI | z-score | r = 0.297; p = 0.117 | r = 0.274; p = 0.106 | r = 0.301; p = 0.257 | r = 0.350; p = 0.356 |
%RV | r = 0.298; p = 0.117 | r = 0.280; p = 0.098 | r = 0.327; p = 0.216 | r = 0.450; p = 0.225 | |
FEV1PI | z-score | r = 0.147; p = 0.446 | r = 0.203; p = 0.235 | r = 0.350; p = 0.184 | r = 0.217; p = 0.576 |
%RV | r = 0.167; p = 0.388 | r = 0.220; p = 0.197 | r = 0.372; p = 0.156 | r = 0.209; p = 0.589 | |
FEV1/FVCSL | z-score | r = −0.164; p = 0.395 | r = −0.058; p = 0.736 | r = 0.606; p = 0.013 * | r = 0.850; p = 0.004 ** |
%RV | r = −0.157; p = 0.415 | r = −0.053; p = 0.761 | r = 0.589; p = 0.016 * | r = 0.833; p = 0.005 ** | |
FEV1/FVCPL | z-score | r = −0.225; p = 0.241 | r = −0.104; p = 0.545 | r = 0.412; p = 0.112 | r = 0.767; p = 0.016 * |
%RV | r = −0.206; p = 0.284 | r = −0.083; p = 0.628 | r = 0.570; p = 0.021 * | r = 0.710; p = 0.032 * | |
FEV1/FVCSI | z-score | r = −0.198; p = 0.304 | r = −0.104; p = 0.545 | r = 0.481; p = 0.059 | r = 0.800; p = 0.010 * |
%RV | r = −0.181; p = 0.348 | r = −0.099; p = 0.564 | r = 0.409; p = 0.116 | r = 0.758; p = 0.018 * | |
FEV1/FVCPI | z-score | r = −0.218; p = 0.257 | r = −0.117; p = 0.496 | r = 0.480; p = 0.060 | r = 0.417; p = 0.265 |
%RV | r = −0.194; p = 0.314 | r = −0.106; p = 0.538 | r = 0.479; p = 0.061 | r = 0.516; p = 0.155 | |
FEF25–75%SL | z-score | r = −0.046; p = 0.814 | r = 0.027; p = 0.875 | r = 0.576; p = 0.020 * | r = 0.717; p = 0.030 * |
%RV | r = −0.033; p = 0.866 | r = 0.031; p = 0.857 | r = 0.594; p = 0.015 * | r = 0.786; p = 0.012 * | |
FEF25–75%PL | z-score | r = −0.130; p = 0.502 | r = −0.006; p = 0.972 | r = 0.583; p = 0.018 * | r = 0.533; p = 0.139 |
%RV | r = −0.147; p = 0.445 | r = −0.023; p = 0.893 | r = 0.624; p = 0.010 * | r = 0.673; p = 0.047 * | |
FEF25–75%SI | z-score | r = −0.084; p = 0.666 | r = 0.018; p = 0.915 | r = 0.407; p = 0.118 | r = 0.427; p = 0.252 |
%RV | r = −0.085; p = 0.661 | r = 0.023; p = 0.896 | r = 0.571; p = 0.021 * | r = 0.577; p = 0.104 | |
FEF25–75%PI | z-score | r = −0.111; p = 0.566 | r = 0.008; p = 0.963 | r = 0.497; p = 0.050 | r = 0.317; p = 0.406 |
%RV | r = −0.139; p = 0.471 | r = −0.004; p = 0.982 | r = 0.555; p = 0.026 * | r = 0.472; p = 0.199 |
ES | NES | Test Value | Co-variance Test | ||
---|---|---|---|---|---|
STyears | 17.30 ± 10.46 | 8.83 ± 9.48 | H = −2.540, p = 0.011 * | N.A. | |
FVCSL | Z-score | 0.87 ± 0.93 | 0.39 ± 0.64 | F = 1.931, p = 0.060 | F = 1.704, p = 0.199 |
%RV | 111.22 ± 11.83 | 104.78 ± 8.24 | F = 2.006, p = 0.051 | F = 1.892, p = 0.176 | |
FVCPL | Z-score | 0.15 ± 0.89 | −0.19 ± 0.66 | F = 1.415, p = 0.164 | F = 0.531, p = 0.470 |
%RV | 101.96 ± 11.32 | 97.39 ± 8.43 | F = 1.463, p = 0.151 | F = 0.612, p = 0.438 | |
FVCSI | Z-score | −0.36 ± 0.97 | −0.86 ± 0.58 | F = 1.963, p = 0.056 | F = 1.122, p = 0.295 |
%RV | 95.59 ± 12.13 | 89.00 ± 7.32 | F = 2.065, p = 0.045 * | F = 1.330, p = 0.255 | |
FVCPI | Z-score | −0.03 ± 1.07 | −0.57 ± 0.58 | F = 2.179, p = 0.035 * | F = 1.517, p = 0.225 |
%RV | 99.67 ± 13.54 | 92.67 ± 7.49 | F = 2.224, p = 0.032 * | F = 1.598, p = 0.213 | |
FEV1SL | Z-score | 0.67 ± 1.01 | 0.39 ± 0.78 | F = 1.008, p = 0.319 | F = 0.101, p = 0.752 |
