Microorganisms, the Ultimate Tool for Clean Label Foods?
Abstract
:1. Introduction
2. Technology Additives
2.1. Staling
2.2. Microbial Biosurfactants
3. Sensorial Additives
3.1. Naringin
3.2. Green-Notes in Legume Products
4. Bio-Preservation and Bioremediation Agents
4.1. Antibacterial Activity of Biosurfactants
4.2. Antifungal Activity of Biosurfactants
4.3. Bioremediation
5. Nutritional Additives and Properties
5.1. Cleaning Food of Their Antinutritional Factors (ANF)
5.2. Vitamins Like Folate
6. Use of Taste-Active Microbial Amino Acids, and Peptides in Food Fermentation
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, S.; Li, C.; Copeland, L.; Niu, Q.; Wang, S. Starch Retrogradation: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2015, 14, 568–585. [Google Scholar] [CrossRef]
- Goesaert, H.; Brijs, K.; Veraverbeke, W.S.; Courtin, C.M.; Gebruers, K.; Delcour, J.A. Wheat Flour Constituents: How They Impact Bread Quality, and How to Impact Their Functionality. Trends Food Sci. Technol. 2005, 1, 12–30. [Google Scholar] [CrossRef]
- Fickers, P.; Benetti, P.H.; Waché, Y.; Marty, A.; Mauersberger, S.; Smit, M.S.; Nicaud, J.M. Hydrophobic Substrate Utilisation by the Yeast Yarrowia lipolytica, and Its Potential Applications. FEMS Yeast Res. 2005, 5, 527–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fickers, P.; Marty, A.; Nicaud, J.M. The Lipases from Yarrowia lipolytica: Genetics, Production, Regulation, Biochemical Characterization and Biotechnological Applications. Biotechnol. Adv. 2011, 29, 632–644. [Google Scholar] [CrossRef] [PubMed]
- Smit, M.; Mokgoro, M.; Setati, M.; Nicaud, J.-M. Preparation of Dodecanol-Tolerant Strains of Yarrowia lipolytica. Biotechnol. Lett. 2004, 26, 849–854. [Google Scholar] [CrossRef]
- Romero-Guido, C.; Belo, I.; Ta, T.M.; Cao-Hoang, L.; Alchihab, M.; Gomes, N.; Thonart, P.; Teixeira, J.A.; Destain, J.; Waché, Y. Biochemistry of Lactone Formation in Yeast and Fungi and Its Utilisation for the Production of Flavour and Fragrance Compounds. Appl. Microbiol. Biotechnol. 2011, 89, 535–547. [Google Scholar] [CrossRef] [PubMed]
- Groenewald, M.; Boekhout, T.; Neuvéglise, C.; Gaillardin, C.; van Dijck, P.W.; Wyss, M. Yarrowia lipolytica: Safety Assessment of an Oleaginous Yeast with a Great Industrial Potential. Crit. Rev. Microbiol. 2014, 40, 187–206. [Google Scholar] [CrossRef] [PubMed]
- Davidou, S.; Le Meste, M.; Debever, E.; Bekaert, D. A Contribution to the Study of Staling of White bread: Effect of Water and Hydrocolloid. Food Hydrocoll. 1996, 10, 375–383. [Google Scholar] [CrossRef]
- Zhou, Y.; Cui, Y.; Qu, X. Exopolysaccharides of Lactic Acid Bacteria: Structure, Bioactivity and Associations: A Review. Carbohydr. Polym. 2019, 207, 317–332. [Google Scholar] [CrossRef]
- Sandra, G.; Schwab, C.; Bello, F.D.; Coffey, A.; Gänzle, M.; Arendt, E. Comparison of the Impact of Dextran and Reuteran on the Quality of Wheat Sourdough Bread. J. Cereal Sci. 2012, 56, 531–537. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, L.; Li, D.; Jin, Z.; Xu, X. Roles of Dextran, Weak Acidification and Their Combination in the Quality of Wheat Bread. Food Chem. 2019, 286, 197–203. [Google Scholar] [CrossRef]
- Csáki, K.F.; Sebestyén, É. Who Will Carry Out the Tests That Would be Necessary for Proper Safety Evaluation of Food Emulsifiers? Food Sci. Hum. Well. 2019, 8, 126–135. [Google Scholar] [CrossRef]
- Ozturk, B.; McClements, D.J. Progress in Natural Emulsifiers for Utilization in Food Emulsions. Curr. Opin. Food Sci. 2016, 7, 1–6. [Google Scholar] [CrossRef]
- Ayudhya, M.S.N.; Chuenchomrat, P. Screening and Characterization of Bacterial Biosurfactant from Bangkok and Vicinities. Int. J. Life Sci. Biotechnol. Pharma Res. 2015, 4, 168–171. [Google Scholar]
- Choopraserdchok, T.; Athinuwat, D.; Chuenchomrat, P. Effects of Glucose and Ferrous Supplements and Culture Conditions on Lipopeptide Biosurfactant from Pseudomonas spp. Int. J. Environ. Sci. Dev. 2018, 8, 772–775. [Google Scholar] [CrossRef] [Green Version]
- Katemai, W.; Maneerat, S.; Kawai, F.; Kanzaki, H.; Nitoda, T.; H-kittikun, A. Purification and Characterization of a Biosurfactant Produced by Issatchenkia orientalis SR4. J. Gen. Appl. Microbiol. 2008, 54, 79–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nitschke, M.; Costa, S.G.V.A.O. Biosurfactants in Food Industry. Trends Food Sci. Technol. 2007, 18, 252–259. [Google Scholar] [CrossRef]
- Hemlata, B.; Selvin, J.; Tukaram, K. Optimization of Iron Chelating Biosurfactant Production by Stenotrophomonas maltophilia NBS-11. Biocatal. Agric. Biotechnol. 2015, 4, 135–143. [Google Scholar] [CrossRef]
- Zhao, F.; Shi, R.; Ma, F.; Han, S.; Zhang, Y. Oxygen Effects on Rhamnolipids Production by Pseudomonas aeruginosa. Microb. Cell Fact. 2018, 17, 39. [Google Scholar] [CrossRef] [PubMed]
- Elshafie, A.E.; Joshi, S.J.; Al-Wahaibi, Y.M.; Al-Bemani, A.S.; Al-Bahry, S.N.; Al-Maqbali, D.A.; Banat, I.M. Sophorolipids Production by Candida bombicola ATCC 22214 and Its Potential Application in Microbial Enhanced Oil Recovery. Front. Microbiol. 2015, 6, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaragoza, A.; Teruel, J.A.; Aranda, F.J.; Ortiz, A. Interaction of a Trehalose Lipid Biosurfactant Produced by Rhodococcus erythropolis 51T7 with a Secretory Phospholipase A2. J. Colloid Interface Sci. 2013, 408, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Santos, D.K.F.; Rufino, R.D.; Luna, J.M.; Santos, V.A.; Sarubbo, L.A. Biosurfactants: Multifunctional Biomolecules of the 21st Century. Int. J. Mol. Sci. 2016, 17, 401. [Google Scholar] [CrossRef] [Green Version]
- Kuiper, I.; Lagendijk, E.L.; Pickford, R.; Derrick, J.P.; Lamers, G.E.; Thomas-Oates, J.E.; Lugtenberg, B.J.; Bloemberg, G.V. Characterization of Two Pseudomonas putida Lipopeptide Biosurfactants, Putisolvin I and II, which Inhibit Biofilm Formation and Break Down Existing Biofilms. Mol. Microbiol. 2004, 51, 97–113. [Google Scholar] [CrossRef]
- Vedaraman, N.; Venkatesh, N. Production of Surfactin by Bacillus subtilis MTCC 2423 from Waste Frying Oils. Braz. J. Chem. Eng. 2011, 28, 175–180. [Google Scholar] [CrossRef] [Green Version]
