# A New Concept for Kilotonne Scale Liquid Argon Time Projection Chambers

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Pixelated Charge Readout

#### 2.1. Power Consumption

#### 2.2. Data Acquisition Requirements

#### 2.3. Manufacturing Technique

## 3. Reducing High Voltage Requirements

#### Field Shell

^{®}polyimide film, E. I. du Pont de Nemours and Company, www.dupont.com.) foil. The TPC was exposed to cosmic activity, triggering on crossing muons, at electric fields up to $1.5$ $\mathrm{k}$$\mathrm{V}$/$\mathrm{c}$$\mathrm{m}$. It operated successfully, with straight tracks observed across a range of electric fields.

## 4. Optical Segmentation

## 5. Deployment as a DUNE Far Detector Module

## 6. Summary

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Nygren, D.R. The Time Projection Chamber: A New 4 pi Detector for Charged Particles. eConf
**1974**, 740805, 58. [Google Scholar] - Willis, W.J.; Radeka, V. Liquid-argon ionization chambers as total-absorption detectors. Nucl. Instrum. Meth.
**1974**, 120, 221–236. [Google Scholar] [CrossRef] - Cavanna, F.; Ereditato, A.; Fleming, B.T. Advances in liquid argon detectors. Nucl. Instrum. Methods Phys. Res. B
**2018**, 907, 1–8. [Google Scholar] [CrossRef] - Rubbia, C. The Liquid Argon Time Projection Chamber: A New Concept for Neutrino Detectors; Technical Report CERN-EP-INT-77-08; CERN: Geneva, Switzerland, 1977. [Google Scholar]
- Zeller, M.; Ereditato, A.; Haug, S.; Hsu, C.C.; Janos, S.; Kreslo, I.; Messina, M.; von Rohr, C.R.; Rossi, B.; Strauss, T.; et al. First measurements with ARGONTUBE, a 5m long drift Liquid Argon TPC. Nucl. Instrum. Methods Phys. Res. B
**2013**, 718, 454–458. [Google Scholar] [CrossRef] - Kopp, S. The NuMI neutrino beam at Fermilab. In Proceedings of the 2005 Particle Accelerator Conference, Knoxville, TN, USA, 16–20 May 2005. [Google Scholar]
- Acciarri, R.; Acero, M.A.; Adamowski, M.; Adams, C.; Adamson, P.; Adhikari, S.; Ahmad, Z.; Albright, C.H.; Alion, T.; Amador, E.; et al. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 1: The LBNF and DUNE Projects. arXiv
**2016**, arXiv:1601.05471. Available online: http://eprints.whiterose.ac.uk/106513/1/1601.05471v1.pdf (accessed on 2 January 2020). - Acciarri, R.; Acero, M.A.; Adamowski, M.; Adams, C.; Adamson, P.; Adhikari, S.; Ahmad, Z.; Albright, C.H.; Alion, T.; Amador, E.; et al. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE): Conceptual Design Report, Volume 4 The DUNE Detectors at LBNF. arXiv
**2016**, arXiv:1601.02984. Available online: https://arxiv.org/pdf/1601.02984.pdf (accessed on 2 January 2020). - Abi, B.; Acciarri, R.; Acero, M.A.; Adamowski, M.; Adams, C.; Adams, D.; Adamson, P.; Adinolfi, M.; Ahmad, Z.; Albright, C.H.; et al. The DUNE Far Detector Interim Design Report, Volume 2: Single-Phase Module. arXiv
**2018**, arXiv:1807.10327. Available online: https://eprints.lancs.ac.uk/id/eprint/127674/1/1807.10327v1.pdf (accessed on 2 January 2020). - Abi, B.; Bansal, S.; Friedland, A.; Kocaman, B.; Djurcic, Z.; Goudzovski, E.; Rakotondravohitra, L.; Salukvadze, G.; Mazzucato, E.; Densham, C.; et al. The DUNE Far Detector Interim Design Report, Volume 3: Dual-Phase Module. arXiv
**2018**, arXiv:1807.10340. Available online: https://cds.cern.ch/record/2632822/files/1807.10340.pdf (accessed on 2 January 2020). - Rubbia, C.; Antonello, M.; Aprili, P.; Baibussinov, B.; Ceolin, M.B.; Barze, L.; Benetti, P.; Calligarich, E.; Canci, N.; Carbonara, F.; et al. Underground operation of the ICARUS T600 LAr-TPC: First results. J. Instrum.
