Nearly Monochromatic Bremsstrahlung of High Intensity via Microparticle Targets: A Novel Concept
Abstract
:1. Introduction
1.1. Quest for Nearly Monochromatic X-Spectra
1.2. Thin X-ray Targets
1.3. Benefits of Microparticle X-ray Targets
- The target heat capacity increases drastically with the extended permitted temperature range and the rising specific heat capacity with temperature [15].
- The residence time of the target material in the electron beam can be much shorter than with rigid rotor members [16]. No anode rotor, which would be thermally stressed at high temperatures and temperature gradients, can burst.
- Target heating and cooling are spatially disentangled. This freedom simplifies the design of the vacuum tube.
1.4. Challenges for the Implementation of Microparticle Targets
1.5. No Blocking Hurdles
2. Materials and Methods
2.1. Thin X-ray Target Simulation
2.2. Size-Dependent Spectra
3. Results
3.1. Particle-Size-Dependent Spectral Imaging
3.2. Nearly Monochomatic X-rays with High Intensity
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hsieh, J. Computed Tomography: Principles, Design, Artifacts, and Recent Advances; SPIE: Bellingham, WA, USA, 2015. [Google Scholar]
- Russo, P.E. Handbook of X-ray Imaging—Physics and Technology, 1st ed.; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Kumar, K.; Fachet, M.; Hoeschen, C. High-Spatial-Resolution Benchtop X-ray Fluorescence Imaging through Bragg-Diffraction-Based Focusing with Bent Mosaic Graphite Crystals: A Simulation Study. Int. J. Mol. Sci. 2024, 25, 4733. [Google Scholar] [CrossRef] [PubMed]
- Grüner, F.; Blumendorf, F.; Schmutzler, O.; Staufer, T.; Bradbury, M.; Wiesner, U.; Rosentreter, T.; Loers, G.; Lutz, D.; Richter, B.; et al. Localising functionalised gold-nanoparticles in murine spinal cords by X-ray fluorescence imaging and background-reduction through spatial filtering for human-sized objects. Sci. Rep. 2018, 8, 16561. [Google Scholar] [CrossRef] [PubMed]
- Brümmer, T.; Debus, A.; Pausch, R.; Osterhoff, J.; Grüner, F. Design study for a compact laser-driven source for medical X-ray fluorescence imaging. Phys. Rev. Accel. Beams 2020, 23, 031601. [Google Scholar] [CrossRef]
- Staufer, T.; Körnig, C.; Liu, B.; Liu, Y.; Lanzloth, C.; Schmutzler, O.; Bedke, T.; Machicote, A.; Parak, W.J.; Feliu, N.; et al. Enabling X-ray fluorescence imaging for in vivo immune cell tracking. Sci. Rep. 2023, 13, 11505. [Google Scholar] [CrossRef] [PubMed]
- Dyson, N.A. X-rays in Atomic and Nuclear Physics, 2nd ed.; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar] [CrossRef]
- Ihsan, A.; Heo, S.H.; Cho, S.O. Optimization of X-ray target parameters for a high-brightness microfocus X-ray tube. Nucl. Instrum. Methods Phys. Res. B 2007, 264, 371–377. [Google Scholar] [CrossRef]
- Hemberg, O.; Otendal, M.; Hertz, H.M. Liquid-metal-jet anode electron-impact x-ray source. Appl. Phys. Lett. 2003, 83, 1483–1485. [Google Scholar] [CrossRef]
- Rolf, B.; Mats, D. Particle Based X-ray Source. US11882642B2, US11882642B2 (A1), 23 January 2024. [Google Scholar]
- Behling, R.; Hulme, C.; Tolias, P.; Poludniowski, G.; Danielsson, M. Microparticle Hybrid Target Simulation for keV X-ray Sources. Instruments 2024, 8, 32. [Google Scholar] [CrossRef]
- Whitaker, S. The effect of volume heating. In Proceedings of the SPIE 0914, Medical Imaging II; Dwyer, I.S.J., Schneider, Samuel, J., Eds.; SPIE: Bellingham, WA, USA, 1988; pp. 565–576. [Google Scholar] [CrossRef]
- Whitaker, S. Thermal Analysis of Solid, Rotating, X-ray Tube Anodes: New Results and a Comparison with Prior Studies; Dwyer, S.J., III, Schneider, R.H., Eds.; SPIE: Bellingham, WA, USA, 1984; pp. 285–293. [Google Scholar] [CrossRef]
- Winter, J.; Dimroth, A.; Roetzer, S.; Zhang, Y.; Krämer, K.; Petrich, C.; Matejcek, C.; Aulenbacher, K.; Zimmermann, M.; Combs, S.E.; et al. Heat management of a compact x-ray source for microbeam radiotherapy and FLASH treatments. Med. Phys. 2022, 49, 3375–3388. [Google Scholar] [CrossRef] [PubMed]
- Tolias, P. Analytical expressions for thermophysical properties of solid and liquid tungsten relevant for fusion applications. Nucl. Mater. Energy 2017, 13, 42–57. [Google Scholar] [CrossRef]
- Behling, R. Modern Diagnostic X-Ray Sources, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar] [CrossRef]
- Trottenberg, T.; Kersten, H.; Neumann, H. Feasibility of electrostatic microparticle propulsion. New J. Phys. 2008, 10, 063012. [Google Scholar] [CrossRef]