- Biniarz, P.; Baranowska, G.; Feder-Kubis, J.; Krasowska, A. The Lipopeptides Pseudofactin II and Surfactin Effectively Decrease Candida albicans adhesion and hydrophobicity. Antonie Van Leeuwenhoek 2015, 108, 343–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, X.Y.; Chang, C.Y.; Hong, K.W.; Tee, K.K.; Yin, W.F.; Chan, K.G. Insights of Biosurfactant Producing Serratia marcescens strain W2.3 Isolated from Diseased Tilapia fish: A Draft Genome Analysis. Gut Pathog. 2013, 5, 29. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Zhu, X.; Lu, Y.; Zhao, H.; Lu, F.; Lu, Z. Improving Iturin A Production of Bacillus amyloliquefaciens by Genome Shuffling and Its Inhibition Against Saccharomyces cerevisiae in Orange Juice. Front. Microbiol. 2018, 9, 2683. [Google Scholar] [CrossRef]
- Hanif, A.; Zhang, F.; Li, P.; Li, C.; Xu, Y.; Zubair, M.; Zhang, M.; Jia, D.; Zhao, X.; Liang, J.; et al. Fengycin Produced by Bacillus amyloliquefaciens FZB42 Inhibits Fusarium graminearum Growth and Mycotoxins Biosynthesis. Toxins 2019, 11, 295. [Google Scholar] [CrossRef] [Green Version]
- Campos, J.M.; Stamford, T.L.; Sarubbo, L.A.; de Luna, J.M.; Rufino, R.D.; Banat, I.M. Microbial Biosurfactants as Additives for Food Industries. Biotechnol. Prog. 2013, 29, 1097–1108. [Google Scholar] [CrossRef]
- Passos da Silva, D.; Schofield, M.C.; Parsek, M.R.; Tseng, B.S. An Update on the Sociomicrobiology of Quorum Sensing in Gram-Negative Biofilm Development. Pathogens 2017, 6, 51. [Google Scholar] [CrossRef] [PubMed]
- Pacwa-Płociniczak, M.; Płaza, G.A.; Piotrowska-Seget, Z.; Cameotra, S.S. Environmental Applications of Biosurfactants: Recent Advances. Int. J. Mol. Sci. 2011, 12, 633–654. [Google Scholar] [CrossRef] [PubMed]
- Mouafo, T.H.; Mbawala, A.; Ndjouenkeu, R. Effect of Different Carbon Sources on Biosurfactants’ Production by Three Strains of Lactobacillus spp. Biomed. Res. Int. 2018, 2018, 5034783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varvaresou, A.; Iakovou, K. Biosurfactants in Cosmetics and Biopharmaceuticals. Lett. Appl. Microbiol. 2015, 61, 214–223. [Google Scholar] [CrossRef]
- Peng, F.; Liu, Z.; Wang, L.; Shao, Z. An Oil-Degrading Bacterium: Rhodococcus erythropolis Strain 3C-9 and Its Biosurfactants. J. Appl. Microbiol. 2007, 102, 1603–1611. [Google Scholar] [CrossRef] [PubMed]
- Ly, M.H.; Vo, N.H.; Le, T.M.; Belin, J.M.; Waché, Y. Diversity of the Surface Properties of Lactococci and Consequences on Adhesion to Food Components. Colloids Surf. B Biointerfaces 2006, 52, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Ly, M.H.; Aguedo, M.; Goudot, S.; Le, M.L.; Cayot, P.; Teixeira, J.A.; Le, T.M.; Belin, J.M.; Waché, Y. Interactions between Bacterial Surfaces and Milk Proteins, Impact on Food Emulsions Stability. Food Hydrocoll. 2008, 22, 742–751. [Google Scholar] [CrossRef] [Green Version]
- Ly, M.H.; Covarrubias-Cervantes, M.; Dury-Brun, C.; Bordet, S.; Voilley, A.; Le, T.M.; Belin, J.M.; Waché, Y. Retention of Aroma Compounds by Lactic Acid Bacteria in Model Food Media. Food Hydrocoll. 2008, 22, 211–217. [Google Scholar] [CrossRef]
- Ma, G.; Zhang, L.; Sugiura, M.; Kato, M. Chapter 24—Citrus and Health, in The Genus Citrus; Talon, M., Caruso, M., Gmitter, F.G., Eds.; Woodhead Publishing (Elsevier Inc.): Cambridge, UK, 2020; pp. 495–511. [Google Scholar]
- Yusof, S.; Ghazali, H.M.; King, G.S. Naringin Content in Local Citrus Fruits. Food Chem. 1990, 37, 113–121. [Google Scholar] [CrossRef]
- Giannuzzo, A.N.; Boggetti, H.J.; Nazareno, M.A.; Mishima, H.T. Supercritical Fluid Extraction of Naringin from the Peel of Citrus paradisi. Phytochem. Anal. 2003, 14, 221–223. [Google Scholar] [CrossRef]
- Singh, S.V.; Gupta, A.K.; Jain, R.K. Adsorption of Naringin on Nonionic (Neutral) Macroporus Adsorbent Resin from Its Aqueous Solutions. J. Food Eng. 2008, 86, 259–271. [Google Scholar] [CrossRef]
- Ribeiro, M.H. Naringinases: Occurrence, Characteristics, and Applications. Appl. Microbiol. Biotechnol. 2011, 90, 1883–1895. [Google Scholar] [CrossRef] [PubMed]
- Busto, M.D.; Cavia-Saiz, M.; Ortega, N.; Muñiz, P. Chapter 20—Enzymatic Debittering on Antioxidant Capacity of Grapefruit Juice. In Processing and Impact on Antioxidants in Beverages; Preedy, V., Ed.; Academic Press: San Diego, CA, USA, 2014; pp. 195–202. [Google Scholar]
- Puri, M.; Seth, M.; Marwaha, S.; Kothari, R. Debittering of Kinnow Mandarin Juice by Covalently Bound Naringinase on Hen Egg White. Food Biotechnol. 2007, 15, 13–23. [Google Scholar] [CrossRef]
- Puri, M.; Banerjee, U.C. Production, Purification, and Characterization of the Debittering Enzyme Naringinase. Biotechnol. Adv. 2000, 18, 207–217. [Google Scholar] [CrossRef]
- Mendoza-Cal, A.; Cuevas-Glory, L.; Lizama-Uc, G.; Ortiz-Vázquez, E. Naringinase Production from Filamentous Fungi Using Grapefruit Rind in Solid State Fermentation. Afr. J. Microbiol. Res. 2010, 4, 1964–1969. [Google Scholar]
- Chen, Y.; Ni, H.; Chen, F.; Cai, H.; Li, L.; Su, W. Purification and Characterization of a Naringinase from Aspergillus aculeatus JMUdb058. J. Agric. Food Chem. 2013, 61, 931–938. [Google Scholar] [CrossRef]
- Weiz, G.; Breccia, J.D.; Mazzaferro, L.S. Screening and Quantification of the Enzymatic Deglycosylation of the Plant Flavonoid Rutin by UV–Visible Spectrometry. Food Chem. 2017, 229, 44–49. [Google Scholar] [CrossRef]
- Yadav, M.; Sehrawat, N.; Sharma, A.; Kumar, V.; Kumar, A. Naringinase: Microbial Sources, Production and Applications in Food Processing Industry. J. Microbiol. Biotechnol. Food Sci. 2018, 8, 717–720. [Google Scholar] [CrossRef] [Green Version]
- Koseki, T.; Mese, Y.; Nishibori, N.; Masaki, K.; Fujii, T.; Handa, T.; Yamane, Y.; Shiono, Y.; Murayama, T.; Iefuji, H. Characterization of an Alpha-L-Rhamnosidase from Aspergillus kawachii and Its Gene. Appl. Microbiol. Biotechnol. 2008, 80, 1007–1013. [Google Scholar] [CrossRef]
- Chang, H.-Y.; Lee, Y.-B.; Bae, H.-A.; Huh, J.-Y.; Nam, S.-H.; Sohn, H.-S.; Lee, H.J.; Lee, S.-B. Purification and Characterisation of Aspergillus sojae Naringinase: The Production of Prunin Exhibiting Markedly Enhanced Solubility with in vitro Inhibition of HMG-CoA Reductase. Food Chem. 2011, 124, 234–241. [Google Scholar] [CrossRef]
- Srikantha, K.; Kapilan, R.; Vasantharuba, S. Characterization of Best Naringinase Producing Fungus Isolated from the Citrus Fruits. Int. J. Biol. Res. 2016, 4, 83. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, W.; Miyake, O.; Nankai, H.; Murata, K. Molecular Identification of an Alpha-L-Rhamnosidase from Bacillus sp Strain GL1 as an Enzyme Involved in Complete Metabolism of Gellan. Arch. Biochem. Biophys. 2003, 415, 235–244. [Google Scholar] [CrossRef]
- Mukund, P.; Belur, P.D.; Saidutta, M.B. Production of Naringinase from a New Soil Isolate, Bacillus methylotrophicus: Isolation, Optimization and Scale-up Studies. Prep. Biochem. Biotechnol. 2014, 44, 146–163. [Google Scholar] [CrossRef]
