# Robust Hierarchical Control Design for the Power Sharing in Hybrid Shipboard Microgrids

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

- We present a SMC based technique for droop control in AC/DC hybrid SMGs under different operating conditions, employing a bidirectional control method of IC.
- A robust loop controller with a power management strategy is anticipated that monitors voltage and frequency fluctuations in AC/DC SMGs using IC as a bidirectional power transmission module.
- In this research study, we compare the performance characteristics of AC and DC secondary controls in hybrid microgrids for shipboard application.
- A hierarchical primary and secondary controller is employed on ICs, which are used between AC and DC microgrids to mitigate non-linearities during power fluctuations.
- Secondary controllers include PI controllers and SMCs. We compare the performance characteristics of secondary controller schemes.

## 2. Problem Formulation

#### 2.1. AC Microgrid Modeling

#### 2.2. DC Microgrid Modeling

#### 2.3. Battery Energy Storage Systems

#### 2.4. Solar Energy Modeling

#### 2.5. Incremental Conductance MPPT Algorithm

## 3. Controller Design

- the primary objectives are recognized and achieved
- they can provide global optimal decisions/solutions.
- their synchronization with the primary utility is simple, and they can be run online efficiently.

- they are suitable for rapidly changing infrastructures
- they can be easily expanded due to their high plug-and-play capabilities.
- their reliability is high.
- their communication and computational costs are relatively low.