**2011**, 6, P07011. [Google Scholar] [CrossRef] - Anderson, C.; Antonello, M.; Baller, B.; Bolton, T.; Bromberg, C.; Cavanna, F.; Church, E.; Edmunds, D.; Ereditato, A.; Farooq, S.; et al. The ArgoNeuT Detector in the NuMI Low-Energy beam line at Fermilab. J. Instrum.
**2012**, 7, P10019. [Google Scholar] [CrossRef] - Acciarri, R.; Adams, C.; An, R.; Aparicio, A.; Aponte, S.; Asaadi, J.; Auger, M.; Ayoub, N.; Bagby, L.; Baller, B.; et al. Design and Construction of the MicroBooNE Detector. J. Instrum.
**2017**, 12, P02017. [Google Scholar] [CrossRef] - Joshi, J.; Qian, X. Signal Processing in the MicroBooNE LArTPC. arXiv
**2015**, arXiv:1511.00317. Available online: https://arxiv.org/pdf/1511.00317.pdf (accessed on 2 January 2020). - Asaadi, J.; Auger, M.; Ereditato, A.; Goeldi, D. First Demonstration of a Pixelated Charge Readout for Single-Phase Liquid Argon Time Projection Chambers. arXiv
**2018**, arXiv:1801.08884. Available online: https://arxiv.org/pdf/1801.08884.pdf (accessed on 2 January 2020). - De Geronimo, G.; D’Andragora, A.; Li, S.; Nambiar, N.; Rescia, S.; Vernon, E.; Chen, H.; Lanni, F.; Makowiecki, D.; Radeka, V.; et al. Front-End ASIC for a Liquid Argon TPC. IEEE Trans. Nucl. Sci.
**2011**, 58, 1376–1385. [Google Scholar] [CrossRef] - Cavanna, F.; Kordosky, M.; Raaf, J.; Rebel, B. LArIAT: Liquid Argon In A Testbeam. arXiv
**2014**, arXiv:1406.5560. Available online: https://arxiv.org/pdf/1406.5560.pdf (accessed on 2 January 2020). - Dwyer, D.A.; Garcia-Sciveres, M.; Gnani, D.; Grace, C.; Kohn, S.; Kramer, M.; Krieger, A.; Lin, C.J.; Luk, K.B.; Madigan, P.; et al. LArPix: Demonstration of low-power 3D pixelated charge readout for liquid argon time projection chambers. arXiv
**2018**, arXiv:1808.02969. Available online: https://arxiv.org/pdf/1808.02969.pdf (accessed on 2 January 2020). [CrossRef] [Green Version] - Antonello, M.; Baibussinov, B.; Benetti, P.; Calligarich, E.; Canci, N.; Centro, S.; Cesana, A.; Cieslik, K.; Cline, D.B.; Cocco, A.G.; et al. Precise 3D track reconstruction algorithm for the ICARUS T600 liquid argon time projection chamber detector. Adv. High Energy Phys.
**2013**, 2013, 260820. [Google Scholar] [CrossRef] - Scholberg, K. Supernova Neutrino Detection. Annu. Rev. Nucl. Part. Sci.
**2012**, 62, 81–103. [Google Scholar] [CrossRef] [Green Version] - Hosaka, J.; Ishihara, K.; Kameda, J.; Koshio, Y.; Minamino, A.; Mitsuda, C.; Miura, M.; Moriyama, S.; Nakahata, M.; Namba, T.; et al. Solar neutrino measurements in Super-Kamiokande-I. Phys. Rev. D
**2006**, 73, 112001. [Google Scholar] [CrossRef] [Green Version] - Renshaw, A.; Abe, K.; Hayato, Y.; Iyogi, K.; Kameda, J.; Kishimoto, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakano, Y.; et al. First Indication of Terrestrial Matter Effects on Solar Neutrino Oscillation. Phys. Rev. Lett.
**2014**, 112, 091805. [Google Scholar] [CrossRef] - Maltoni, M.; Smirnov, A.Y. Solar neutrinos and neutrino physics. Eur. Phys. J. A
**2016**, 52, 87. [Google Scholar] [CrossRef] - Nygren, D.; Mei, Y. Q-Pix: Pixel-Scale Signal Capture for Kiloton Liquid Argon TPC Detectors: Time-to-Charge Waveform Capture, Local Clocks, Dynamic Networks. arXiv
**2018**, arXiv:1809.10213. Available online: https://arxiv.org/pdf/1809.10213.pdf (accessed on 2 January 2020). - Acciarri, R.; DUNE Collaboration. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE). arXiv
**2015**, arXiv:1512.06148. Available online: https://arxiv.org/pdf/1512.06148.pdf (accessed on 2 January 2020). - Acciarri, R.; Carls, B.; James, C.; Johnson, B.; Jostlein, H.; Lockwitz, S.; Lundberg, B.; Raaf, J.L.; Rameika, R.; Rebel, B.; et al. Liquid Argon Dielectric Breakdown Studies with the MicroBooNE Purification System. J. Instrum.
**2014**, 9, P11001. [Google Scholar] [CrossRef] [Green Version] - Blatter, A.; Ereditato, A.; Hsu, C.C.; Janos, S.; Kreslo, I.; Luethi, M.; von Rohr, C.R.; Schenk, M.; Strauss, T.; Weber, M.S.; et al. Experimental study of electric breakdowns in liquid argon at centimeter scale. J. Instrum.
**2014**, 9, P04006. [Google Scholar] [CrossRef] - Ereditato, A.; Hsu, C.C.; Janos, S.; Kreslo, I.; Messina, M.; Rudolf von Rohr, C.; Rossi, B.; Strauss, T.; Weber, M.S.; Zeller, M. Design and operation of ARGONTUBE: a 5 m long drift liquid argon TPC. J. Instrum.
**2013**, 8, P07002. [Google Scholar] [CrossRef] [Green Version] - Chepel, V.; Araújo, H. Liquid noble gas detectors for low energy particle physics. J. Instrum.
**2013**, 8, R04001. [Google Scholar] [CrossRef] [Green Version] - Amerio, S.; Amoruso, S.; Antonello, M.; Aprili, P.; Armenante, M.; Arneodo, F.; Badertscher, A.; Baiboussinov, B.; Ceolin, M.B.; Battistoni, G.; et al. Design, construction and tests of the ICARUS T600 detector. Nucl. Instrum. Meth. Phys. Res. B
**2004**, 527, 329–410. [Google Scholar] [CrossRef] - Auger, M.; Berner, R.; Chen, Y.; Ereditato, A.; Goeldi, D.; Koller, P.P.; Kreslo, I.; Lorca, D.; Mettler, T.; Piastra, F.; et al. A New Concept for Kilotonne Scale Liquid Argon Time Projection Chambers. arXiv
**2019**, arXiv:1908.10956. Available online: https://arxiv.org/pdf/1908.10956.pdf (accessed on 2 January 2020). - Yao, W.M.; Amsler, C.; Asner, D.; Barnett, R.; Beringer, J.; Burchat, P.; Carone, C.; Caso, C.; Dahl, O.; D’Ambrosio, G.; et al. Review of Particle Physics. J. Phys. G
**2006**, 33. [Google Scholar] [CrossRef] - Tuncer, E.; Sauers, I.; James, D.R.; Ellis, A.R. Electrical Insulation Characteristics of Glass Fiber Reinforced Resins. IEEE Trans. Appl. Supercond.
**2009**, 19, 2359–2362. [Google Scholar] [CrossRef] - Berner, R.; Chen, Y.; Ereditato, A.; Koller, P.P.; Kreslo, I.; Lorca, D.; Mettler, T.; Piastra, F.; Sinclair, J.R.; Weber, M.S.; et al. First Operation of a Resistive Shell Liquid Argon Time Projection Chamber—A new Approach to Electric-Field Shaping. Instruments
**2019**, 3, 28. [Google Scholar] [CrossRef] [Green Version] - Heindl, T.; Dandl, T.; Fedenev, A.; Hofmann, M.; Krücken, R.; Oberauer, L.; Potzel, W.; Wieser, J.; Ulrich, A. Table-top setup for investigating the scintillation properties of liquid argon. J. Instrum.
**2011**, 6, P02011. [Google Scholar] [CrossRef] - Auger, M.; Chen, Y.; Ereditato, A.; Goeldi, D.; Kreslo, I.; Lorca, D.; Luethi, M.; Mettler, T.; Sinclair, J.R.; Weber, M.S. ArCLight—A Compact Dielectric Large-Area Photon Detector. Instruments
**2018**, 2, 3. [Google Scholar] [CrossRef] - Capozzi, F.; Li, S.W.; Zhu, G.; Beacom, J.F. DUNE as the Next-Generation Solar Neutrino Experiment. Phys. Rev. Lett.
**2019**, 123, 131803. [Google Scholar] [CrossRef] [Green Version] - Strait, J.; McCluskey, E.; Lundin, T.; Willhite, J.; Hamernik, T.; Papadimitriou, V.; Marchionni, A.; Kim, M.J.; Nessi, M.; Montanari, D.; et al. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 3: Long-Baseline Neutrino Facility for DUNE. arXiv
**2016**, arXiv:1601.05823. Available online: https://arxiv.org/pdf/1601.05823.pdf (accessed on 2 January 2020).