- Zhu, Y.; Jia, H.; Xi, M.; Xu, L.; Wu, S.; Li, X. Purification and Characterization of a Naringinase from a Newly Isolated Strain of Bacillus amyloliquefaciens 11568 Suitable for the Transformation of Flavonoids. Food Chem. 2017, 214, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Beekwilder, J.; Marcozzi, D.; Vecchi, S.; de Vos, R.; Janssen, P.; Francke, C.; van Hylckama Vlieg, J.; Hall, R.D. Characterization of Rhamnosidases from Lactobacillus plantarum and Lactobacillus acidophilus. Appl. Environ. Microbiol. 2009, 75, 3447–3454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, A.; Singh, S.; Singh, R.S.; Schwarz, W.H.; Puri, M. Hydrolysis of Citrus Peel Naringin by Recombinant α-L-rhamnosidase from Clostridium stercorarium. J. Chem. Technol. Biotechnol. 2010, 85, 1419–1422. [Google Scholar] [CrossRef]
- Miake, F.; Satho, T.; Takesue, H.; Yanagida, F.; Kashige, N.; Watanabe, K. Purification and Characterization of Intracellular α-l-rhamnosidase from Pseudomonas paucimobilis FP2001. Arch. Microbiol. 2000, 173, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, A.; Khalil, I.A.; Ateeq, N.; Sayyar Khan, M. Nutritional Quality of Important Food Legumes. Food Chem. 2006, 97, 331–335. [Google Scholar] [CrossRef]
- Kaczmarska, K.T.; Chandra-Hioe, M.V.; Frank, D.; Arcot, J. Aroma Characteristics of Lupin and Soybean after Germination and Effect of Fermentation on Lupin Aroma. LWT 2018, 87, 225–233. [Google Scholar] [CrossRef]
- Kaneko, S.; Kumazawa, K.; Nishimura, O. Studies on the Key Aroma Compounds in Soy Milk Made from Three Different Soybean Cultivars. J. Agric. Food Chem. 2011, 59, 12204–12209. [Google Scholar] [CrossRef]
- Stephany, M.; Kapusi, K.; Bader-Mittermaier, S.; Schweiggert-Weisz, U.; Carle, R. Odour-Active Volatiles in Lupin Kernel Fibre Preparations (Lupinus angustifolius L.): Effects of Thermal Lipoxygenase Inactivation. Eur. Food Res. Technol. 2016, 242, 995–1004. [Google Scholar] [CrossRef]
- Boatright, W.L.; Lei, Q. Compounds Contributing to the “Beany” Odor of Aqueous Solutions of Soy Protein Isolates. J. Food Sci. 1999, 64, 667–670. [Google Scholar] [CrossRef]
- Hongsoongnern, P.; Chambers, E., IV. A Lexicon for Green Odor or Flavor and Characteristics of Chemicals Associated with Green. J. Sens. Stud. 2008, 23, 205–221. [Google Scholar] [CrossRef]
- Lozano, P.R.; Drake, M.; Benitez, D.; Cadwallader, K.R. Instrumental and Sensory Characterization of Heat-Induced Odorants in Aseptically Packaged Soy Milk. J. Agric. Food Chem. 2007, 55, 3018–3026. [Google Scholar] [CrossRef]
- Torres-Penaranda, A.V.; Reitmeier, C.A. Sensory Descriptive Analysis of Soymilk. J. Food Sci. 2001, 66, 352–356. [Google Scholar] [CrossRef]
- Vara-Ubol, S.; Chambers, E.; Chambers, D.H. Sensory Characteristics of Chemical Compounds Potentially Associated with Beany Aroma in Food. J. Sens. Stud. 2004, 19, 15–26. [Google Scholar] [CrossRef]
- Schindler, S.; Wittig, M.; Zelena, K.; Krings, U.; Bez, J.; Eisner, P.; Berger, R.G. Lactic Fermentation to Improve the Aroma of Protein Extracts of Sweet Lupin (Lupinus angustifolius). Food Chem. 2011, 128, 330–337. [Google Scholar] [CrossRef]
- Schindler, S.; Zelena, K.; Krings, U.; Bez, J.; Eisner, P.; Berger, R. Improvement of the Aroma of Pea (Pisum sativum) Protein Extracts by Lactic Acid Fermentation. Food Biotechnol. 2012, 26, 58–74. [Google Scholar] [CrossRef]
- Blagden, T.; Gilliland, S. Reduction of Levels of Volatile Components Associated with the “Beany” Flavor in Soymilk by Lactobacilli and Streptococci. J. Food Sci. 2006, 70, M186–M189. [Google Scholar] [CrossRef]
- Lee, C.; Beuchat, L.R. Changes in Chemical Composition and Sensory Qualities of Peanut Milk Fermented with Lactic Acid Bacteria. Int. J. Food Microbiol. 1991, 13, 273–283. [Google Scholar] [CrossRef]
- Lorn, D. Screening of Lactic Acid Bacteria for Their Potential Use as Aromatic Starters in Fermented Vegetables. Ph.D. Thesis, University of Burgundy, Dijon, France, 15 December 2020. [Google Scholar]
- Axel, C.; Zannini, E.; Arendt, E.K. Mold Spoilage of Bread and Its Biopreservation: A Review of Current Strategies for Bread Shelf Life Extension. Crit. Rev. Food Sci. Nutr. 2017, 57, 3528–3542. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, P.M.; Kuniyoshi, T.M.; Oliveira, R.P.; Hill, C.; Ross, R.P.; Cotter, P.D. Antimicrobials for Food and Feed; a Bacteriocin Perspective. Curr. Opin. Biotechnol. 2020, 61, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Bansal-Mutalik, R.; Nikaido, H. Quantitative Lipid Composition of Cell Envelopes of Corynebacterium glutamicum Elucidated through Reverse Micelle Extraction. Proc. Natl. Acad. Sci. USA 2011, 108, 15360–15365. [Google Scholar] [CrossRef] [Green Version]
- Shekhar, S.; Sundaramanickam, A.; Thangavel, B. Biosurfactant Producing Microbes and Their Potential Applications: A Review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 1522–1554. [Google Scholar] [CrossRef]
- Rahman, P.; Edward, G. Production, Characterisation and Applications of Biosurfactants-Review. Biotechnology 2008, 7, 360–370. [Google Scholar] [CrossRef] [Green Version]
- Amani, H.; Kariminezhad, H. Study on Emulsification of Crude Oil in Water Using Emulsan Biosurfactant for Pipeline Transportation. Pet. Sci. Technol. 2016, 34, 216–222. [Google Scholar] [CrossRef]
- Chaprão, M.J.; Ferreira, I.N.S.; Correa, P.F.; Rufino, R.D.; Luna, J.M.; Silva, E.J.; Sarubbo, L.A. Application of Bacterial and Yeast Biosurfactants for Enhanced Removal and Biodegradation of Motor Oil from Contaminated Sand. Electron. J. Biotechnol. 2015, 18, 471–479. [Google Scholar] [CrossRef] [Green Version]
- Sajna, K.; Höfer, R.; Sukumaran, R.; Gottumukkala, L.; Pandey, A. White Biotechnology in Biosurfactants. In Industrial Biorefineries & White Biotechnology; Elsevier: Amsterdam, The Netherlands, 2015; pp. 499–521. [Google Scholar]
- Joshi, S.; Bharucha, C.; Desai, A.J. Production of Biosurfactant and Antifungal Compound by Fermented Food Isolate Bacillus subtilis 20B. Bioresour. Technol. 2008, 99, 4603–4608. [Google Scholar] [CrossRef]
- Magalhães, L.; Nitschke, M. Antimicrobial Activity of Rhamnolipids against Listeria monocytogenes and Their Synergistic Interaction with Nisin. Food Control 2013, 29, 138–142. [Google Scholar] [CrossRef] [Green Version]
