Shielded Pair Method for Beam Screen Surface Resistance Measurement at Cryogenic Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cryogenic Instrumentation
2.2. Rf Equipment
2.3. Data Analysis
2.4. Measurement Uncertainty
2.5. Sample Preparation
3. Results
3.1. Standard Lhc Beam Screen
3.2. Amorphous Carbon-Coated Beam Screens
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
a-C | Amorphous Carbon |
ARPE | Algorithm for Resonator Parameter Extraction |
ASE | Anomalous Skin Effect |
FCC | Future Circular Collider |
EIC | Electron Ion Collider |
HL | High-Luminosity |
HTS | High-Temperature Superconductor |
LHC | Large Hadron Collider |
LESS | Laser-Engineered Surface Structure |
OFE | Oxygen-Free Copper |
RRR | Residual Resistivity Ratio |
RF | Radio Frequency |
SEY | Secondary Electron Yield |
References
- Angerth, B.; Bertinelli, F.; Brunet, J.; Calder, R.; Caspers, F.; Gröbner, O.; Mathewson, A.; Poncet, A.; Reymermier, C.; Ruggiero, F.; et al. The LHC beam screen: Specification and design. In Proceedings of the Fourth European Particle Accelerator Conference, London, UK, 27 June–1 July 1994. [Google Scholar]
- Rumolo, G.; Ruggiero, F.; Zimmermann, F. Simulation of the electron-cloud build up and its consequences on heat load, beam stability, and diagnostics. Phys. Rev. ST Accel. Beams 2001, 4, 012801. [Google Scholar] [CrossRef]
- Costa Pinto, P.; Calatroni, S.; Neupert, H.; Letant-Delrieux, D.; Edwards, P.; Chiggiato, P.; Taborelli, M.; Vollenberg, W.; Yin-Vallgren, C.; Colaux, J.L.; et al. Carbon coatings with low secondary electron yield. Vacuum 2013, 98, 29–36. [Google Scholar] [CrossRef]
- Verdú-Andrés, S.; Blaskiewicz, M.; Brennan, J.; Gu, X.; Gupta, R.; Hershcovitch, A.; Mapes, M.; McIntyre, G.; Muratore, J.; Nayak, S.; et al. A Beam Screen to Prepare the RHIC Vacuum Chamber for EIC Hadron Beams: Conceptual Design and Requirements. In Proceedings of the International Particle Accelerator Conference, Campinas, Brazil, 24–28 May 2021. [Google Scholar] [CrossRef]
- Calatroni, S.; Bellingeri, E.; Ferdeghini, C.; Putti, M.; Vaglio, R.; Baumgartner, T.; Eisterer, M. Thallium-based high-temperature superconductors for beam impedance mitigation in the Future Circular Collider. Supercond. Sci. Technol. 2017, 30, 075002. [Google Scholar] [CrossRef]
- Verweij, A.; Genest, J.; Knezovic, A.; Leroy, D.; Marzolf, J.P.; Oberli, L. 1.9 K test facility for the reception of the superconducting cables for the LHC. IEEE Trans. Appl. Supercond. 1999, 9, 153–156. [Google Scholar] [CrossRef]
- Caspers, F. Impedance Determination from Bench Measurements. 2000. Available online: https://cds.cern.ch/record/437306 (accessed on 20 August 2024).
- Antuono, C. Improved Simulations in Frequency Domain of the Beam Coupling Impedance in Particle Accelerators. Master’s Thesis, Sapienza University, Roma, Italy, 2021. Available online: https://cds.cern.ch/record/2760024 (accessed on 3 September 2024).
- Caspers, F.; Morvillo, M.; Ruggiero, F.; Tan, J. Surface Resistance Measurements and Estimate of the Beam-Induced Resistive Wall Heating of the LHC Dipole Beam Screen; Technical Report LHC-Project-Report-307, CERN-LHC-Project-Report-307; CERN: Geneva, Switzerland, 1999; Available online: https://cds.cern.ch/record/400683 (accessed on 20 November 2023).
- Caspers, F.; Morvillo, M.; Ruggiero, F.; Tan, J.; Tsutsui, H. Surface Resistance Measurements of LHC Dipole Beam Screen Samples. In Proceedings of the 7th European Particle Accelerator Conference, Vienna, Austria, 26–30 June 2000. [Google Scholar]
- Lebrun, P.; Tavian, L. Beyond the Large Hadron Collider: A First Look at Cryogenics for CERN Future Circular Colliders. Phys. Procedia 2015, 67, 768–775. [Google Scholar] [CrossRef]
- Smith, G.; Nordgard, J. On the Design and Optimization of the Shielded-Pair Transmission Line. IEEE Trans. Microwave Theory Tech. 1980, 28, 887–893. [Google Scholar] [CrossRef]
- Tan, J. Technical and Practical Information on the Surface Resistance Measurement Bench Using the Shielded Pair Method: Application to the LHC Beam Screen; Technical Report CERN-SL-2000-002-AP; CERN: Geneva, Switzerland, 2000; Available online: https://cds.cern.ch/record/426232 (accessed on 1 June 2024).
- Krkotić, P.; Gallardo, Q.; Tagdulang, N.D.; Pont, M.; O’Callaghan, J.M. Algorithm for Resonator Parameter Extraction From Symmetrical and Asymmetrical Transmission Responses. IEEE Trans. Microw. Theory Tech. 2021, 69, 3917–3926. Available online: www.arpe.upc.edu (accessed on 7 December 2023). [CrossRef]
- GmbH, R.S. ZNB/ZNBT User Manual. Available online: https://www.rohde-schwarz.com/ch-en/manual/r-s-znb-znbt-user-manual-manuals_78701-29151.html (accessed on 1 January 2024).
