An In Situ Automated System for Real-Time Monitoring of Failures in Large-Scale Field Emitter Arrays
Abstract
:1. Introduction
2. Materials and Methods
- Retracting the anode to expose the DUT to UV light for desorbing water vapor or for direct observation of the DUT prior to testing (Figure 7a);
- Using the Pt-coated Si wafer as the anode for the DC degradation experiment (Figure 7b);
- Monitoring the emission pattern with the phosphor screen in front of the FEAs, the illuminator off, and the camera focused on the phosphor screen (Figure 7c);
- Monitoring the surface morphology during testing, with the ITO glass in front of the FEAs, the illuminator light on, and the camera focused on the surface of the FEAs (Figure 7d).
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tucek, J.C.; Basten, M.A.; Gallagher, D.A.; Kreischer, K.E. Operation of a Compact 1.03 THz Power Amplifier. In Proceedings of the 2016 IEEE International Vacuum Electronics Conference (IVEC), Monterey, CA, USA, 19–21 April 2016; IEEE: Piscataway Township, NJ, USA, 2016; pp. 1–2. [Google Scholar]
- Han, J.-W.; Moon, D.-I.; Meyyappan, M. Nanoscale Vacuum Channel Transistor. Nano Lett. 2017, 17, 2146–2151. [Google Scholar] [CrossRef] [PubMed]
- Davidson, J.L.; Kang, W.P.; Subramanian, K.; Holmes-Siedle, A.G.; Reed, R.A.; Galloway, K.F. Diamond Vacuum Electronic Device Behavior after High Neutron Fluence Exposure. IEEE Trans. Nucl. Sci. 2009, 56, 2225–2229. [Google Scholar] [CrossRef]
- Gotoh, Y.; Morito, T.; Tsuji, H.; Akiyoshi, M.; Nagao, M.; Takagi, I. Robustness of Field Emitter Arrays against High-Energy X-Ray Irradiation at High Dose Rate. In Proceedings of the 2017 30th International Vacuum Nanoelectronics Conference (IVNC), Regensburg, Germany, 10–14 July 2017; IEEE: Piscataway Township, NJ, USA, 2017; pp. 104–105. [Google Scholar]
- Morito, T.; Handa, Y.; Gotoh, Y.; Sato, N.; Takagi, I.; Nagao, M.; Akiyoshi, M.; Okamoto, T. Operation of Field Emitter Arrays under High Dose Rate Gamma-Ray Irradiation. In Proceedings of the 2018 31st International Vacuum Nanoelectronics Conference (IVNC), Kyoto, Japan, 9–13 July 2018; IEEE: Piscataway Township, NJ, USA, 2018; pp. 1–2. [Google Scholar]
- Singh, A.K.; Shukla, S.K.; Ravi, M.; Barik, R.K. A Review of Electron Emitters for High-Power and High-Frequency Vacuum Electron Devices. IEEE Trans. Plasma Sci. 2020, 48, 3446–3454. [Google Scholar] [CrossRef]
- Bhattacharya, R.; Hay, R.; Cannon, M.; Karaulac, N.; Rughoobur, G.; Akinwande, A.I.; Browning, J. Demonstration of a Silicon Gated Field Emitter Array Based Low Frequency Colpitts Oscillator at 400 °C. J. Vac. Sci. Technol. B 2023, 41, 023201. [Google Scholar] [CrossRef]
- Sapkota, K.R.; Vizkelethy, G.; Burns, G.R.; Wang, G.T. Effects of Proton Irradiation on GaN Vacuum Electron Nanodiodes. In IEEE Transactions on Electron Devices; IEEE: Piscataway Township, NJ, USA, 2023. [Google Scholar]
- Tyler, T.; Shenderova, O.A.; McGuire, G.E. Vacuum Microelectronic Devices and Vacuum Requirements. J. Vac. Sci. Technol. A 2005, 23, 1260–1266. [Google Scholar] [CrossRef]
- Chalamala, B.R.; Wallace, R.M.; Gnade, B.E. Poisoning of Spindt-Type Molybdenum Field Emitter Arrays by CO2. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 1998, 16, 2866–2870. [Google Scholar] [CrossRef]
- Chalamala, B.R.; Wallace, R.M.; Gnade, B.E. Effect of O2 on the Electron Emission Characteristics of Active Molybdenum Field Emission Cathode Arrays. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 1998, 16, 2859–2865. [Google Scholar] [CrossRef]
- Chalamala, B.R.; Wallace, R.M.; Gnade, B.E. Interaction of H2O with Active Spindt-Type Molybdenum Field Emitter Arrays. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 1999, 17, 303–305. [Google Scholar] [CrossRef]
