Impact of Superconductors’ Properties on the Measurement Sensitivity of Resonant-Based Axion Detectors
Abstract
:1. Introduction
2. Physical Background
2.1. High-Frequency Vortex Motion
2.2. Surface Impedance in the Mixed State
3. Experimental Section
3.1. Haloscope Design
3.2. Materials under Investigation
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peccei, R.D.; Quinn, H.R. CP conservation in the presence of pseudoparticles. Phys. Rev. Lett. 1977, 38, 1440. [Google Scholar] [CrossRef] [Green Version]
- Wilczek, F. Problem of Strong P and T Invariance in the Presence of Instantons. Phys. Rev. Lett. 1978, 40, 279. [Google Scholar] [CrossRef]
- Weinberg, S. A new light boson? Phys. Rev. Lett. 1978, 40, 223. [Google Scholar] [CrossRef]
- Primakoff, H. Photo-production of neutral mesons in nuclear electric fields and the mean life of the neutral meson. Phys. Rev. 1951, 81, 899. [Google Scholar] [CrossRef]
- Tanabashi, M.; Hagiwara, K.; Hikasa, K.; Nakamura, K.; Sumino, Y.; Takahashi, F.; Tanaka, J.; Agashe, K.; Aielli, G.; Amsler, C.; et al. Review of particle physics. Phys. Rev. D 2018, 98, 030001. [Google Scholar] [CrossRef] [Green Version]
- Preskill, J.; Wise, M.B.; Wilczek, F. Cosmology of the invisible axion. Phys. Lett. B 1983, 120, 127. [Google Scholar] [CrossRef] [Green Version]
- Abbott, L.F.; Sikivie, P. A cosmological bound on the invisible axion. Phys. Lett. B 1983, 120, 133. [Google Scholar] [CrossRef]
- Dine, M.; Fischler, W. The not so harmless axion. Phys. Lett. B 1983, 120, 137. [Google Scholar] [CrossRef]
- Sikivie, P. Experimental tests of the “invisible” axion. Phys. Rev. Lett. 1983, 51, 1415. [Google Scholar] [CrossRef]
- Braine, T.; Cervantes, R.; Crisosto, N.; Du, N.; Kimes, S.; Rosenberg, L.; Rybka, G.; Yang, J.; Bowring, D.; Chou, A.; et al. Extended search for the invisible axion with the axion dark matter experiment. Phys. Rev. Lett. 2020, 124, 101303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alesini, D.; Braggio, C.; Carugno, G.; Crescini, N.; D’Agostino, D.; Di Gioacchino, D.; Di Vora, R.; Falferi, P.; Gallo, S.; Gambardella, U.; et al. Galactic axions search with a superconducting resonant cavity. Phys. Rev. D 2019, 99, 101101. [Google Scholar] [CrossRef] [Green Version]
- Ahn, D.; Kwon, O.; Chung, W.; Jang, W.; Lee, D.; Lee, J.; Youn, S.W.; Youm, D.; Semertzidis, Y.K. Superconducting cavity in a high magnetic field. arXiv 2020, arXiv:2002.08769. [Google Scholar]
- Golm, J.; Cuendis, S.A.; Calatroni, S.; Cogollos, C.; Döbrich, B.; Gallego, J.; Barceló, J.; Granados, X.; Gutierrez, J.; Irastorza, I.; et al. Thin Film (High Temperature) Superconducting Radiofrequency Cavities for the Search of Axion Dark Matter. arXiv 2021, arXiv:2110.01296. [Google Scholar]
- Alesini, D.; Braggio, C.; Carugno, G.; Crescini, N.; D’Agostino, D.; Di Gioacchino, D.; Di Vora, R.; Falferi, P.; Gambardella, U.; Gatti, C.; et al. Realization of a high quality factor resonator with hollow dielectric cylinders for axion searches. Nucl. Instrum. Methods Phys. Res. A 2021, 985, 164641. [Google Scholar] [CrossRef]
- Alesini, D.; Braggio, C.; Carugno, G.; Crescini, N.; D’Agostino, D.; Di Gioacchino, D.; Di Vora, R.; Falferi, P.; Gambardella, U.; Gatti, C.; et al. High quality factor photonic cavity for dark matter axion searches. Rev. Sci. Instrum. 2020, 91, 094701. [Google Scholar] [CrossRef]