- Teflon (PTFE) Properties Handbook, DU PONT. Available online: http://www.rjchase.com/ptfe_handbook.pdf (accessed on 1 July 2024).
- Zhang, Y.; Wang, Z. Measurement of dielectric loss tangent at cryogenic temperature using superconducting film resonator. J. Theor. Appl. Phys. 2016, 10, 27–32. [Google Scholar] [CrossRef]
- Brunner, K.; Krkotić, P.; Pinto, P.C.; Diaz-Rato, E.G.; Pfeiffer, S.; Vollenberg, W.; Calatroni, S.; Barna, D.; Pont, M.; O’Callaghan, J. Dielectric resonator to measure surface resistance of accelerator components at room temperature and 77 K. Phys. Rev. Accel. Beams 2023, 26, 083101. [Google Scholar] [CrossRef]
- Métral, E. RF heating from wake losses in diagnostics structures. In Proceedings of the 2nd International Beam Instrumentation Conference, Oxford, UK, 16–19 September 2013. [Google Scholar]
- Granadeiro Costa, A. In-Situ Amorphous Carbon Coating of Q5L8 Standalone Magnet (v.1); Technical Report EDMS 2441196; CERN: Geneva, Switzerland, 2020; Available online: https://edms.cern.ch/document/2441196/1 (accessed on 23 July 2024).
- Costa Pinto, P.; Taborelli, M. Amorphous Carbon Coating in Standalone Magnets of the LHC in IR2 and IR8 during LS2 2019–2020; Technical Report EDMS 1983116; CERN: Geneva, Switzerland, 2022; Not publicly available. Internal report. [Google Scholar]
- Costa Pinto, P.; Baglin, V.; Calatroni, S.; Chiggiato, P.; Cruikshank, P.; Demolon, P.; Fjierli, H.; Garion, C.; Girolamo, B.D.; Leggiero, L.; et al. In-situ a-C coating performance and status of LESS & tunnel implementation. In Proceedings of the 7th HL-LHC Collaboration Meeting, Madrid, Spain, 13–16 November 2017; Available online: https://indico.cern.ch/event/647714/contributions/2633173/attachments/1559499/2454409/7thHiLumi_pedro_carbon_coatings.pdf (accessed on 21 April 2024).
- Reuter, G.E.H.; Sondheimer, E.H.; Wilson, A.H. The theory of the anomalous skin effect in metals. Proc. R. Soc. Lond. Ser. A 1948, 195, 336–364. [Google Scholar] [CrossRef]
- Calatroni, S. A Mathematica Notebook for the Calculation of the Anomalous Skin Effect in Copper. CERN Document Server. 2020. Available online: http://cds.cern.ch/record/2718002 (accessed on 2 June 2024).
- Cruikshank, P.; Artoos, K.; Bertinelli, F.; Brunet, J.C.; Calder, R.; Campedel, C.; Collins, I.; Dalin, J.M.; Feral, B.; Grobner, O.; et al. Mechanical design aspects of the LHC beam screen. In Proceedings of the 1997 Particle Accelerator Conference (Cat. No. 97CH36167), Vancouver, BC, Canada, 12–16 May 1997. [Google Scholar] [CrossRef]
- Lain Amador, L. Production of Ultra-High-Vacuum Chambers with Integrated Getter Thin-Film Coatings by Electroforming. Ph.D. Thesis, Université Bourgogne-Franche-Comté, Besançon, France, 2019. [Google Scholar] [CrossRef]
- Antipov, S. Impact of a-C coating on impedance. In Proceedings of the 124th HiLumi WP2 Meeting, Geneva, Switzerland, 3 July 2018; Available online: https://indico.cern.ch/event/741104/contributions/3059804/attachments/1679470/2697601/Impedance_effects_of_the_HL-LHC_coated_inner_triplets_WP2.pptx (accessed on 25 July 2024).
- Aberle, O.; Béjar Alonso, I.; Brüning, O.; Fessia, P.; Rossi, L.; Tavian, L.; Zerlauth, M.; Adorisio, C.; Adraktas, A.; Ady, M.; et al. High-Luminosity Large Hadron Collider (HL-LHC): Technical Design Report; Technical Report; Series: CERN Yellow Reports: Monographs; CERN: Geneva, Switzerland, 2020. [Google Scholar] [CrossRef]
- Calatroni, S. HTS Coatings for Impedance Reduction in Particle Accelerators: Case Study for the FCC at CERN. IEEE Trans. Appl. Supercond. 2016, 26, 1–4. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brunner, K.; Krkotić, P.; Calatroni, S.; Barna, D. Shielded Pair Method for Beam Screen Surface Resistance Measurement at Cryogenic Temperature. Instruments 2024, 8, 43. https://doi.org/10.3390/instruments8030043
Brunner K, Krkotić P, Calatroni S, Barna D. Shielded Pair Method for Beam Screen Surface Resistance Measurement at Cryogenic Temperature. Instruments. 2024; 8(3):43. https://doi.org/10.3390/instruments8030043
Chicago/Turabian StyleBrunner, Kristóf, Patrick Krkotić, Sergio Calatroni, and Dániel Barna. 2024. "Shielded Pair Method for Beam Screen Surface Resistance Measurement at Cryogenic Temperature" Instruments 8, no. 3: 43. https://doi.org/10.3390/instruments8030043
APA StyleBrunner, K., Krkotić, P., Calatroni, S., & Barna, D. (2024). Shielded Pair Method for Beam Screen Surface Resistance Measurement at Cryogenic Temperature. Instruments, 8(3), 43. https://doi.org/10.3390/instruments8030043