#### 3.1. Droop Control

#### 3.2. Modeling of Voltage Source Converter

#### 3.3. Proposed Secondary Controller Design and Analysis

## 4. Simulation Results

#### 4.1. Case 1: Power Flow from DC to AC; Then AC to DC Side

#### 4.2. Case 2: Power Flow from AC to DC; Then DC to AC Side

#### 4.3. Case 3: Step Load Increment When Power Flow from AC to DC Side

#### 4.4. Case 4: Step Load Increment When Power Flow from DC to AC Side

#### 4.5. Case 5: Dynamical Load Analysis

## 5. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Yoo, H.J.; Nguyen, T.T.; Kim, H.M. Consensus-based distributed coordination control of hybrid AC/DC microgrids. IEEE Trans. Sustain. Energy
**2019**, 11, 629–639. [Google Scholar] [CrossRef] - Jianfang, X.; Peng, W.; Setyawan, L.; Chi, J.; Hoong, C.F. Energy management system for control of hybrid AC/DC microgrids. In Proceedings of the 2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA), Auckland, New Zealand, 15–17 June 2015; pp. 778–783. [Google Scholar]
- Mutarraf, M.U.; Terriche, Y.; Nasir, M.; Guan, Y.; Su, C.L.; Vasquez, J.C.; Guerrero, J.M. A Decentralized Control Scheme for Adaptive Power-Sharing in Ships based Seaport Microgrid. In Proceedings of the IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 18–21 October 2020; pp. 3126–3131. [Google Scholar] [CrossRef]
- Saleh, B.; Yousef, A.M.; Abo-Elyousr, F.K.; Mohamed, M.; Abdelwahab, S.A.M.; Elnozahy, A. Performance Analysis of Maximum Power Point Tracking for Two Techniques with Direct Control of Photovoltaic Grid -Connected Systems. Energy Sources Part A Recover. Util. Environ. Eff.
**2022**, 44, 413–434. [Google Scholar] [CrossRef] - Yousef, A.M.; Abo-Elyousr, F.K.; Elnozohy, A.; Mohamed, M.; Abdelwahab, S.A.M. Fractional Order PI Control in Hybrid Renewable Power Generation System to Three Phase Grid Connection. Int. J. Electr. Eng. Inform.
**2020**, 12, 470–493. [Google Scholar] [CrossRef] - Wang, Y.; Mondal, S.; Satpathi, K.; Xu, Y.; Dasgupta, S.; Gupta, A.K. Multiagent Distributed Power Management of DC Shipboard Power Systems for Optimal Fuel Efficiency. IEEE Trans. Transp. Electrif.
**2021**, 7, 3050–3061. [Google Scholar] [CrossRef] - Nguyen, T.L.; Wang, Y.; Tran, Q.T.; Caire, R.; Xu, Y.; Gavriluta, C. A Distributed Hierarchical Control Framework in Islanded Microgrids and Its Agent-Based Design for Cyber–Physical Implementations. IEEE Trans. Ind. Electron.
**2021**, 68, 9685–9695. [Google Scholar] [CrossRef] - Singh, V.P.; Mohanty, S.R.; Kishor, N.; Ray, P.K. Robust H-infinity load frequency control in hybrid distributed generation system. Int. J. Electr. Power Energy Syst.
**2013**, 46, 294–305. [Google Scholar] [CrossRef] - Paran, S.; Vu, T.V.; Mezyani, T.E.; Edrington, C.S. MPC-based power management in the shipboard power system. In Proceedings of the 2015 IEEE Electric Ship Technologies Symposium (ESTS), Old Town Alexandria, VA, USA, 21–24 June 2015; pp. 14–18. [Google Scholar] [CrossRef]
- Mizoshiri, T.; Mori, Y. Sliding mode control with a linear sliding surface that varies along a smooth trajectory. In Proceedings of the 2016 SICE International Symposium on Control Systems (ISCS), Nagoya, Japan, 7–10 March 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Heydari, R.; Gheisarnejad, M.; Khooban, M.H.; Dragicevic, T.; Blaabjerg, F. Robust and Fast Voltage-Source-Converter (VSC) Control for Naval Shipboard Microgrids. IEEE Trans. Power Electron.
**2019**, 34, 8299–8303. [Google Scholar] [CrossRef] - Abdellatif, W.S.E.; Hamada, A.M.; Abdelwahab, S.A.M. Wind speed estimation MPPT technique of DFIG-based wind turbines theoretical and experimental investigation. Electr. Eng. (Berl. Print)
**2021**, 103, 2769–2781. [Google Scholar] [CrossRef] - Elnozahy, A.; Yousef, A.M.; Ghoneim, S.S.M.; Abdelwahab, S.A.M.; Mohamed, M.; Abo-Elyousr, F.K. Optimal economic and environmental indices for hybrid PV/wind-based battery storage system. J. Electr. Eng. Technol.
**2021**, 16, 2847–2862. [Google Scholar] [CrossRef] - Babes, B.; Hamouda, N.; Albalawi, F.; Aissa, O.; Ghoneim, S.S.M.; Abdelwahab, S.A.M. Experimental Investigation of an Adaptive Fuzzy-Neural Fast Terminal Synergetic Controller for Buck DC/DC Converters. Sustainability
**2022**, 14, 7967. [Google Scholar] [CrossRef] - Alhejji, A.; Mosaad, M.I. Performance enhancement of grid-connected PV systems using adaptive reference PI controller. Ain Shams Eng. J.
