A New Concept for Kilotonne Scale Liquid Argon Time Projection Chambers
Abstract
:1. Introduction
2. Pixelated Charge Readout
2.1. Power Consumption
2.2. Data Acquisition Requirements
2.3. Manufacturing Technique
3. Reducing High Voltage Requirements
Field Shell
4. Optical Segmentation
5. Deployment as a DUNE Far Detector Module
6. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Nygren, D.R. The Time Projection Chamber: A New 4 pi Detector for Charged Particles. eConf 1974, 740805, 58. [Google Scholar]
- Willis, W.J.; Radeka, V. Liquid-argon ionization chambers as total-absorption detectors. Nucl. Instrum. Meth. 1974, 120, 221–236. [Google Scholar] [CrossRef]
- Cavanna, F.; Ereditato, A.; Fleming, B.T. Advances in liquid argon detectors. Nucl. Instrum. Methods Phys. Res. B 2018, 907, 1–8. [Google Scholar] [CrossRef]
- Rubbia, C. The Liquid Argon Time Projection Chamber: A New Concept for Neutrino Detectors; Technical Report CERN-EP-INT-77-08; CERN: Geneva, Switzerland, 1977. [Google Scholar]
- Zeller, M.; Ereditato, A.; Haug, S.; Hsu, C.C.; Janos, S.; Kreslo, I.; Messina, M.; von Rohr, C.R.; Rossi, B.; Strauss, T.; et al. First measurements with ARGONTUBE, a 5m long drift Liquid Argon TPC. Nucl. Instrum. Methods Phys. Res. B 2013, 718, 454–458. [Google Scholar] [CrossRef]
- Kopp, S. The NuMI neutrino beam at Fermilab. In Proceedings of the 2005 Particle Accelerator Conference, Knoxville, TN, USA, 16–20 May 2005. [Google Scholar]
- Acciarri, R.; Acero, M.A.; Adamowski, M.; Adams, C.; Adamson, P.; Adhikari, S.; Ahmad, Z.; Albright, C.H.; Alion, T.; Amador, E.; et al. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 1: The LBNF and DUNE Projects. arXiv 2016, arXiv:1601.05471. Available online: http://eprints.whiterose.ac.uk/106513/1/1601.05471v1.pdf (accessed on 2 January 2020).
- Acciarri, R.; Acero, M.A.; Adamowski, M.; Adams, C.; Adamson, P.; Adhikari, S.; Ahmad, Z.; Albright, C.H.; Alion, T.; Amador, E.; et al. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE): Conceptual Design Report, Volume 4 The DUNE Detectors at LBNF. arXiv 2016, arXiv:1601.02984. Available online: https://arxiv.org/pdf/1601.02984.pdf (accessed on 2 January 2020).
- Abi, B.; Acciarri, R.; Acero, M.A.; Adamowski, M.; Adams, C.; Adams, D.; Adamson, P.; Adinolfi, M.; Ahmad, Z.; Albright, C.H.; et al. The DUNE Far Detector Interim Design Report, Volume 2: Single-Phase Module. arXiv 2018, arXiv:1807.10327. Available online: https://eprints.lancs.ac.uk/id/eprint/127674/1/1807.10327v1.pdf (accessed on 2 January 2020).
- Abi, B.; Bansal, S.; Friedland, A.; Kocaman, B.; Djurcic, Z.; Goudzovski, E.; Rakotondravohitra, L.; Salukvadze, G.; Mazzucato, E.; Densham, C.; et al. The DUNE Far Detector Interim Design Report, Volume 3: Dual-Phase Module. arXiv 2018, arXiv:1807.10340. Available online: https://cds.cern.ch/record/2632822/files/1807.10340.pdf (accessed on 2 January 2020).
- Rubbia, C.; Antonello, M.; Aprili, P.; Baibussinov, B.; Ceolin, M.B.; Barze, L.; Benetti, P.; Calligarich, E.; Canci, N.; Carbonara, F.; et al. Underground operation of the ICARUS T600 LAr-TPC: First results. J. Instrum. 2011, 6, P07011. [Google Scholar] [CrossRef]
- Anderson, C.; Antonello, M.; Baller, B.; Bolton, T.; Bromberg, C.; Cavanna, F.; Church, E.; Edmunds, D.; Ereditato, A.; Farooq, S.; et al. The ArgoNeuT Detector in the NuMI Low-Energy beam line at Fermilab. J. Instrum. 2012, 7, P10019. [Google Scholar] [CrossRef]
- Acciarri, R.; Adams, C.; An, R.; Aparicio, A.; Aponte, S.; Asaadi, J.; Auger, M.; Ayoub, N.; Bagby, L.; Baller, B.; et al. Design and Construction of the MicroBooNE Detector. J. Instrum. 2017, 12, P02017. [Google Scholar] [CrossRef]
- Joshi, J.; Qian, X. Signal Processing in the MicroBooNE LArTPC. arXiv 2015, arXiv:1511.00317. Available online: https://arxiv.org/pdf/1511.00317.pdf (accessed on 2 January 2020).