- Farsad Asadi, R.; Zheng, T.; Shih, P.-C.; Palacios, T.; Akinwande, A.I.; Gnade, B. Degradation of GaN Field Emitter Arrays Induced by O2 Exposure. J. Vac. Sci. Technol. B 2024, 42, 014001. [Google Scholar] [CrossRef]
- Wei, Y.; Chalamala, B.R.; Smith, B.G.; Penn, C.W. Surface Chemical Changes on Field Emitter Arrays Due to Device Aging. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 1999, 17, 233–236. [Google Scholar] [CrossRef]
- Charbonnier, F. Arcing and Voltage Breakdown in Vacuum Microelectronics Microwave Devices Using Field Emitter Arrays: Causes, Possible Solutions, and Recent Progress. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 1998, 16, 880–887. [Google Scholar] [CrossRef]
- Urayama, M.; Ise, T.; Maruo, Y.; Kishi, A.; Imamoto, R.I.R.; Takase, T.T.T. Silicon Field Emitter Capable of Low Voltage Emission. Jpn. J. Appl. Phys. 1993, 32, 6293. [Google Scholar] [CrossRef]
- Kyritsakis, A.; Xanthakis, J. Derivation of a Generalized Fowler–Nordheim Equation for Nanoscopic Field-Emitters. Proc. R. Soc. A Math. Phys. Eng. Sci. 2015, 471, 20140811. [Google Scholar] [CrossRef]
- Guerrera, S.A.; Akinwande, A.I. Silicon Field Emitter Arrays with Current Densities Exceeding 100 A/cm2 at Gate Voltages below 75 V. IEEE Electron Device Lett. 2015, 37, 96–99. [Google Scholar] [CrossRef]
- Zhu, N.; Xu, K.; Song, L.; Chen, X.; Chen, J. Fabrication and Characterization of Bulk Molybdenum Field Emission Arrays. In Proceedings of the 2015 Transducers—2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Anchorage, AK, USA, 21–25 June 2015; IEEE: Piscataway Township, NJ, USA, 2015; pp. 1168–1171. [Google Scholar]
- Yang, Y.; Turchetti, M.; Vasireddy, P.; Putnam, W.P.; Karnbach, O.; Nardi, A.; Kärtner, F.X.; Berggren, K.K.; Keathley, P.D. Light Phase Detection with On-Chip Petahertz Electronic Networks. Nat. Commun. 2020, 11, 3407. [Google Scholar] [CrossRef] [PubMed]
- Shih, P.-C.; Perozek, J.; Akinwande, A.I.; Palacios, T. Anode-Integrated GaN Field Emitter Arrays for Compact Vacuum Transistors. In IEEE Electron Device Letters; IEEE: Piscataway Township, NJ, USA, 2023. [Google Scholar]
- Ding, M.; Sha, G.; Akinwande, A.I. Silicon Field Emission Arrays with Atomically Sharp Tips: Turn-on Voltage and the Effect of Tip Radius Distribution. IEEE Trans. Electron Devices 2002, 49, 2333–2342. [Google Scholar] [CrossRef]
- Nilsson, L.; Groening, O.; Groening, P.; Kuettel, O.; Schlapbach, L. Characterization of Thin Film Electron Emitters by Scanning Anode Field Emission Microscopy. J. Appl. Phys. 2001, 90, 768–780. [Google Scholar] [CrossRef]
- Rughoobur, G.; Ilori, O.O.; Akinwande, A.I. Scanning Anode Field Emission Microscopy of a Single Si Emitter. J. Vac. Sci. Technol. B 2022, 40, 042803. [Google Scholar] [CrossRef]
- Spindt, C.A.; Holland, C.E.; Brodie, I.; Mooney, J.B.; Westerberg, E.R. Field-Emitter Arrays to Vacuum Fluorescent Display. IEEE Trans. Electron Devices 1989, 36, 225–228. [Google Scholar] [CrossRef]
- Asadi, R.F.; Zheng, T.; Da Silva, J.; Rughoobur, G.; Akinwande, A.I.; Gnade, B. Failure Mode of Si Field Emission Arrays Based on Emission Pattern Analysis. In Proceedings of the 2021 34th International Vacuum Nanoelectronics Conference (IVNC), Lyon, France, 5–9 July 2021; IEEE: Piscataway Township, NJ, USA, 2021; pp. 1–2. [Google Scholar]
- Goldburt, E.; Bolchouchine, V.; Levonovitch, B.; Sochtine, N. Highly Efficient Cathodoluminescent Phosphors and Screens for Mid-and High-Voltage Field Emission Displays. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 1999, 17, 765–768. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Y.; Jaffray, D.A.; Yeow, J.T.W. A Novel Field Emission Microscopy Method to Study Field Emission Characteristics of Freestanding Carbon Nanotube Arrays. Nanotechnology 2017, 28, 155704. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Wang, J.; Wang, M.; Su, J.; Peng, L.-M. In-Situ Studies of Electron Field Emission of Single Carbon Nanotubes inside the TEM. Carbon 2005, 43, 1026–1031. [Google Scholar] [CrossRef]