- Alimenti, A.; Pompeo, N.; Torokhtii, K.; Spina, T.; Flükiger, R.; Muzzi, L.; Silva, E. Microwave measurements of the high magnetic field vortex motion pinning parameters in Nb3Sn. Supercond. Sci. Technol. 2020, 34, 014003. [Google Scholar] [CrossRef]
- Di Gioacchino, D.; Gatti, C.; Alesini, D.; Ligi, C.; Tocci, S.; Rettaroli, A.; Carugno, G.; Crescini, N.; Ruoso, G.; Braggio, C.; et al. Microwave losses in a dc magnetic field in superconducting cavities for axion studies. IEEE Trans. Appl. Supercond. 2019, 29, 1–5. [Google Scholar] [CrossRef]
- Coffey, M.W.; Clem, J.R. Unified theory of effects of vortex pinning and flux creep upon the rf surface impedance of type-II superconductors. Phys. Rev. Lett. 1991, 67, 386. [Google Scholar] [CrossRef] [PubMed]
- Gittleman, J.I.; Rosenblum, B. Radio-frequency resistance in the mixed state for subcritical currents. Phys. Rev. Lett. 1966, 16, 734. [Google Scholar] [CrossRef]
- Wu, D.H.; Booth, J.; Anlage, S.M. Frequency and field variation of vortex dynamics in YBa2Cu3O7-δ. Phys. Rev. Lett. 1995, 75, 525. [Google Scholar] [CrossRef] [PubMed]
- Pompeo, N.; Silva, E. Reliable determination of vortex parameters from measurements of the microwave complex resistivity. Phys. Rev. B 2008, 78, 094503. [Google Scholar] [CrossRef] [Green Version]
- Pompeo, N.; Alimenti, A.; Torokhtii, K.; Silva, E. Physics of vortex motion by means of microwave surface impedance measurements. Low Temp. Phys. 2020, 46, 343. [Google Scholar] [CrossRef]
- Pompeo, N. Analysis of Pinning in the Linear AC Response of Anisotropic Superconductors in Oblique Magnetic Fields. J. Appl. Phys. 2015, 117, 103904. [Google Scholar] [CrossRef]
- Pompeo, N.; Silva, E. Analysis of the Measurements of Anisotropic AC Vortex Resistivity in Tilted Magnetic Fields. IEEE Trans. Appl. Supercond. 2018, 28, 8201109. [Google Scholar] [CrossRef] [Green Version]
- Tinkham, M. Introduction to Superconductivity; Dover Publications: Dover, NY, USA, 2004. [Google Scholar]
- Bardeen, J.; Stephen, M. Theory of the motion of vortices in superconductors. Phys. Rev. 1965, 140, A1197. [Google Scholar] [CrossRef]
- Blatter, G.; Geshkenbein, V.B.; Larkin, A. From isotropic to anisotropic superconductors: A scaling approach. Phys. Rev. Lett. 1992, 68, 875. [Google Scholar] [CrossRef]
- Pompeo, N.; Alimenti, A.; Torokhtii, K.; Bartolomé, E.; Palau, A.; Puig, T.; Augieri, A.; Galluzzi, V.; Mancini, A.; Celentano, G.; et al. Intrinsic anisotropy and pinning anisotropy in nanostructured YBa2Cu3O7-δ from microwave measurements. Supercond. Sci. Technol. 2020, 33, 044017. [Google Scholar] [CrossRef]
- Pompeo, N.; Torokhtii, K.; Alimenti, A.; Sylva, G.; Braccini, V.; Silva, E. Pinning properties of FeSeTe thin film through multifrequency measurements of the surface impedance. Supercond. Sci. Technol. 2020, 33, 114006. [Google Scholar] [CrossRef]
- Campbell, A.M. Flux Cutting in Superconductors. Supercond. Sci. Technol. 2011, 24, 091001. [Google Scholar] [CrossRef]
- Blatter, G.; Feigel’man, M.; Geshkenbein, V.; Larkin, A.; Vinokur, V. Vortices in High-Temperature Superconductors. Rev. Mod. Phys. 1994, 66, 1125. [Google Scholar] [CrossRef]