- Asaadi, J.; Auger, M.; Ereditato, A.; Goeldi, D. First Demonstration of a Pixelated Charge Readout for Single-Phase Liquid Argon Time Projection Chambers. arXiv 2018, arXiv:1801.08884. Available online: https://arxiv.org/pdf/1801.08884.pdf (accessed on 2 January 2020).
- De Geronimo, G.; D’Andragora, A.; Li, S.; Nambiar, N.; Rescia, S.; Vernon, E.; Chen, H.; Lanni, F.; Makowiecki, D.; Radeka, V.; et al. Front-End ASIC for a Liquid Argon TPC. IEEE Trans. Nucl. Sci. 2011, 58, 1376–1385. [Google Scholar] [CrossRef]
- Cavanna, F.; Kordosky, M.; Raaf, J.; Rebel, B. LArIAT: Liquid Argon In A Testbeam. arXiv 2014, arXiv:1406.5560. Available online: https://arxiv.org/pdf/1406.5560.pdf (accessed on 2 January 2020).
- Dwyer, D.A.; Garcia-Sciveres, M.; Gnani, D.; Grace, C.; Kohn, S.; Kramer, M.; Krieger, A.; Lin, C.J.; Luk, K.B.; Madigan, P.; et al. LArPix: Demonstration of low-power 3D pixelated charge readout for liquid argon time projection chambers. arXiv 2018, arXiv:1808.02969. Available online: https://arxiv.org/pdf/1808.02969.pdf (accessed on 2 January 2020). [CrossRef] [Green Version]
- Antonello, M.; Baibussinov, B.; Benetti, P.; Calligarich, E.; Canci, N.; Centro, S.; Cesana, A.; Cieslik, K.; Cline, D.B.; Cocco, A.G.; et al. Precise 3D track reconstruction algorithm for the ICARUS T600 liquid argon time projection chamber detector. Adv. High Energy Phys. 2013, 2013, 260820. [Google Scholar] [CrossRef]
- Scholberg, K. Supernova Neutrino Detection. Annu. Rev. Nucl. Part. Sci. 2012, 62, 81–103. [Google Scholar] [CrossRef] [Green Version]
- Hosaka, J.; Ishihara, K.; Kameda, J.; Koshio, Y.; Minamino, A.; Mitsuda, C.; Miura, M.; Moriyama, S.; Nakahata, M.; Namba, T.; et al. Solar neutrino measurements in Super-Kamiokande-I. Phys. Rev. D 2006, 73, 112001. [Google Scholar] [CrossRef] [Green Version]
- Renshaw, A.; Abe, K.; Hayato, Y.; Iyogi, K.; Kameda, J.; Kishimoto, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakano, Y.; et al. First Indication of Terrestrial Matter Effects on Solar Neutrino Oscillation. Phys. Rev. Lett. 2014, 112, 091805. [Google Scholar] [CrossRef]
- Maltoni, M.; Smirnov, A.Y. Solar neutrinos and neutrino physics. Eur. Phys. J. A 2016, 52, 87. [Google Scholar] [CrossRef]
- Nygren, D.; Mei, Y. Q-Pix: Pixel-Scale Signal Capture for Kiloton Liquid Argon TPC Detectors: Time-to-Charge Waveform Capture, Local Clocks, Dynamic Networks. arXiv 2018, arXiv:1809.10213. Available online: https://arxiv.org/pdf/1809.10213.pdf (accessed on 2 January 2020).
- Acciarri, R.; DUNE Collaboration. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE). arXiv 2015, arXiv:1512.06148. Available online: https://arxiv.org/pdf/1512.06148.pdf (accessed on 2 January 2020).
- Acciarri, R.; Carls, B.; James, C.; Johnson, B.; Jostlein, H.; Lockwitz, S.; Lundberg, B.; Raaf, J.L.; Rameika, R.; Rebel, B.; et al. Liquid Argon Dielectric Breakdown Studies with the MicroBooNE Purification System. J. Instrum. 2014, 9, P11001. [Google Scholar] [CrossRef] [Green Version]
- Blatter, A.; Ereditato, A.; Hsu, C.C.; Janos, S.; Kreslo, I.; Luethi, M.; von Rohr, C.R.; Schenk, M.; Strauss, T.; Weber, M.S.; et al. Experimental study of electric breakdowns in liquid argon at centimeter scale. J. Instrum. 2014, 9, P04006. [Google Scholar] [CrossRef]
- Ereditato, A.; Hsu, C.C.; Janos, S.; Kreslo, I.; Messina, M.; Rudolf von Rohr, C.; Rossi, B.; Strauss, T.; Weber, M.S.; Zeller, M. Design and operation of ARGONTUBE: a 5 m long drift liquid argon TPC. J. Instrum. 2013, 8, P07002. [Google Scholar] [CrossRef] [Green Version]
- Chepel, V.; Araújo, H. Liquid noble gas detectors for low energy particle physics. J. Instrum. 2013, 8, R04001. [Google Scholar] [CrossRef] [Green Version]
- Amerio, S.; Amoruso, S.; Antonello, M.; Aprili, P.; Armenante, M.; Arneodo, F.; Badertscher, A.; Baiboussinov, B.; Ceolin, M.B.; Battistoni, G.; et al. Design, construction and tests of the ICARUS T600 detector. Nucl. Instrum. Meth. Phys. Res. B 2004, 527, 329–410. [Google Scholar] [CrossRef]
- Auger, M.; Berner, R.; Chen, Y.; Ereditato, A.; Goeldi, D.; Koller, P.P.; Kreslo, I.; Lorca, D.; Mettler, T.; Piastra, F.; et al. A New Concept for Kilotonne Scale Liquid Argon Time Projection Chambers. arXiv 2019, arXiv:1908.10956. Available online: https://arxiv.org/pdf/1908.10956.pdf (accessed on 2 January 2020).