**2021**, 12, 541–554. [Google Scholar] [CrossRef] - Nasir, M.B.; Hussain, A.; Niazi, K.A.K.; Nasir, M. An Optimal Energy Management System (EMS) for Residential and Industrial Microgrids. Energies
**2022**, 15, 6266. [Google Scholar] [CrossRef] - Mutarraf, M.U.; Terriche, Y.; Niazi, K.A.K.; Vasquez, J.C.; Guerrero, J.M. Energy storage systems for shipboard microgrids—A review. Energies
**2018**, 11, 3492. [Google Scholar] [CrossRef] [Green Version] - Mutarraf, M.U.; Terriche, Y.; Niazi, K.A.K.; Khan, F.; Vasquez, J.C.; Guerrero, J.M. Control of hybrid diesel/PV/battery/ultra-capacitor systems for future shipboard microgrids. Energies
**2019**, 12, 3460. [Google Scholar] [CrossRef] [Green Version] - Mutarraf, M.U.; Terriche, Y.; Nasir, M.; Guan, Y.; Su, C.L.; Vasquez, J.C.; Guerrero, J.M. A Communication-Less Multimode Control Approach for Adaptive Power Sharing in Ship-Based Seaport Microgrid. IEEE Trans. Transp. Electrif.
**2021**, 7, 3070–3082. [Google Scholar] [CrossRef] - Mutarraf, M.U.; Guan, Y.; Terriche, Y.; Su, C.L.; Nasir, M.; Vasquez, J.C.; Guerrero, J.M. Adaptive Power Management of Hierarchical Controlled Hybrid Shipboard Microgrids. IEEE Access
**2022**, 10, 21397–21411. [Google Scholar] [CrossRef] - Mutarraf, M.U.; Guan, Y.; Su, C.L.; Xu, L.; Vasquez, J.C.; Guerrero, J. Electric cars, ships, and their charging infrastructure—A comprehensive review. Sustain. Energy Technol. Assess.
**2022**, 52, 102177. [Google Scholar] [CrossRef] - Ali, S.W.; Sadiq, M.; Terriche, Y.; Naqvi, S.A.R.; Mutarraf, M.U.; Hassan, M.A.; Yang, G.; Su, C.L.; Guerrero, J.M. Offshore Wind Farm-Grid Integration: A Review on Infrastructure, Challenges, and Grid Solutions. IEEE Access
**2021**, 9, 102811–102827. [Google Scholar] [CrossRef] - Xie, P.; Guerrero, J.M.; Tan, S.; Bazmohammadi, N.; Vasquez, J.C.; Mehrzadi, M.; Al-Turki, Y. Optimization-Based Power and Energy Management System in Shipboard Microgrid: A Review. IEEE Syst. J.
**2021**, 16, 578–590. [Google Scholar] [CrossRef] - Loh, P.C.; Li, D.; Chai, Y.K.; Blaabjerg, F. Autonomous control of interlinking converter with energy storage in hybrid AC–DC microgrid. IEEE Trans. Ind. Appl.
**2013**, 49, 1374–1382. [Google Scholar] [CrossRef] - Lee, H.J.; Vu, B.H.; Zafar, R.; Hwang, S.W.; Chung, I.Y. Design Framework of a Stand-Alone Microgrid Considering Power System Performance and Economic Efficiency. Energies
**2021**, 14, 457. [Google Scholar] [CrossRef] - Mutarraf, M.U.; Terriche, Y.; Nasir, M.; Khan Niazi, K.A.; Vasquez, J.C.; Guerrero, J.M. Hybrid Energy Storage Systems for Voltage Stabilization in Shipboard Microgrids. In Proceedings of the 2019 9th International Conference on Power and Energy Systems (ICPES), Perth, WA, Australia, 10–12 December 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Morstyn, T.; Savkin, A.V.; Hredzak, B.; Agelidis, V.G. Multi-agent sliding mode control for state of charge balancing between battery energy storage systems distributed in a DC microgrid. IEEE Trans. Smart Grid
**2017**, 9, 4735–4743. [Google Scholar] [CrossRef] [Green Version] - Lasseter, R.H. Microgrids. In Proceedings of the 2002 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No. 02CH37309), New York, NY, USA, 27–31 January 2002; Volume 1, pp. 305–308. [Google Scholar]
- Strunz, K.; Abbasi, E.; Huu, D.N. DC microgrid for wind and solar power integration. IEEE J. Emerg. Sel. Top. Power Electron.
**2013**, 2, 115–126. [Google Scholar] [CrossRef] - Ikebe, H. Power systems for telecommunications in the IT age. In Proceedings of the The 25th International Telecommunications Energy Conference, INTELEC’03, Yokohama, Japan, 23 October 2003; pp. 1–8. [Google Scholar]
- Guerrero, J.M.; Vasquez, J.C.; Matas, J.; De Vicuña, L.G.; Castilla, M. Hierarchical control of droop-controlled AC and DC microgrids—A general approach toward standardization. IEEE Trans. Ind. Electron.
**2010**, 58, 158–172. [Google Scholar] [CrossRef] - Maghraby, H.; Shwehdi, M.; Al-Bassam, G.K. Probabilistic assessment of photovoltaic (PV) generation systems. IEEE Trans. Power Syst.
**2002**, 17, 205–208. [Google Scholar] [CrossRef] - La Terra, G.; Salvina, G.; Tina, G. Optimal sizing procedure for hybrid solar wind power systems by fuzzy logic. In Proceedings of the MELECON 2006—2006 IEEE Mediterranean Electrotechnical Conference, Malaga, Spain, 16–19 May 2006; pp. 865–868. [Google Scholar]
- Habib, A.H.; Disfani, V.R.; Kleissl, J.; de Callafon, R.A. Optimal switchable load sizing and scheduling for standalone renewable energy systems. Sol. Energy