- Mnif, I.; Ghribi, D. Glycolipid Biosurfactants: Main Properties and Potential Applications in Agriculture and Food Industry. J. Sci. Food Agric. 2016, 96, 4310–4320. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, Q.; Wang, K.; Brian, K.; Liu, C.; Gu, Y. Study of the Antifungal Activity of Bacillus vallismortis ZZ185 in vitro and Identification of Its Antifungal Components. Bioresour. Technol. 2010, 101, 292–297. [Google Scholar] [CrossRef]
- Otzen, D.E. Biosurfactants and Surfactants Interacting with Membranes and Proteins: Same but Different? Biochim. Biophys. Acta Biomembr. 2017, 1859, 639–649. [Google Scholar] [CrossRef]
- Rodrigues, L.; van der Mei, H.C.; Teixeira, J.; Oliveira, R. Influence of Biosurfactants from Probiotic Bacteria on Formation of Biofilms on Voice Prostheses. Appl. Environ. Microbiol. 2004, 70, 4408–4410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gudiña, E.J.; Rocha, V.; Teixeira, J.A.; Rodrigues, L.R. Antimicrobial and Antiadhesive Properties of a Biosurfactant Isolated from Lactobacillus paracasei ssp. paracasei A20. Lett. Appl. Microbiol. 2010, 50, 419–424. [Google Scholar] [CrossRef] [Green Version]
- Rufino, R.D.; Luna, J.M.; Sarubbo, L.A.; Rodrigues, L.R.M.; Teixeira, J.A.C.; Campos-Takaki, G.M. Antimicrobial and Anti-Adhesive Potential of a Biosurfactant Rufisan Produced by Candida lipolytica UCP 0988. Colloids Surf. B Biointerfaces 2011, 84, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Abalos, A.; Pinazo, A.; Infante, M.R.; Casals, M.; García, F.; Manresa, A. Physicochemical and Antimicrobial Properties of New Rhamnolipids Produced by Pseudomonas aeruginosa AT10 from Soybean Oil Refinery Wastes. Langmuir 2001, 17, 1367–1371. [Google Scholar] [CrossRef]
- Padmapriya, B.; Suganthi, S.; Anishya, R.S. Screening, Optimization and Production of Biosurfactants by Candida Species Isolated from Oil Polluted Soils. Am. Eurasian J. Agric. Environ. Sci. 2013, 13, 227–233. [Google Scholar]
- Kiran, G.S.; Sabarathnam, B.; Selvin, J. Biofilm Disruption Potential of a Glycolipid Biosurfactant from Marine Brevibacterium casei. FEMS Immunol. Med. Microbiol. 2010, 59, 432–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomaa, E. Antimicrobial Activity of a Biosurfactant Produced by Bacillus licheniformis Strain M104 Grown on Whey. Braz. Arch. Biol. Technol. 2013, 56, 259–268. [Google Scholar] [CrossRef] [Green Version]
- Falardeau, J.; Wise, C.; Novitsky, L.; Avis, T.J. Ecological and Mechanistic Insights into the Direct and Indirect Antimicrobial Properties of Bacillus subtilis Lipopeptides on Plant Pathogens. J. Chem. Ecol. 2013, 39, 869–878. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Ansari, M.J.; Gupta, S.; Al Ghamdi, A.; Pruthi, P.; Pruthi, V. Structural Characterization and Antimicrobial Activity of a Biosurfactant Obtained from Bacillus pumilus DSVP18 Grown on Potato Peels. Jundishapur J. Microbiol. 2015, 8, e21257. [Google Scholar] [CrossRef] [Green Version]
- Sriram, M.I.; Kalishwaralal, K.; Deepak, V.; Gracerosepat, R.; Srisakthi, K.; Gurunathan, S. Biofilm Inhibition and Antimicrobial Action of Lipopeptide Biosurfactant Produced by Heavy Metal Tolerant Strain Bacillus cereus NK1. Colloids Surf. B Biointerfaces 2011, 85, 174–181. [Google Scholar] [CrossRef]
- Das, P.; Mukherjee, S.; Sen, R. Antimicrobial Potential of a Lipopeptide Biosurfactant Derived from a Marine Bacillus circulans. J. Appl. Microbiol. 2008, 104, 1675–1684. [Google Scholar] [CrossRef] [PubMed]
- Ruangprachaya, F.; Chuenchomrat, P. Isolation and Characterization of Biosurfactant Produced by Lactic Acid Bacteria from Indigenous Thai Fermented Foods. Int. J. Food Eng. 2018, 4. [Google Scholar] [CrossRef]
- Saravanakumari, P.; Mani, K. Structural Characterization of a Novel Xylolipid Biosurfactant from Lactococcus lactis and Analysis of Antibacterial Activity against Multi-Drug Resistant Pathogens. Bioresour. Technol. 2010, 101, 8851–8854. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Singh Saharan, B. Simultaneous Production of Biosurfactants and Bacteriocins by Probiotic Lactobacillus casei MRTL3. Int. J. Microbiol. 2014, 2014, 698713. [Google Scholar] [CrossRef] [Green Version]
- Madhu, A.N.; Prapulla, S.G. Evaluation and Functional Characterization of a Biosurfactant Produced by Lactobacillus plantarum CFR 2194. Appl. Biochem. Biotechnol. 2014, 172, 1777–1789. [Google Scholar] [CrossRef] [PubMed]
- Gudiña, E.J.; Fernandes, E.C.; Teixeira, J.A.; Rodrigues, L.R. Antimicrobial and Anti-Adhesive Activities of Cell-Bound Biosurfactant from Lactobacillus agilis CCUG31450. RSC Adv. 2015, 5, 90960–90968. [Google Scholar] [CrossRef] [Green Version]
- Mnif, I.; Hammami, I.; Triki, M.A.; Azabou, M.C.; Ellouze-Chaabouni, S.; Ghribi, D. Antifungal Efficiency of a Lipopeptide Biosurfactant Derived from Bacillus subtilis SPB1 versus the Phytopathogenic Fungus, Fusarium solani. Environ. Sci. Pollut. Res. Int. 2015, 22, 18137–18147. [Google Scholar] [CrossRef]
- Pretorius, D.; van Rooyen, J.; Clarke, K.G. Enhanced Production of Antifungal Lipopeptides by Bacillus amyloliquefaciens for Biocontrol of Postharvest Disease. N. Biotechnol. 2015, 32, 243–252. [Google Scholar] [CrossRef]
- Kilani-Feki, O.; Ben Khedher, S.; Dammak, M.; Kamoun, A.; Jabnoun-Khiareddine, H.; Daami-Remadi, M.; Tounsi, S. Improvement of Antifungal Metabolites Production by Bacillus subtilis V26 for Biocontrol of Tomato Postharvest Disease. Biol. Control 2016, 95, 73–82. [Google Scholar] [CrossRef]
- Gu, K.-B.; Zhang, D.-J.; Guan, C.; Xu, J.-H.; Li, S.-L.; Shen, G.-M.; Luo, Y.-C.; Li, Y.-G. Safe Antifungal Lipopeptides Derived from Bacillus marinus B-9987 Against Grey Mold Caused by Botrytis cinerea. J. Integr. Agric. 2017, 16, 1999–2008. [Google Scholar] [CrossRef] [Green Version]
- Torres, M.J.; Brandan, C.P.; Petroselli, G.; Erra-Balsells, R.; Audisio, M.C. Antagonistic Effects of Bacillus subtilis subsp. subtilis and B. amyloliquefaciens against Macrophomina phaseolina: SEM Study of Fungal Changes and UV-MALDI-TOF MS Analysis of Their Bioactive Compounds. Microbiol. Res. 2016, 182, 31–39. [Google Scholar] [CrossRef]
- Sachdev, D.P.; Cameotra, S.S. Biosurfactants in Agriculture. Appl. Microbiol. Biotechnol. 2013, 97, 1005–1016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Jaramillo, L.M.; Aranda, F.J.; Teruel, J.A.; Villegas-Escobar, V.; Ortiz, A. Antimycotic Activity of Fengycin C Biosurfactant and Its Interaction with Phosphatidylcholine Model Membranes. Colloids Surf. B Biointerfaces 2017, 156, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, M.; Kagalkar, A.; Jadhav, S.; Govindwar, S. Isolation, Characterization, and Antifungal Application of a Biosurfactant Produced by Enterobacter sp. MS16. Eur. J. Lipid Sci. Technol. 2011, 113, 1347–1356. [Google Scholar] [CrossRef]