- Ko, Y.; Jeon, D. Field Emission Influenced by Residual Gas and Passivation of Field Emitters by Diamond Coating. Appl. Surf. Sci. 2003, 215, 228–231. [Google Scholar] [CrossRef]
- Guerrera, S.A.; Akinwande, A.I. Nanofabrication of Arrays of Silicon Field Emitters with Vertical Silicon Nanowire Current Limiters and Self-Aligned Gates. Nanotechnology 2016, 27, 295302. [Google Scholar] [CrossRef] [PubMed]
- Rughoobur, G.; Sahagún, Á.; Ilori, O.O.; Akinwande, A.I. Nanofabricated Low-Voltage Gated Si Field-Ionization Arrays. IEEE Trans. Electron Devices 2020, 67, 3378–3384. [Google Scholar] [CrossRef]
- Zheng, T.; Fasad, R.; Silva, J.; Gnade, B.; Rughoobur, G.; Akinwande, A.I. Failure Mechanism of Large Scale Field Emission Array. In Proceedings of the 2021 22nd International Vacuum Electronics Conference (IVEC), Virtual, 27–30 April 2021; pp. 1–2. [Google Scholar]
- Lan, J.-H.; Kanicki, J.; Catalano, A.; Keane, J. An Alternative Transparent Conducting Oxide to ITO for the A-Si: H TFT-LCD Applications. In Proceedings of the Second International Workshop on Active Matrix Liquid Crystal Displays, Bethlehem, PA, USA, 25–26 September 1995; IEEE: Piscataway Township, NJ, USA, 1995; pp. 54–57. [Google Scholar]
- Bi, Y.; Liu, Y.; Zhang, X.; Yin, D.; Wang, W.; Feng, J.; Sun, H. Ultrathin Metal Films as the Transparent Electrode in ITO-free Organic Optoelectronic Devices. Adv. Opt. Mater. 2019, 7, 1800778. [Google Scholar] [CrossRef]
- Ma, Y.; Zhi, L. Graphene-based Transparent Conductive Films: Material Systems, Preparation and Applications. Small Methods 2019, 3, 1800199. [Google Scholar] [CrossRef]
- Qiu, T.; Akinoglu, E.M.; Luo, B.; Konarova, M.; Yun, J.; Gentle, I.R.; Wang, L. Nanosphere Lithography: A Versatile Approach to Develop Transparent Conductive Films for Optoelectronic Applications. Adv. Mater. 2022, 34, 2103842. [Google Scholar] [CrossRef]
- Cho, S.H.; Kwon, S.H.; Yoo, J.S.; Oh, C.W.; Lee, J.D.; Hong, K.J.; Kwon, S.J. Cathodoluminescent Characteristics of a Spherical Y2O3: Eu Phosphor Screen for Field Emission Display Application. J. Electrochem. Soc. 2000, 147, 3143. [Google Scholar] [CrossRef]
- Bhattacharya, R.; Karaulac, N.; Rughoobur, G.; Chern, W.; Akinwande, A.I.; Browning, J. Ultraviolet Light Stimulated Water Desorption Effect on Emission Performance of Gated Field Emitter Array. J. Vac. Sci. Technol. B 2021, 39, 033201. [Google Scholar] [CrossRef]
- Farsad Asadi, R. Empty State Electronics. Ph.D. Thesis, Southern Methodist University, Dallas, TX, USA, 2024. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farsad Asadi, R.; Zheng, T.; Wang, M.; Gao, H.; Sangston, K.; Gnade, B. An In Situ Automated System for Real-Time Monitoring of Failures in Large-Scale Field Emitter Arrays. Instruments 2024, 8, 44. https://doi.org/10.3390/instruments8040044
Farsad Asadi R, Zheng T, Wang M, Gao H, Sangston K, Gnade B. An In Situ Automated System for Real-Time Monitoring of Failures in Large-Scale Field Emitter Arrays. Instruments. 2024; 8(4):44. https://doi.org/10.3390/instruments8040044
Chicago/Turabian StyleFarsad Asadi, Reza, Tao Zheng, Menglin Wang, Han Gao, Kenneth Sangston, and Bruce Gnade. 2024. "An In Situ Automated System for Real-Time Monitoring of Failures in Large-Scale Field Emitter Arrays" Instruments 8, no. 4: 44. https://doi.org/10.3390/instruments8040044
APA StyleFarsad Asadi, R., Zheng, T., Wang, M., Gao, H., Sangston, K., & Gnade, B. (2024). An In Situ Automated System for Real-Time Monitoring of Failures in Large-Scale Field Emitter Arrays. Instruments, 8(4), 44. https://doi.org/10.3390/instruments8040044