- Yao, W.M.; Amsler, C.; Asner, D.; Barnett, R.; Beringer, J.; Burchat, P.; Carone, C.; Caso, C.; Dahl, O.; D’Ambrosio, G.; et al. Review of Particle Physics. J. Phys. G 2006, 33. [Google Scholar] [CrossRef]
- Tuncer, E.; Sauers, I.; James, D.R.; Ellis, A.R. Electrical Insulation Characteristics of Glass Fiber Reinforced Resins. IEEE Trans. Appl. Supercond. 2009, 19, 2359–2362. [Google Scholar] [CrossRef]
- Berner, R.; Chen, Y.; Ereditato, A.; Koller, P.P.; Kreslo, I.; Lorca, D.; Mettler, T.; Piastra, F.; Sinclair, J.R.; Weber, M.S.; et al. First Operation of a Resistive Shell Liquid Argon Time Projection Chamber—A new Approach to Electric-Field Shaping. Instruments 2019, 3, 28. [Google Scholar] [CrossRef] [Green Version]
- Heindl, T.; Dandl, T.; Fedenev, A.; Hofmann, M.; Krücken, R.; Oberauer, L.; Potzel, W.; Wieser, J.; Ulrich, A. Table-top setup for investigating the scintillation properties of liquid argon. J. Instrum. 2011, 6, P02011. [Google Scholar] [CrossRef]
- Auger, M.; Chen, Y.; Ereditato, A.; Goeldi, D.; Kreslo, I.; Lorca, D.; Luethi, M.; Mettler, T.; Sinclair, J.R.; Weber, M.S. ArCLight—A Compact Dielectric Large-Area Photon Detector. Instruments 2018, 2, 3. [Google Scholar] [CrossRef]
- Capozzi, F.; Li, S.W.; Zhu, G.; Beacom, J.F. DUNE as the Next-Generation Solar Neutrino Experiment. Phys. Rev. Lett. 2019, 123, 131803. [Google Scholar] [CrossRef] [Green Version]
- Strait, J.; McCluskey, E.; Lundin, T.; Willhite, J.; Hamernik, T.; Papadimitriou, V.; Marchionni, A.; Kim, M.J.; Nessi, M.; Montanari, D.; et al. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 3: Long-Baseline Neutrino Facility for DUNE. arXiv 2016, arXiv:1601.05823. Available online: https://arxiv.org/pdf/1601.05823.pdf (accessed on 2 January 2020).
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asaadi, J.; Auger, M.; Berner, R.; Bross, A.; Chen, Y.; Convery, M.; Domine, L.; Drielsma, F.; Dwyer, D.; Ereditato, A.; et al. A New Concept for Kilotonne Scale Liquid Argon Time Projection Chambers. Instruments 2020, 4, 6. https://doi.org/10.3390/instruments4010006
Asaadi J, Auger M, Berner R, Bross A, Chen Y, Convery M, Domine L, Drielsma F, Dwyer D, Ereditato A, et al. A New Concept for Kilotonne Scale Liquid Argon Time Projection Chambers. Instruments. 2020; 4(1):6. https://doi.org/10.3390/instruments4010006
Chicago/Turabian StyleAsaadi, Jonathan, Martin Auger, Roman Berner, Alan Bross, Yifan Chen, Mark Convery, Laura Domine, Francois Drielsma, Daniel Dwyer, Antonio Ereditato, and et al. 2020. "A New Concept for Kilotonne Scale Liquid Argon Time Projection Chambers" Instruments 4, no. 1: 6. https://doi.org/10.3390/instruments4010006
APA StyleAsaadi, J., Auger, M., Berner, R., Bross, A., Chen, Y., Convery, M., Domine, L., Drielsma, F., Dwyer, D., Ereditato, A., Goeldi, D., Itay, R., Koh, D. H., Kohn, S., Koller, P., Kreslo, I., Lorca, D., Madigan, P., Marshall, C., ... Wilkinson, C. (2020). A New Concept for Kilotonne Scale Liquid Argon Time Projection Chambers. Instruments, 4(1), 6. https://doi.org/10.3390/instruments4010006