- Yoo, D.S.; Lee, B.S.; Kim, E.K. Characteristics of Microbial Biosurfactant as an Antifungal Agent Against Plant Pathogenic Fungus. J. Microbiol. Biotechnol. 2005, 15, 1164–1169. [Google Scholar]
- Gond, S.K.; Bergen, M.S.; Torres, M.S.; White, J.F., Jr. Endophytic Bacillus spp. Produce Antifungal Lipopeptides and Induce Host Defence Gene Expression in Maize. Microbiol. Res. 2015, 172, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Eskola, M.; Kos, G.; Elliott, C.T.; Hajšlová, J.; Mayar, S.; Krska, R. Worldwide Contamination of Food-Crops with Mycotoxins: Validity of the Widely Cited ‘FAO Estimate’ of 25. Crit. Rev. Food Sci. Nutr. 2020, 60, 2773–2789. [Google Scholar] [CrossRef] [PubMed]
- Muhialdin, B.J.; Saari, N.; Meor Hussin, A.S. Review on the Biological Detoxification of Mycotoxins Using Lactic Acid Bacteria to Enhance the Sustainability of Foods Supply. Molecules 2020, 25, 2655. [Google Scholar] [CrossRef]
- Watanakij, N.; Visessanguan, W.; Petchkongkaew, A. Aflatoxin B1-Degrading Activity from Bacillus subtilis BCC 42005 Isolated from Fermented Cereal Products. Food Addit. Contam. Part. A Chem. Anal. Control. Expo. Risk Assess. 2020, 37, 1579–1589. [Google Scholar] [CrossRef]
- Fazeli, M.R.; Hajimohammadali, M.; Moshkani, A.; Samadi, N.; Jamalifar, H.; Khoshayand, M.R.; Vaghari, E.; Pouragahi, S. Aflatoxin B1 Binding Capacity of Autochthonous Strains of Lactic Acid Bacteria. J. Food Prot. 2009, 72, 189–192. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Mendoza, A.; Garcia, H.S.; Steele, J.L. Screening of Lactobacillus casei Strains for Their Ability to Bind Aflatoxin B1. Food Chem. Toxicol. 2009, 47, 1064–1068. [Google Scholar] [CrossRef] [PubMed]
- El-Nezami, H.; Kankaanpaa, P.; Salminen, S.; Ahokas, J. Ability of Dairy Strains of Lactic Acid Bacteria to Bind a Common Food Carcinogen, Aflatoxin B1. Food Chem. Toxicol. 1998, 36, 321–326. [Google Scholar] [CrossRef]
- Peltonen, K.; El-Nezami, H.; Haskard, C.; Ahokas, J.; Salminen, S. Aflatoxin B1 Binding by Dairy Strains of Lactic Acid Bacteria and Bifidobacteria. J. Dairy Sci. 2001, 84, 2152–2156. [Google Scholar] [CrossRef]
- Topcu, A.; Bulat, T.; Wishah, R.; Boyacı, I.H. Detoxification of Aflatoxin B1 and Patulin by Enterococcus faecium Strains. Int. J. Food Microbiol. 2010, 139, 202–205. [Google Scholar] [CrossRef]
- Khanafari, A.; Soudi, H.; Miraboulfathi, M.; Osboo, R.K. An in vitro Investigation of Aflatoxin B1 Biological Control by Lactobacillus plantarum. Pak. J. Biol. Sci. 2007, 10, 2553–2556. [Google Scholar] [CrossRef] [Green Version]
- Shah, N.; Wu, S. Aflatoxin B1 Binding Abilities of Probiotic Bacteria. Biosci. Microflora 1999, 18, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Sarimehmetoğlu, B.; Küplülü, Ö. Binding Ability of Aflatoxin M1 to Yoghurt Bacteria. Ankara Üniversitesi Veteriner Fakültesi Dergisi 2004, 51, 195–198. [Google Scholar]
- Sezer, Ç.; Güven, A.; Oral, N.B.; Vatansever, L. Detoxification of Aflatoxin B1 by Bacteriocins and Bacteriocinogenic Lactic Acid Bacteria. Turk. J. Vet. Anim. Sci. 2013, 37, 594–601. [Google Scholar] [CrossRef] [Green Version]
- Elsanhoty, R.M.; Salam, S.A.; Ramadan, M.F.; Badr, F.H. Detoxification of Aflatoxin M1 in Yoghurt Using Probiotics and Lactic Acid Bacteria. Food Control 2014, 43, 129–134. [Google Scholar] [CrossRef]
- Śliżewska, K.; Smulikowska, S. Detoxification of Aflatoxin B1 and Change in Microflora Pattern by Probiotic in vitro Fermentation of Broiler Feed. J. Anim. Feed Sci. 2011, 20, 300–309. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Duan, C.; Zhao, Y.; Gao, L.; Niu, C.; Xu, J.; Li, S. Reduction of Aflatoxin B1 Toxicity by Lactobacillus plantarum C88: A Potential Probiotic Strain Isolated from Chinese Traditional Fermented Food “Tofu”. PLoS ONE 2017, 12, e0170109. [Google Scholar] [CrossRef]
- Niderkorn, V.; Morgavi, D.P.; Aboab, B.; Lemaire, M.; Boudra, H. Cell Wall Component and Mycotoxin Moieties Involved in the Binding of Fumonisin B1 and B2 by Lactic Acid Bacteria. J. Appl. Microbiol. 2009, 106, 977–985. [Google Scholar] [CrossRef]
- Niderkorn, V.; Boudra, H.; Morgavi, D.P. Binding of Fusarium Mycotoxins by Fermentative Bacteria in vitro. J. Appl. Microbiol. 2006, 101, 849–856. [Google Scholar] [CrossRef]
- El-Nezami, H.; Polychronaki, N.; Salminen, S.; Mykkänen, H. Binding Rather than Metabolism May Explain the Interaction of Two Food-Grade Lactobacillus strains with Zearalenone and Its Derivative Alpha-Zearalenol. Appl. Environ. Microbiol. 2002, 68, 3545–3549. [Google Scholar] [CrossRef] [Green Version]
- Long, M.; Li, P.; Zhang, W.; Li, X.B.; Zhang, Y.; Wang, Z.; Liu, G. Removal of Zearalenone by Strains of Lactobacillus sp. Isolated from Rumen in vitro. J. Anim. Vet. Adv. 2012, 11, 2417–2422. [Google Scholar]
- Rogowska, A.; Pomastowski, P.; Walczak, J.; Railean-Plugaru, V.; Rudnicka, J.; Buszewski, B. Investigation of Zearalenone Adsorption and Biotransformation by Microorganisms Cultured under Cellular Stress Conditions. Toxins 2019, 11, 463. [Google Scholar] [CrossRef] [Green Version]
- Franco, T.S.; Garcia, S.; Hirooka, E.Y.; Ono, Y.S.; dos Santos, J.S. Lactic acid Bacteria in the Inhibition of Fusarium graminearum and Deoxynivalenol Detoxification. J. Appl. Microbiol. 2011, 111, 739–748. [Google Scholar] [CrossRef]
- Fuchs, S.; Sontag, G.; Stidl, R.; Ehrlich, V.; Kundi, M.; Knasmüller, S. Detoxification of Patulin and Ochratoxin A, Two Abundant Mycotoxins, by Lactic Acid Bacteria. Food Chem. Toxicol. 2008, 46, 1398–1407. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yue, T.; Yuan, Y.; Wang, Z.; Ye, M.; Cai, R. A New Insight into the Adsorption Mechanism of Patulin by the Heat-Inactive Lactic Acid Bacteria Cells. Food Control 2015, 50, 104–110. [Google Scholar] [CrossRef]
- Del Prete, V.; Rodriguez, H.; Carrascosa, A.V.; de las Rivas, B.; Garcia-Moruno, E.; Muñoz, R. In vitro Removal of Ochratoxin A by Wine Lactic Acid Bacteria. J. Food Prot. 2007, 70, 2155–2160. [Google Scholar] [CrossRef]
- Mateo, E.M.; Medina, Á.; Mateo, F.; Valle-Algarra, F.M.; Pardo, I.; Jiménez, M. Ochratoxin A Removal in Synthetic Media by Living and Heat-Inactivated Cells of Oenococcus oeni Isolated from Wines. Food Control 2010, 21, 23–28. [Google Scholar] [CrossRef] [Green Version]