- Collin, R.E. Foundations for Microwave Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Reuter, G.; Sondheimer, E. The theory of the anomalous skin effect in metals. Proc. R. Soc. Lond. 1948, 195, 336. [Google Scholar] [CrossRef]
- Flükiger, R.; Spina, T.; Cerutti, F.; Ballarino, A.; Scheuerlein, C.; Bottura, L.; Zubavichus, Y.; Ryazanov, A.; Svetogovov, R.; Shavkin, S.; et al. Variation of Tcc, lattice parameter and atomic ordering in Nb3Sn platelets irradiated with 12 MeV protons: Correlation with the number of induced Frenkel defects. Supercond. Sci. Technol. 2017, 30, 054003. [Google Scholar] [CrossRef]
- Pinto, V.; Vannozzi, A.; Angrisani Armenio, A.; Rizzo, F.; Masi, A.; Santoni, A.; Meledin, A.; Ferrarese, F.M.; Orlanducci, S.; Celentano, G. Chemical Solution Deposition of YBCO Films with Gd Excess. Coatings 2020, 10, 860. [Google Scholar] [CrossRef]
- Braccini, V.; Kawale, S.; Reich, E.; Bellingeri, E.; Pellegrino, L.; Sala, A.; Putti, M.; Higashikawa, K.; Kiss, T.; Holzapfel, B.; et al. Highly effective and isotropic pinning in epitaxial Fe(Se,Te) thin films grown on CaF2 substrates. Appl. Phys. Lett. 2013, 103, 172601. [Google Scholar] [CrossRef] [Green Version]
- Alimenti, A.; Torokhtii, K.; Silva, E.; Pompeo, N. Challenging microwave resonant measurement techniques for conducting material characterization. Meas. Sci. Technol. 2019, 30, 065601. [Google Scholar] [CrossRef]
- Torokhtii, K.; Pompeo, N.; Silva, E.; Alimenti, A. Optimization of Q-factor and resonance frequency measurements in partially calibrated resonant systems. Meas. Sens. 2021, 18, 100314. [Google Scholar] [CrossRef]
- Torokhtii, K.; Alimenti, A.; Pompeo, N.; Leccese, F.; Orsini, F.; Scorza, A.; Sciuto, S.; Silva, E. Q-factor of microwave resonators: Calibrated vs. uncalibrated measurements. Phys. Conf. Ser. 2018, 1065, 052027. [Google Scholar]
- Alimenti, A.; Pompeo, N.; Torokhtii, K.; Silva, E. Surface Impedance Measurements in Superconductors in DC Magnetic Fields: Challenges and Relevance to Particle Physics Experiments. IEEE Instrum. Meas. Mag. 2021, 24, 12. [Google Scholar] [CrossRef]
- Alimenti, A.; Pompeo, N.; Torokhtii, K.; Spina, T.; Flükiger, R.; Muzzi, L.; Silva, E. Surface Impedance Measurements on Nb3Sn in High Magnetic Fields. IEEE Trans. Appl. Supercond. 2019, 29, 3500104. [Google Scholar] [CrossRef]
- Pompeo, N.; Alimenti, A.; Torokhtii, K.; Sylva, G.; Braccini, V.; Silva, E. Pinning, Flux Flow Resistivity, and Anisotropy of Fe(Se,Te) Thin Films From Microwave Measurements Through a Bitonal Dielectric Resonator. IEEE Trans. Appl. Supercond. 2021, 31, 8000805. [Google Scholar] [CrossRef]
- Pompeo, N.; Alimenti, A.; Torokhtii, K.; Sylva, G.; Braccini, V.; Silva, E. Microwave properties of Fe(Se,Te) thin films in a magnetic field: Pinning and flux flow. J. Phys. Conf. Ser. 2020, 1559, 012055. [Google Scholar]
- Bendele, M.; Weyeneth, S.; Puzniak, R.; Maisuradze, A.; Pomjakushina, E.; Conder, K.; Pomjakushin, V.; Luetkens, H.; Katrych, S.; Wisniewski, A.; et al. Anisotropic superconducting properties of single-crystalline FeSe0.5Te0.5. Phys. Rev. B 2010, 81, 224520. [Google Scholar] [CrossRef] [Green Version]