**2017**, 144, 707–720. [Google Scholar] [CrossRef] - Koutroulis, E.; Kolokotsa, D. Design optimization of desalination systems power-supplied by PV and W/G energy sources. Desalination
**2010**, 258, 171–181. [Google Scholar] [CrossRef] - Zhou, W.; Lou, C.; Li, Z.; Lu, L.; Yang, H. Current status of research on optimum sizing of stand-alone hybrid solar–wind power generation systems. Appl. Energy
**2010**, 87, 380–389. [Google Scholar] [CrossRef] - Zhou, W.; Yang, H.; Fang, Z. A novel model for photovoltaic array performance prediction. Appl. Energy
**2007**, 84, 1187–1198. [Google Scholar] [CrossRef] - Yang, H.; Wei, Z.; Chengzhi, L. Optimal design and techno-economic analysis of a hybrid solar–wind power generation system. Appl. Energy
**2009**, 86, 163–169. [Google Scholar] [CrossRef] - Bakar Siddique, M.A.; Asad, A.; Asif, R.M.; Rehman, A.U.; Sadiq, M.T.; Ullah, I. Implementation of incremental conductance MPPT algorithm with integral regulator by using boost converter in grid-connected PV array. IETE J. Res.
**2021**, 1–14. [Google Scholar] [CrossRef] - Yilmaz, U.; Kircay, A.; Borekci, S. PV system fuzzy logic MPPT method and PI control as a charge controller. Renew. Sustain. Energy Rev.
**2018**, 81, 994–1001. [Google Scholar] [CrossRef] - Rastogi, D.; Jain, M.; Sreejeth, M. Comparative Study of DC-DC Converters in PV Systems Using Fuzzy Logic MPPT Algorithm. In Proceedings of the 2022 IEEE Delhi Section Conference (DELCON), New Delhi, India, 11–13 February 2022; pp. 1–7. [Google Scholar]
- Azeem, O.; Ali, M.; Abbas, G.; Uzair, M.; Qahmash, A.; Algarni, A.; Hussain, M.R. A comprehensive review on integration challenges, optimization techniques and control strategies of hybrid AC/DC Microgrid. Appl. Sci.
**2021**, 11, 6242. [Google Scholar] [CrossRef] - Alam, F.; Ashfaq, M.; Zaidi, S.S.; Memon, A.Y. Robust droop control design for a hybrid AC/DC microgrid. In Proceedings of the 2016 UKACC 11th International Conference on Control (CONTROL), Belfast, UK, 31 August–2 September 2016; pp. 1–6. [Google Scholar]
- Sahoo, B.; Routray, S.K.; Rout, P.K. AC, DC, and hybrid control strategies for smart microgrid application: A review. Int. Trans. Electr. Energy Syst.
**2021**, 31, e12683. [Google Scholar] [CrossRef] - Li, X.; Wen, H.; Hu, Y.; Du, Y.; Yang, Y. A comparative study on photovoltaic MPPT algorithms under EN50530 dynamic test procedure. IEEE Trans. Power Electron.
**2020**, 36, 4153–4168. [Google Scholar] [CrossRef] - Alsumiri, M. Residual incremental conductance based nonparametric MPPT control for solar photovoltaic energy conversion system. IEEE Access
**2019**, 7, 87901–87906. [Google Scholar] [CrossRef] - Mohammadi, F.; Mohammadi-Ivatloo, B.; Gharehpetian, G.B.; Ali, M.H.; Wei, W.; Erdinç, O.; Shirkhani, M. Robust control strategies for microgrids: A review. IEEE Syst. J.
**2021**, 16, 2401–2412. [Google Scholar] [CrossRef] - Villalón, A.; Rivera, M.; Salgueiro, Y.; Muñoz, J.; Dragičević, T.; Blaabjerg, F. Predictive control for microgrid applications: A review study. Energies
**2020**, 13, 2454. [Google Scholar] [CrossRef] - Hu, J.; Shan, Y.; Xu, Y.; Guerrero, J.M. A coordinated control of hybrid ac/dc microgrids with PV-wind-battery under variable generation and load conditions. Int. J. Electr. Power Energy Syst.
**2019**, 104, 583–592. [Google Scholar] [CrossRef] [Green Version] - Baharizadeh, M.; Karshenas, H.R.; Guerrero, J.M. An improved power control strategy for hybrid AC-DC microgrids. Int. J. Electr. Power Energy Syst.
**2018**, 95, 364–373. [Google Scholar] [CrossRef] [Green Version] - Nejabatkhah, F.; Li, Y.W.; Tian, H. Power quality control of smart hybrid AC/DC microgrids: An overview. IEEE Access
**2019**, 7, 52295–52318. [Google Scholar] [CrossRef] - Espina, E.; Cárdenas-Dobson, R.; Simpson-Porco, J.W.; Sáez, D.; Kazerani, M. A consensus-based secondary control strategy for hybrid AC/DC microgrids with experimental validation. IEEE Trans. Power Electron.
**2020**, 36, 5971–5984. [Google Scholar] [CrossRef] - Eghtedarpour, N.; Farjah, E. Power control and management in a hybrid AC/DC microgrid. IEEE Trans. Smart Grid
**2014**, 5, 1494–1505. [Google Scholar] [CrossRef]