- Abrunhosa, L.; Inês, A.; Rodrigues, A.I.; Guimarães, A.; Pereira, V.L.; Parpot, P.; Mendes-Faia, A.; Venâncio, A. Biodegradation of Ochratoxin A by Pediococcus parvulus Isolated from Douro Wines. Int. J. Food Microbiol. 2014, 188, 45–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luz, C.; Ferrer, J.; Mañes, J.; Meca, G. Toxicity Reduction of Ochratoxin A by Lactic Acid Bacteria. Food Chem. Toxicol. 2018, 112, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Petchkongkaew, A.; Taillandier, P.; Gasaluck, P.; Lebrihi, A. Isolation of Bacillus spp. from Thai Fermented Soybean (Thua-Nao): Screening for Aflatoxin B1 and Ochratoxin A Detoxification. J. Appl. Microbiol. 2008, 104, 1495–1502. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.R.; Yi, P.J. Bacillus licheniformis and Method for Detoxification of Zearalenone. U.S. Patent 8,404,477, 26 March 2013. [Google Scholar]
- Cho, K.J.; Kang, J.S.; Cho, W.T.; Lee, C.H.; Ha, J.K.; Song, K.B. In Vitro Degradation of Zearalenone by Bacillus subtilis. Biotechnol. Lett. 2010, 32, 1921–1924. [Google Scholar] [CrossRef] [PubMed]
- Robert, R. When Multinationals Pivot: Three Strategies from the Food Industry. Paris Innovation Review, 2016. [Google Scholar]
- Makkar, H.P.S. Antinutritional Factors in Foods for Livestock. BSAP Occas. Publ. 1993, 16, 69–85. [Google Scholar] [CrossRef]
- Gilani, G.S.; Cockell, K.A.; Sepehr, E. Effects of Antinutritional Factors on Protein Digestibility and Amino Acid Availability in Foods. J. AOAC Int. 2005, 88, 967–987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fekadu Gemede, H. Antinutritional Factors in Plant Foods: Potential Health Benefits and Adverse Effects. Int. J. Nutr. Food Sci. 2014, 3, 284. [Google Scholar] [CrossRef] [Green Version]
- El-Adawy, T.A. Nutritional Composition and Antinutritional Factors of Chickpeas (Cicer arietinum L.) Undergoing Different Cooking Methods and Germination. Plant. Foods Hum. Nutr. 2002, 57, 83–97. [Google Scholar] [CrossRef]
- Ibrahim, S.; Habiba, R.; Shatta, A.; Embaby, H. Effect of Soaking, Germination, Cooking and Fermentation on Antinutritional Factors in Cowpeas. Nahrung 2002, 46, 92–95. [Google Scholar] [CrossRef]
- Ghavidel, R.A.; Prakash, J. The Impact of Germination and Dehulling on Nutrients, Antinutrients, In Vitro Iron and Calcium Bioavailability and In Vitro Starch and Protein Digestibility of Some Legume Seeds. LWT Food Sci. Technol. 2007, 40, 1292–1299. [Google Scholar] [CrossRef]
- Martín-Cabrejas, M.A.; Sanfiz, B.; Vidal, A.; Mollá, E.; Esteban, R.; López-Andréu, F.J. Effect of Fermentation and Autoclaving on Dietary Fiber Fractions and Antinutritional Factors of Beans (Phaseolus vulgaris L.). J. Agric. Food Chem. 2004, 52, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Refstie, S.; Sahlström, S.; Bråthen, E.; Baeverfjord, G.; Krogedal, P. Lactic Acid Fermentation Eliminates Indigestible Carbohydrates and Antinutritional Factors in Soybean Meal for Atlantic Salmon (Salmo salar). Aquaculture 2005, 246, 331–345. [Google Scholar] [CrossRef]
- Granito, M.; Álvarez, G. Lactic Acid Fermentation of Black Beans (Phaseolus vulgaris): Microbiological and Chemical Characterization. J. Sci. Food Agric. 2006, 86, 1164–1171. [Google Scholar] [CrossRef]
- El Hag, M.E.; El Tinay, A.H.; Yousif, N.E. Effect of Fermentation and Dehulling on Starch, Total Polyphenols, Phytic Acid Content and In Vitro Protein Digestibility of Pearl Millet. Food Chem. 2002, 77, 193–196. [Google Scholar] [CrossRef]
- Bartkiene, E.; Krungleviciute, V.; Juodeikiene, G.; Vidmantiene, D.; Maknickiene, Z. Solid State Fermentation with Lactic Acid Bacteria to Improve the Nutritional Quality of Lupin and Soya Bean. J. Sci. Food Agric. 2015, 95, 1336–1342. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Zhang, B. Lactic Acid Bacteria and B Vitamins. In Lactic Acid Bacteria; Chen, W., Ed.; Springer: Singapore, 2019. [Google Scholar]
- Ogbonna, J.C. Microbiological Production of Tocopherols: Current State and Prospects. Appl. Microbiol. Biotechnol. 2009, 84, 217–225. [Google Scholar] [CrossRef]
- Verwaal, R.; Wang, J.; Meijnen, J.P.; Visser, H.; Sandmann, G.; Van Den Berg, J.A.; Van Ooyen, A.J. High-Level Production of Beta-Carotene in Saccharomyces cerevisiae by Successive Transformation with Carotenogenic Genes from Xanthophyllomyces dendrorhous. Appl. Environ. Microbiol. 2007, 73, 4342–4350. [Google Scholar] [CrossRef] [Green Version]
- Yan, G.L.; Wen, K.R.; Duan, C.Q. Enhancement of Beta-Carotene Production by Over-Expression of HMG-CoA Reductase Coupled with Addition of Ergosterol Biosynthesis Inhibitors in Recombinant Saccharomyces cerevisiae. Curr. Microbiol. 2012, 64, 159–163. [Google Scholar] [CrossRef]
- Araya-Garay, J.M.; Feijoo-Siota, L.; Rosa-Dos-Santos, F.; Veiga-Crespo, P.; Villa, T.G. Construction of New Pichia pastoris X-33 Strains for Production of Lycopene and Beta-Carotene. Appl. Microbiol. Biotechnol. 2012, 93, 2483–2492. [Google Scholar] [CrossRef] [PubMed]
- Bhatayaa, A.; Schmidt-Dannerta, C.; Leeb, P. Metabolic Engineering of Pichia pastoris X-33 for Lycopene Production. Process Biochem. 2009, 44, 1095–1102. [Google Scholar] [CrossRef]
- Sabirova, J.S.; Haddouche, R.; Van Bogaert, I.N.; Mulaa, F.; Verstraete, W.; Timmis, K.N.; Schmidt-Dannert, C.; Nicaud, J.M.; Soetaert, W. The “LipoYeasts” Project: Using the Oleaginous Yeast Yarrowia lipolytica in Combination with Specific Bacterial Genes for the Bioconversion of Lipids, Fats and Oils into Highvalue Products. Microb. Biotechnol. 2011, 4, 47–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souza, C.M.; Schwabe, T.M.; Pichler, H.; Ploier, B.; Leitner, E.; Guan, X.L.; Wenk, M.R.; Riezman, I.; Riezman, H. A Stable Yeast Strain Efficiently Producing Cholesterol Instead of Ergosterol is Functional for Tryptophan Uptake, but not Weak Organic Acid Resistance. Metab. Eng. 2011, 13, 555–569. [Google Scholar] [CrossRef]
- Taghuchi, H.; Shibata, T.; Duangmanee, C.; Tani, Y. Menaquinone-4 Production by a Sulfonamide-Resistant Mutant of Favobacterium sp. 238-7. Agric. Biol. Chem. 1989, 53, 3017–3023. [Google Scholar]
- Furuichi, K.; Hojo, K.; Katakura, Y.; Ninomiya, K.; Shioya, S. Aerobic Culture of Propionibacterium freudenreichii ET-3 Can Increase Production Ratio of 1,4-dihydroxy-2-Naphthoic Acid to Menaquinone. J. Biosci. Bioeng. 2006, 101, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Yamada, Y.; Ohtani, Y.; Mitsui, N.; Murasawa, H.; Araki, S. Efficient Production of Menaquinone (Vitamin K2) by a Menadione-resistant Mutant of Bacillus subtilis. J. Ind. Microbiol. Biotechnol. 2001, 26, 115–120. [Google Scholar] [CrossRef]