- Okada, T.; Nabeshima, F.; Takahashi, H.; Imai, Y.; Maeda, A. Exceptional suppression of flux-flow resistivity in FeSe0.4Te0.6 by back-flow from excess Fe atoms and Se/Te substitutions. Phys. Rev. B 2015, 91, 054510. [Google Scholar] [CrossRef] [Green Version]
- Golosovsky, M.; Tsindlekht, M.; Davidov, D. High-frequency vortex dynamics in. Supercond. Sci. Technol. 1996, 9, 1. [Google Scholar] [CrossRef]
- Benvenuti, C.; Calatroni, S.; Hauer, M.; Minestrini, M.; Orlandi, G.; Weingarten, W. (NbTi)N and NbTi coatings for superconducting accelerating cavities. In Proceedings of the Fifth Workshop RF on RF Superconductivity, Hamburg, Germany, 19–24 August 1991; pp. 518–526. [Google Scholar]
- Posen, S.; Liepe, M. Advances in development of Nb3Sn superconducting radio-frequency cavities. Phys. Rev. Accel. Beams 2014, 17, 112001. [Google Scholar] [CrossRef] [Green Version]
- Sonier, J.; Kiefl, R.; Brewer, J.; Bonn, D.; Carolan, J.; Chow, K.; Dosanjh, P.; Hardy, W.; Liang, R.; MacFarlane, W.; et al. New muon-spin-rotation measurement of the temperature dependence of the magnetic penetration depth in YBa2Cu3O6.95. Phys. Rev. Lett. 1994, 72, 744. [Google Scholar] [CrossRef] [PubMed]
- Tallon, J.; Bernhard, C.; Binninger, U.; Hofer, A.; Williams, G.; Ansaldo, E.; Budnick, J.; Niedermayer, C. In-Plane Anisotropy of the Penetration Depth Due to Superconductivity on the Cu-O Chains in YBa2Cu3O7-δ, YBa2Cu3O15-δ, and YBa2Cu3O8. Phys. Rev. Lett. 1995, 74, 1008. [Google Scholar] [CrossRef]
Material | NbTi | Nb3Sn | YBa2Cu3O | FeSe0.5Te0.5 |
---|---|---|---|---|
Thickness (nm) | bulk | |||
Growing tech. | RF sputtering | HIP (1) | CSD (2) | PLD (3) |
Substrate | Cu | – | LaAlO3 | CaF2 |
(K) | ||||
Ref. | [11] | [16,34] | [35] | [36] |
NbTi | NbSn | YBCO | FeSeTe | |
---|---|---|---|---|
(N m−2) at 4 K, 5 T | – | |||
pinning regime | single | collective | single | collective |
(N s m−2) at 4 K, 5 T | – | – | ||
(µ cm) | – | – | ||
(T) | – | – | ||
(GHz) at 4 K, 5 T | ||||
meas. geometry | c axis, | |||
1 | 1 | |||
(nm) | [17,47] | [48] | [49,50] | [45] |
Material | ||
---|---|---|
NbTi | 4.3 | 0.05 |
NbSn | 6.5 | 0.02 |
FeSeTe | 12 | 0.006 |
YBCO | 14 | 0.005 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alimenti, A.; Torokhtii, K.; Di Gioacchino, D.; Gatti, C.; Silva, E.; Pompeo, N. Impact of Superconductors’ Properties on the Measurement Sensitivity of Resonant-Based Axion Detectors. Instruments 2022, 6, 1. https://doi.org/10.3390/instruments6010001
Alimenti A, Torokhtii K, Di Gioacchino D, Gatti C, Silva E, Pompeo N. Impact of Superconductors’ Properties on the Measurement Sensitivity of Resonant-Based Axion Detectors. Instruments. 2022; 6(1):1. https://doi.org/10.3390/instruments6010001
Chicago/Turabian StyleAlimenti, Andrea, Kostiantyn Torokhtii, Daniele Di Gioacchino, Claudio Gatti, Enrico Silva, and Nicola Pompeo. 2022. "Impact of Superconductors’ Properties on the Measurement Sensitivity of Resonant-Based Axion Detectors" Instruments 6, no. 1: 1. https://doi.org/10.3390/instruments6010001
APA StyleAlimenti, A., Torokhtii, K., Di Gioacchino, D., Gatti, C., Silva, E., & Pompeo, N. (2022). Impact of Superconductors’ Properties on the Measurement Sensitivity of Resonant-Based Axion Detectors. Instruments, 6(1), 1. https://doi.org/10.3390/instruments6010001