**Figure 7.**Proposed hierarchical controller block diagrams. (

**a**) Proposed secondary controller design. (

**b**) Primary current controller design.

Parameters | Description | Rating |
---|---|---|

f | Frequency | 50 Hz |

${P}_{dc,load}$ | DC Load power | 1 kW + 1.5 kW |

${P}_{ac,load}$ | AC Load power | 1 kW × 3 |

${Q}_{ac,load}$ | AC Load power | 0.5 kVAR × 3 |

${v}_{dc,s}$ | DC source voltage | 550 volts |

${v}_{ac,s}$ | AC source voltage | 400 volts |

${L}_{f}$ | Filter inductance | 4 $\mathsf{\mu}$H |

${C}_{f}$ | Filter capacitance | 500 $\mathsf{\mu}$F |

${f}_{s}$ | Switching frequency | 2 kHz |

${R}_{ac,line},{L}_{ac,line}$ | line impedance | 0.8 $\mathsf{\Omega}$, 1.5 $\mathsf{\mu}$mH |

${R}_{dc,line}$ | DC line impedance | 0.50 $\mathsf{\Omega}$ |

Parameters | Description | Values |
---|---|---|

m | $w-P$ droop | 0.3 |

n | $v-Q$ droop | 0.2 |

${k}_{1},\phantom{\rule{3.33333pt}{0ex}}{k}_{2}$ | Secondary gains | 1, 2 |

${K}_{p}$ | Proportional gain | 0.5 |

${k}_{i}$ | integral gain | 7 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Alam, F.; Haider Zaidi, S.S.; Rehmat, A.; Mutarraf, M.U.; Nasir, M.; Guerrero, J.M.
Robust Hierarchical Control Design for the Power Sharing in Hybrid Shipboard Microgrids. *Inventions* **2023**, *8*, 7.
https://doi.org/10.3390/inventions8010007

**AMA Style**

Alam F, Haider Zaidi SS, Rehmat A, Mutarraf MU, Nasir M, Guerrero JM.
Robust Hierarchical Control Design for the Power Sharing in Hybrid Shipboard Microgrids. *Inventions*. 2023; 8(1):7.
https://doi.org/10.3390/inventions8010007

**Chicago/Turabian Style**

Alam, Farooq, Syed Sajjad Haider Zaidi, Arsalan Rehmat, Muhammad Umair Mutarraf, Mashood Nasir, and Josep M. Guerrero.
2023. "Robust Hierarchical Control Design for the Power Sharing in Hybrid Shipboard Microgrids" *Inventions* 8, no. 1: 7.
https://doi.org/10.3390/inventions8010007