- Ledesma-Amaro, R.; Jimenez, A.; Santos, M.A.; Revuelta, J.L. Microbial Production of Vitamins. In Microbial Production of Food Ingredients, Enzymes and Nutraceuticals; Series in Food Science; Woodhead Publishing: Cambridge, UK, 2013. [Google Scholar]
- Urbance, J.W.; Bratina, B.J.; Stoddard, S.F.; Schmidt, T.M. Taxonomic Characterization of Ketogulonigenium vulgare gen. nov. sp. nov. and Ketogulonigenium robustum sp. nov. which Oxidize l-Sorbose to 2-Keto-l-Gulonic Acid. Int. J. Syst. Evol. Microbiol. 2001, 51, 1059–1107. [Google Scholar] [CrossRef] [Green Version]
- Sugisawa, T.; Hoshino, T.; Masuda, S.; Nomura, S.; Setoguchi, Y.; Tazoe, M.; Shinjoh, M.; Someha, S.; Fujiwara, A. Microbial Production of 2-Keto-l-Gulonic Acid from l-Sorbose and d-Sorbitol by Gluconobacter melanogenus. Agric. Biol. Chem. 1990, 54, 1201–1209. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Guideline: Daily Iron and Folic Acid Supplementation in Pregnant Women; World Health Organization: Geneva, Switzerland, 2012. [Google Scholar]
- Saubade, F.; Hemery, Y.M.; Guyot, J.P.; Humblot, C. Lactic Acid Fermentation as a Tool for Increasing the Folate Content of Foods. Crit. Rev. Food Sci. Nutr. 2017, 57, 3894–3910. [Google Scholar] [CrossRef]
- Bhutta, Z.A.; Salam, R.A.; Das, J.K. Meeting the Challenges of Micronutrient Malnutrition in the Developing World. Br. Med. Bull. 2013, 106, 7–17. [Google Scholar] [CrossRef]
- Padalino, M.; Perez-Conesa, D.; Lopez-Nicol, R.; Frontela-Saseta, C.; Ros-Berruezo, G. Effect of Fructooligosaccharides and Galactooligosaccharides on the Folate Production of Some Folate-Producing Bacteria in Media Cultures or Milk. Int. Dairy J. 2012, 27, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Pompei, A.; Cordisco, L.; Amaretti, A.; Zanoni, S.; Matteuzzi, D.; Rossi, M. Folate Production by Bifidobacteria as a Potential Probiotic Property. Appl. Env. Microbiol. 2007, 73, 179–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, M.Y.; Young, C.M. Folate Levels in Cultures of Lactic Acid Bacteria. Int. Dairy J. 2000, 10, 409–413. [Google Scholar] [CrossRef]
- Laino, J.E.; Juarez del Valle, M.; Savoy de Giori, G.; LeBlanc, J.G.J. Applicability of a Lactobacillus amylovorus Strain as Co-Culture for Natural Folate Bio-Enrichment of Fermented Milk. Int. J. Food Microbiol. 2014, 191, 10–16. [Google Scholar] [CrossRef]
- Hugenschmidt, S.; Schwenninger, S.M.; Gnehm, N.; Lacroix, C. Screening of a Natural Biodiversity of Lactic and Propionic Acid Bacteria for Folate and Vitamin B12 Production in Supplemented Whey Permeate. Int. Dairy J. 2010, 20, 852–857. [Google Scholar] [CrossRef]
- Masuda, M.; Ide, M.; Utsumi, H.; Niiro, T.; Shimamura, Y.; Murata, M. Production Potency of Folate, Vitamin B-12, and Thiamine by Lactic Acid Bacteria Isolated from Japanese Pickles. Biosci. Biotechnol. Biochem. 2012, 76, 2061–2067. [Google Scholar] [CrossRef] [Green Version]
- Cardenas, N.; Laino, J.E.; Delgado, S.; Jimenez, E.; Del Valle, M.J.; De Giori, G.S.; Sesma, F.; Mayo, B.; Fernandez, L.; LeBlanc, J.G.; et al. Relationships Between the Genome and Some Phenotypical Properties of Lactobacillus fermentum CECT 5716, a Probiotic Strain Isolated from Human Milk. Appl. Microbiol. Biotechnol. 2015, 99, 4343–4353. [Google Scholar] [CrossRef]
- Nor, N.M.; Mohamad, R.; Foo, H.L.; Rahim, R.A. Improvement of Folate Biosynthesis by Lactic Acid Bacteria Using Response Surface Methodology. Food Technol. Biotechnol. 2010, 48, 243–250. [Google Scholar]
- Sybesma, W.; Starrenburg, M.; Tijsseling, L.; Hoefnagel, M.H.N.; Hugenholtz, J. Effects of Cultivation Conditions on Folate Production by Lactic Acid Bacteria. Appl. Environ. Microbiol. 2003, 69, 4542–4548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laino, J.E.; Guy LeBlanc, J.; Savoy de Giori, G. Production of Natural Folates by Lactic Acid Bacteria Starter Cultures Isolated from Artisanal Argentinean Yogurts. Can. J. Microbiol. 2012, 58, 581–588. [Google Scholar] [CrossRef]
- Guyton, A.C. Textbook of Mediacal Physiology, 8th ed.; W.B. Saunders: Philadelphia, PA, USA, 1991. [Google Scholar]
- McLaughlin, S.; Margolskee, R.F. The Sense of Taste. Am. Sci. 1994, 82, 538–545. [Google Scholar]
- Yamaguchi, S. Basic Properties of Umami and Effects on Humans. Physiol. Behav. 1991, 49, 833–841. [Google Scholar] [CrossRef]
- Yamaguchi, S. Fundamental Properties of Umami on Human Taste Sensation. In Umami: A Basic Taste; Kawamura, Y., Kare, M.R., Eds.; Marcel Dekker: New York, NY, USA, 1987; pp. 41–73. [Google Scholar]
- Giacometti, T. Free and Bound Glutamate in Natural Products. In Glutamic Acid: Advances in Biochemistry and Physiology; Filer, L.J., Garattini, S., Kare, M.R., Reynolds, A.W., Wurtman, R.J., Eds.; Raven Press: New York, NY, USA, 1979; pp. 25–34. [Google Scholar]
- Yamaguchi, S.; Ninomiya, K. Umami and Food Palatability. J. Nutr. 2000, 130 (Suppl. S4), 921s–926s. [Google Scholar] [CrossRef] [PubMed]
- Ngoc, N.T.T.; Thuan, D.V.; Thanh, D.V.; Quan, L.-H. Optimization for Batch Proteolytic Hydrolysis of Spent Brewer’s Yeast by Using Proteases. J. Sci. Technol. 2016, 54, 181–188. [Google Scholar]
- Ngoc, N.T.T.; Quan, L.-H.; Thuan, D.V.; Thanh, D.V. Influences of Technological Hydrolysis Condition on Nucleic Acid Content of Spent Brewer’s Yeast Hydrolysate. Vietnam J. Sci. Technol. 2016, 55, 169–177. [Google Scholar] [CrossRef]
- Hung, W.C.; Lee, M.T.; Chung, H.; Sun, Y.T.; Chen, H.; Charron, N.E.; Huang, H.W. Comparative Study of the Condensing Effects of Ergosterol and Cholesterol. Biophys. J. 2016, 110, 2026–2033. [Google Scholar] [CrossRef] [Green Version]
- Hull, C.M.; Loveridge, E.J.; Donnison, I.S.; Kelly, D.E.; Kelly, S.L. Co-Production of Bioethanol and Probiotic Yeast Biomass from Agricultural Feedstock: Application of the Rural Biorefinery Concept. AMB Express 2014, 4, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, K.; Tong, M.; Gao, K.; Di, Y.; Wang, P.; Zhang, C.; Wu, X.; Zheng, D. Genomic Reconstruction to Improve Bioethanol and Ergosterol Production of Industrial Yeast Saccharomyces Cerevisiae. J. Ind. Microbiol. Biotechnol. 2015, 42, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Blaga, A.C.; Ciobanu, C.; Caşcaval, D.; Galaction, A.-I. Enhancement of Ergosterol Production by Saccharomyces cerevisiae in Batch and Fed-Batch Fermentation Processes Using n-Dodecane as Oxygen-Vector. Biochem. Eng. J. 2018, 131, 70–76. [Google Scholar] [CrossRef]
Biosurfactants | Producing Microbes | References |
---|---|---|
Glycolipids | ||