**Figure 1.**A prototype pixelated charge-readout Printed Circuit Board (PCB) developed as part of the ArgonCube R&D programme. The PCB has 832 pixels with various pad geometries, to identify optimal dimensions (

**left**). Lawrence Berkeley National Laboratory’s (LBNL) LArPix Application-Specific Integrated Circuits (ASICs) are mounted directly on the rear of the PCB, providing cold signal digitization (

**right**).

**Figure 2.**A cosmic ray-induced shower recorded with the LBNL LArPix equipped charge-readout system shown in Figure 1 in the Bern pixel demonstration LArTPC. The same 3D event is shown from three different angles.

**Figure 3.**The Bern field-shell demonstrator LArTPC. The field-shell and cathode are made from ∼ 50 $\mathsf{\mu}$$\mathrm{m}$ resistive kapton foil. For this test, the field-shell was perforated to allow the purification of the LAr within the active volume. The Time Projection Chamber (TPC) has a product-units=repeat $7\mathrm{\times}7$ $\mathrm{c}$$\mathrm{m}$ footprint and a 15 $\mathrm{c}$$\mathrm{m}$ drift length. A bias of up to $-23$ $\mathrm{k}$$\mathrm{V}$ was applied to the cathode to generate a $1.5$ $\mathrm{k}$$\mathrm{V}$/$\mathrm{c}$$\mathrm{m}$ drift field [34].

**Figure 4.**Potential deployment of the modular LArTPC concept discussed in this work in a Deep Underground Neutrino Experiment (DUNE) far detector cryostat. The internal cryostat dimensions are 62 $\mathrm{m}$ long, $15.1$ $\mathrm{m}$ wide and 14 $\mathrm{m}$ high. A figure is shown in the bottom left to give a sense of scale. There are five cathodes which divide the volume vertically into 10 separate TPCs along the drift axis (shown as white panels), with six corresponding charge-readout pixel anode planes (shown as brown panels). Optical readout planes (shown as blue panels) would enclose the face which is cut away, on both sides of the TPC. The division of the cathodes into 20 sections along the beam axis is visible along the top face of the detector in the upper image, where a diagonal slice through the detector has been made. All 200 individual TPCs are contained within a G10 structure within the cryostat.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Asaadi, J.; Auger, M.; Berner, R.; Bross, A.; Chen, Y.; Convery, M.; Domine, L.; Drielsma, F.; Dwyer, D.; Ereditato, A.;
et al. A New Concept for Kilotonne Scale Liquid Argon Time Projection Chambers. *Instruments* **2020**, *4*, 6.
https://doi.org/10.3390/instruments4010006

**AMA Style**

Asaadi J, Auger M, Berner R, Bross A, Chen Y, Convery M, Domine L, Drielsma F, Dwyer D, Ereditato A,
et al. A New Concept for Kilotonne Scale Liquid Argon Time Projection Chambers. *Instruments*. 2020; 4(1):6.
https://doi.org/10.3390/instruments4010006

**Chicago/Turabian Style**

Asaadi, Jonathan, Martin Auger, Roman Berner, Alan Bross, Yifan Chen, Mark Convery, Laura Domine, Francois Drielsma, Daniel Dwyer, Antonio Ereditato,
and et al. 2020. "A New Concept for Kilotonne Scale Liquid Argon Time Projection Chambers" *Instruments* 4, no. 1: 6.
https://doi.org/10.3390/instruments4010006