- Ejiri, H.; Kumada, A.; Hidaka, K.; Donen, T.; Kokura, K. Monte Carlo simulation of microparticle motion in vacuum gap. Electr. Eng. Jpn. 2018, 206, 32–41. [Google Scholar] [CrossRef]
- Latham, R. (Ed.) High Voltage Vacuum Insulation; Academic Press: New York, NY, USA, 1995. [Google Scholar]
- Hsieh, J.; Flohr, T. Computed tomography recent history and future perspectives. J. Med. Imaging 2021, 8, 052109. [Google Scholar] [CrossRef] [PubMed]
- Gaertner, G. Modern Developments in Vacuum Electron Sources; Springer International Publishing AG: Cham, Switzerland, 2020. [Google Scholar]
- Gaertner, G.; Barratt, D. New developments and life aspects of oxide and barium dispenser cathodes. In ITG Fachbericht. Proceedings of the Information Technology Society of VDE 183, May 3–4; VDE-Verlag: Bad Honnef, Germany; Berlin, Germany, 2004. [Google Scholar]
- Raj, A.; Kant, D.; Bandyopadhyay, A.K.; Joshi, L.M. Optimization of grooved klystron collector design for efficient heat transfer. Int. J. RF Microw. Comput.-Aided Eng. 2019, 29, e21950. [Google Scholar] [CrossRef]
- Demers, H.; Poirier-Demers, N.; Couture, A.R.; Joly, D.; Guilmain, M.; de Jonge, N.; Drouin, D. Three-dimensional electron microscopy simulation with the CASINO Monte Carlo software. Scanning 2011, 33, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Battistoni, G.; Boehlen, T.; Cerutti, F.; Chin, P.W.; Esposito, L.S.; Fassò, A.; Ferrari, A.; Lechner, A.; Empl, A.; Mairani, A.; et al. Overview of the FLUKA code. Ann. Nucl. Energy 2015, 82, 10–18. [Google Scholar] [CrossRef]
- Ahdida, C.; Bozzato, D.; Calzolari, D.; Cerutti, F.; Charitonidis, N.; Cimmino, A.; Coronetti, A.; D’alessandro, G.L.; Servelle, A.D.; Esposito, L.S.; et al. New Capabilities of the FLUKA Multi-Purpose Code. Front. Phys. 2022, 9, 788253. [Google Scholar] [CrossRef]
- Orlic, I.; Loh, K.K.; Sow, C.H.; Tang, S.M.; Thong, P. Parametrization of the total photon mass attenuation coefficients in the energy range 0.1–1000 keV. Nucl. Instrum. Methods Phys. Res. B 1993, 74, 352–361. [Google Scholar] [CrossRef]
- Poludniowski, G.; Landry, G.; DeBlois, F.; Evans, P.M.; Verhaegen, F. SpekCalc: A program to calculate photon spectra from tungsten anode x-ray tubes. Phys. Med. Biol. 2009, 54, N433–N438. [Google Scholar] [CrossRef] [PubMed]
- Poludniowski, G.; Omar, A.; Bujila, R.; Andreo, P. SpekPy v2.0—A software toolkit for modeling x-ray tube spectra. Med. Phys. 2021, 48, 3630–3637. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Chen, Q.; Zhou, S.; Henriksen, E.A.; Zhang, T. Design and optimization of thin-film tungsten (W)-diamond target for multi-pixel X-ray sources. Med. Phys. 2022, 49, 5363–5373. [Google Scholar] [CrossRef] [PubMed]
- International Electrotechnical Commission (IEC). IEC 60336, 5th ed.—Electrical and Loading Characteristics of X-ray Tube Assemblies for Medical Diagnosis, 5th ed.; International Electrotechnical Commission: Geneva, Switzerland, 2020. [Google Scholar]
Tungsten Microsphere Radius (µm) | Minimal Threshold Tube Voltage to Avoid Negative Charging (kV) | Percentage of Absorbed Energy at the Threshold Tube Voltage (Left Column) |
---|---|---|
0.5 | 43.0 | 12.0% |
1.0 | 69.0 | 11.8% |
2.5 | 127.5 | 11.2% |
4.0 | 174.8 | 11.0% |
8.0 | 289.0 | 11.1% |
Utube (kV) | Target Current IML (Ampere) | |||||
---|---|---|---|---|---|---|
0.5 µm | 1 µm | 2.5 µm | 5 µm | Rotating Frame | Thin Target | |
30 | 1.4 | 1.8 | 3.3 | 6.8 | 1.27 | 0.20 |
80 | 3.1 | 3.0 | 1.7 | 3.3 | 0.48 | 0.08 |
120 | 3.9 | 3.8 | 2.1 | 3.0 | 0.32 | 0.05 |
150 | 4.3 | 4.3 | 2.7 | 3.5 | 0.25 | 0.04 |
200 | 4.9 | 4.8 | 3.6 | 4.2 | 0.19 | 0.03 |
300 | 5.5 | 5.5 | 4.9 | 5.4 | 0.13 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Behling, R.; Hulme, C.; Tolias, P.; Danielsson, M. Nearly Monochromatic Bremsstrahlung of High Intensity via Microparticle Targets: A Novel Concept. Instruments 2024, 8, 42. https://doi.org/10.3390/instruments8030042
Behling R, Hulme C, Tolias P, Danielsson M. Nearly Monochromatic Bremsstrahlung of High Intensity via Microparticle Targets: A Novel Concept. Instruments. 2024; 8(3):42. https://doi.org/10.3390/instruments8030042
Chicago/Turabian StyleBehling, Rolf, Christopher Hulme, Panagiotis Tolias, and Mats Danielsson. 2024. "Nearly Monochromatic Bremsstrahlung of High Intensity via Microparticle Targets: A Novel Concept" Instruments 8, no. 3: 42. https://doi.org/10.3390/instruments8030042
APA StyleBehling, R., Hulme, C., Tolias, P., & Danielsson, M. (2024). Nearly Monochromatic Bremsstrahlung of High Intensity via Microparticle Targets: A Novel Concept. Instruments, 8(3), 42. https://doi.org/10.3390/instruments8030042