Rhamnolipids Sophorolipids Trehalolipids | Pseudomonas aeruginosa Candida bombicola Rhodococcus erythropolis Mycobacterium sp. | [19] [20] [21] [22] |
Lipopeptides | ||
Putisolvins I and II Surfactin Pseudofactin II Serrawettin Iturin A Fengycin | Pseudomonas putida Bacillus subtilis Pseudomonas fluorescens Serratia marcenscens Bacillus amyloliquefaciens Bacillus licheniformis | [23] [24] [25] [26] [27] [28] |
Mycotoxin | Microorganism | Reduction Capacity (%) | References |
---|---|---|---|
Adsorption | |||
Aflatoxins | L. casei L. plantarum L. fermentum | 25–61 | [115] |
L. casei | 14–49 | [116] | |
L. rhamnosus GG L. rhamnosus LC-705 | 80 | [117] | |
Lactobacillus spp. Bifidobacterium Lactococcus strains | 5.6–59.7 | [118] | |
Enterococcus faecium M74 and EF031 | 29.0–33.7 | [119] | |
L. plantarum | 45–100 | [120] | |
B. bifidum 1900 B. pseudolongum 20,099 B. infantis 1912 L. casei | 20–50 | [121] | |
Lactobacillus delbrueckii subsp. bulgaricus CH-2 | 18.7 | [122] | |
L. plantarum Lactococcus lactis | 81 | [123] | |
S. thermophilus L. bulgaricus L. plantarum | 11–34 | [124] | |
L. paracasei LOCK 0920 L. brevis LOCK 0944 L. plantarum LOCK 0945 | 39–55 | [125] | |
L. plantarum C88 | 60 | [126] | |
Fumonisins | L. paraplantarum CNRZ1885 | 2–27 | [127] |
LAB strains | 32–100 | [128] | |
Zearalenone | L. rhamnosus GG L. rhamnosus LC-705 | 47–52 | [129] |
Lactobacillus spp. | 26–69 | [130] | |
L. paracasei L. lactis | 55 | [131] | |
Deoxynivalenol | LAB strains | 13–54 | [128] |
L. plantarum GT III | 56–66 | [132] | |
Patulin | Enterococcus faecium M74 and EF031 | 41.6–45.3 | [119] |
LAB strains | 3–78 | [133] | |
L. brevis 20023 | ND | [134] | |
Ochratoxins | LAB strains | 2–96 | [133] |
LAB strains | 31–57 | [135] | |
Oenococcus oeni | 26–33 | [136] | |
L. casei LOCK 0920 L. brevis LOCK 0944 L. plantarum LOCK 0945 | 50 | [127] | |
L. acidophilus VM20 B. animalis VM12 | 95 | [133] | |
Pediococcus parvulus | 90 | [137] | |
L. rhamnosus CECT 278T | 97 | [138] | |
Degradation | |||
Aflatoxins | B. subtilis | 74 | [139] |
B. subtilis BCC42005 | 45 | [114] | |
Ochratoxins | B. subtilis | 92.5 | [139] |
Zearalenone | B. licheniformis | 100 | [140] |
B. natto | 75 | [141] |
Vitamin | Physiological Functions | Microbial Producer | References |
---|---|---|---|
Vitamin A | Immune system regulation, vision, reproduction, cellular communication, cell growth and differentiation. | Cyberlindnera jadinii (teleomorph Candida utilis), Saccharomyces cerevisiae, Pichia pastoris, Y. lipolytica | [156,157,158,159,160] |
Vitamin D | Calcium absorption and mineralization of bones, modulation of cell growth, neuromuscular, immune and inflammation functions | S. cerevisiae, Saccharomyces uvarum and Cyberlindnera jadinii (teleomorph C. utilis) | [161] |
Vitamin E | Antioxidant activity, cellular membrane stabilizer | Microalgae: Spirulina platensis, Dunaliella tertiolecta, Synechocystis spp., Nannochloropsis oculata, Tetraselmis suecica, Chlorella spp., Clamydomonas spp., and Ochromonas spp., Euglena gracilis, Dunaliella salina, Isochrysis galbana, and Diacronema vlkianum | [155] |
Vitamin K | Blood coagulation | Flavobacterium sp., B subtilis, and Propionibacterium freudenreichii | [162,163,164] |
B vitamines | Energy production, red blood cell synthesis | B. subtilis, Corynebacterium ammoniagenes, L. plantarum, Leuconostoc mesenteroides, Lactococcus lactis, Rhodococcus rhodochrous, Agrobacterium sp., Corynebacterium glutamicum, Flavobacterium sp., Sinorhizobium meliloti (ex Rhizobium meliloti), B. sphaericus, Serratia marcescens, Propionibacterium shermanii, Pseudomonas denitrificans, Bacillus megaterium, Methanobacterium ivanovii, Rhodobacter capsulatus, Ashbya gossypii, Candida parapsilosis, Candida flaeri and Candida famata (teleomorph Debaryomyces hansenii). | [165] |
Vitamin C | Antioxidant activity, biosynthesis of collagen, l-carnitine and certain neurotransmitters, protein metabolism | Gluconobacter spp., Acetobacter spp., Ketogulonicigenium spp., Pseudomonas spp., Erwinia spp., and Corynebacterium spp. | [166,167] |
Microorganism | Outcome Range (ng/mL) | References |
---|---|---|
Bifidobacteria | ||
Bifidobacterium (B.) adolescentis | 50–150 | [171] |
B. dentium | 0–25 | |
B. animalis | 1–65 | [172] |
B. bifidum | 26 | |
B. breve | 1 | |
B. catenulatum | 1–3 | |
B. longum | 3 | |
B. pseudocatenatulum | 29 | |
B. adolescentis | 10–30 | [173] |
Lactic acid bacteria | ||
Lactobacillus acidophilus | 0–38 | [174] |
Lb. amylovorus | 75–87 | |
L. casei | 0–2 | |
L. paracasei | 0–40 | |
Levilactobacillus brevis (ex Lb. brevis) | 0–150 | [175] |
Latilactobacillus curvatus (ex Lb. curvatus) | 0–20 | |
Fructilactobacillus fructivorans (ex Lb. fructivorans) | 0–20 | |
Lb. helveticus | 2–89 | |
Limosilactobacillus reuteri (ex Lb. reuteri) | 0–125 | |
Loigolactobacillus coryniformis (ex Lb. coryniformis) | 80–100 | [176] |
L. pentosus | 0–4 | |
Lb. sakei | 101–107 | |
Pediococcus. parvulus | 40–60 | |
Pediococcus pentosaceus | 0–40 | |
Weissella confusa | 0–20 | |
Lb. delbrueckii | 50–200 | [171] |
L. plantarum | 36–60 | |
L. fermentum | 0–148 | [177] |
Lb. johnsonii | 28 | [178] |
Lactococcus lactis | 57–291 | [179] |
Leuconostoc lactis | 45 | |
Leuconostoc paramesenteroides | 44 | |
S. thermophilus | 0–170 | [180] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perpetuini, G.; Chuenchomrat, P.; Pereyron, V.; Haure, M.; Lorn, D.; Quan, L.-H.; Ho, P.-H.; Nguyen, T.-T.; Do, T.-Y.; Phi, Q.-T.; et al. Microorganisms, the Ultimate Tool for Clean Label Foods? Inventions 2021, 6, 31. https://doi.org/10.3390/inventions6020031
Perpetuini G, Chuenchomrat P, Pereyron V, Haure M, Lorn D, Quan L-H, Ho P-H, Nguyen T-T, Do T-Y, Phi Q-T, et al. Microorganisms, the Ultimate Tool for Clean Label Foods? Inventions. 2021; 6(2):31. https://doi.org/10.3390/inventions6020031
Chicago/Turabian StylePerpetuini, Giorgia, Pumnat Chuenchomrat, Valentin Pereyron, Maxime Haure, Da Lorn, Le-Ha Quan, Phu-Ha Ho, Tien-Thanh Nguyen, Thi-Yen Do, Quyet-Tien Phi, and et al. 2021. "Microorganisms, the Ultimate Tool for Clean Label Foods?" Inventions 6, no. 2: 31. https://doi.org/10.3390/inventions6020031
APA StylePerpetuini, G., Chuenchomrat, P., Pereyron, V., Haure, M., Lorn, D., Quan, L. -H., Ho, P. -H., Nguyen, T. -T., Do, T. -Y., Phi, Q. -T., Nguyen, T. K. C., Licandro, H., Chu-Ky, S., Tofalo, R., Kasikonsunthonchai, W., Adunphatcharaphon, S., Petchkongkaew, A., & Waché, Y. (2021). Microorganisms, the Ultimate Tool for Clean Label Foods? Inventions, 6(2), 31. https://doi.org/10.3390/inventions6020031