%RV | 108.19 ± 12.50 | 104.78 ± 9.68 | F = 0.976, p = 0.334 | F = 0.077, p = 0.783 | |
FEV1PL | Z-score | −0.08 ± 0.94 | −0.16 ± 0.66 | F = 0.298, p = 0.767 | F = 0.223, p = 0.639 |
%RV | 99.04 ± 11.90 | 98.06 ± 8.30 | F = 0.304, p = 0.763 | F = 0.216, p = 0.644 | |
FEV1SI | Z-score | −0.59 ± 1.09 | −0.87 ± 0.60 | F = 1.013, p = 0.317 | F = 0.034, p = 0.854 |
%RV | 92.67 ± 13.58 | 88.83 ± 7.81 | F = 1.081, p = 0.286 | F = 0.053, p = 0.818 | |
FEV1PI | Z-score | −0.19 ± 1.05 | −0.51 ± 0.72 | F = 1.129, p = 0.265 | F = 0.272, p = 0.605 |
%RV | 97.59 ± 13.05 | 93.39 ± 9.21 | F = 1.008, p = 0.319 | F = 0.302, p = 0.585 | |
FEV1/FVCSL | Z-score | −0.32 ± 0.97 | −0.01 ± 0.92 | F = −1.183, p = 0.244 | F = 1.787, p = 0.188 |
%RV | 97.26 ± 7.49 | 99.72 ± 7.01 | F = −1.108, p = 0.274 | F = 1.922, p = 0.173 | |
FEV1/FVCPL | Z-score | −0.35 ± 1.09 | 0.11 ± 1.04 | F = −1.394, p = 0.171 | F = 2.503, p = 0.121 |
%RV | 97.04 ± 8.25 | 100.44 ± 7.63 | F = −1.398, p = 0.169 | F = 2.542, p = 0.118 | |
FEV1/FVCSI | Z-score | −0.41 ± 1.01 | −0.01 ± 0.94 | H = 1.448, p = 0.148 | H = −1.478, p = 0.147 |
%RV | 96.52 ± 7.80 | 99.67 ± 6.71 | H = 1.590, p = 0.112 | H = −1.626, p = 0.111 | |
FEV1/FVCPI | Z-score | −0.25 ± 1.07 | 0.12 ± 1.02 | F = −1.136, p = 0.262 | F = 1.205, p = 0.278 |
%RV | 97.67 ± 8.21 | 100.50 ± 7.49 | F = −1.173, p = 0.247 | F = 1.292, p = 0.262 | |
FEF25–75%SL | Z-score | 0.06 ± 0.91 | 0.11 ± 0.80 | F = −0.180, p = 0.858 | F = 0.407, p = 0.527 |
%RV | 103.81 ± 29.63 | 105.28 ± 24.30 | H = 0.487, p = 0.627 | H = −0.956, p = 0.344 | |
FEF25–75%PL | Z-score | −0.26 ± 1.02 | 0.00 ± 0.87 | H = 1.413, p = 0.158 | H = −1.764, p = 0.085 |
%RV | 95.63 ± 33.72 | 102.17 ± 26.23 | H = 1.367, p = 0.171 | H = −1.671, p = 0.102 | |
FEF25–75%SI | Z-score | −0.53 ± 1.12 | −0.36 ± 0.85 | H = 1.205, p = 0.228 | H = −1.631, p = 0.110 |
%RV | 89.26 ± 35.94 | 91.89 ± 23.28 | H = 1.345, p = 0.179 | H = −1.798, p = 0.079 | |
FEF25–75%PI | Z-score | −0.26 ± 1.02 | −0.14 ± 0.94 | F = −0.412, p = 0.683 | F = 0.452, p = 0.505 |
%RV | 95.78 ± 32.58 | 98.56 ± 27.51 | H = 0.707, p = 0.480 | H = −0.929, p = 0.358 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, J.; Jesus, B.; Caseiro, P.; Ferreira, A.J.; Rama, L. Lung Function Changes with Swim Training in Healthy and Allergic Endurance Athletes. J. Funct. Morphol. Kinesiol. 2025, 10, 231. https://doi.org/10.3390/jfmk10020231
Rodrigues J, Jesus B, Caseiro P, Ferreira AJ, Rama L. Lung Function Changes with Swim Training in Healthy and Allergic Endurance Athletes. Journal of Functional Morphology and Kinesiology. 2025; 10(2):231. https://doi.org/10.3390/jfmk10020231
Chicago/Turabian StyleRodrigues, João, Bárbara Jesus, Paulo Caseiro, António Jorge Ferreira, and Luís Rama. 2025. "Lung Function Changes with Swim Training in Healthy and Allergic Endurance Athletes" Journal of Functional Morphology and Kinesiology 10, no. 2: 231. https://doi.org/10.3390/jfmk10020231
APA StyleRodrigues, J., Jesus, B., Caseiro, P., Ferreira, A. J., & Rama, L. (2025). Lung Function Changes with Swim Training in Healthy and Allergic Endurance Athletes. Journal of Functional Morphology and Kinesiology, 10(2), 231. https://doi.org/10.3390/jfmk10020231