Special Issue ”Instruments and Methods for Cyclotron Produced Radioisotopes”
Abstract
:1. Introduction
2. Cyclotrons and Related Developments
3. Targets and Related Developments
4. Radio Chemistry Developments
5. Non-Conventional Medical Radioisotopes
6. Outlook
Conflicts of Interest
References
- Kreller, M.; Pietzsch, H.J.; Walther, M.; Tietze, H.; Kaever, P.; Knieß, T.; Füchtner, F.; Steinbach, J.; Preusche, S. Introduction of the New Center for Radiopharmaceutical Cancer Research at Helmholtz-Zentrum Dresden-Rossendorf. Instruments 2019, 3, 9. [Google Scholar] [CrossRef]
- Nesteruk, K.P.; Ramseyer, L.; Carzaniga, T.S.; Braccini, S. Measurement of the Beam Energy Distribution of a Medical Cyclotron with a Multi-Leaf Faraday Cup. Instruments 2019, 3, 4. [Google Scholar] [CrossRef]
- Do Carmo, S.J.; de Oliveira, P.M.; Alves, F. Simple, Immediate and Calibration-Free Cyclotron Proton Beam Energy Determination Using Commercial Targets. Instruments 2019, 3, 20. [Google Scholar] [CrossRef]
- Prevost, D.; Jayamanna, K.; Graham, L.; Varah, S.; Hoehr, C. New Ion Source Filament for Prolonged Ion Source Operation on A Medical Cyclotron. Instruments 2019, 3, 5. [Google Scholar] [CrossRef]
- Steyn, G.F.; Anthony, L.S.; Azaiez, F.; Baard, S.; Bark, R.A.; Barnard, A.H.; Beukes, P.; Broodryk, J.I.; Conradie, J.L.; Cornell, J.C.; et al. Development of New Target Stations for the South African Isotope Facility. Instruments 2018, 2, 29. [Google Scholar] [CrossRef]
- Robertson, A.K.; Lobbezoo, A.; Moskven, L.; Schaffer, P.; Hoehr, C. Design of a Thorium Metal Target for 225Ac Production at TRIUMF. Instruments 2019, 3, 18. [Google Scholar] [CrossRef]
- Do Carmo, S.J.C.; De Oliveira, P.M.; Alves, F. A Target-Temperature Monitoring System for Cyclotron Targets: Safety Device and Tool to Experimentally Validate Targetry Studies. Instruments 2018, 2, 9. [Google Scholar] [CrossRef]
- Zeisler, S.; Clarke, B.; Kumlin, J.; Hook, B.; Varah, S.; Hoehr, C. A Compact Quick-Release Solid Target System for the TRIUMF TR13 Cyclotron. Instruments 2019, 3, 16. [Google Scholar] [CrossRef]
- Gelbart, W.Z.; Johnson, R.R. Solid Target System with In-Situ Target Dissolution. Instruments 2019, 3, 14. [Google Scholar] [CrossRef]
- Chan, S.; Cryer, D.; Price, R.I. Enhancement and Validation of a 3D-Printed Solid Target Holder at a Cyclotron Facility in Perth, Australia. Instruments 2019, 3, 12. [Google Scholar] [CrossRef]
- Peeples, J.; Chu, S.H.; O’Neil, J.P.; Janabi, M.; Wieland, B.; Stokely, M. Boron Nitride Nanotube Cyclotron Targets for Recoil Escape Production of Carbon-11. Instruments 2019, 3, 8. [Google Scholar] [CrossRef]
- Zeisler, S.; Limoges, A.; Kumlin, J.; Siikanen, J.; Hoehr, C. Fused Zinc Target for the Production of Gallium Radioisotopes. Instruments 2019, 3, 10. [Google Scholar] [CrossRef]
- Gelbart, W.Z.; Johnson, R.R. Molybdenum Sinter-Cladding of Solid Radioisotope Targets. Instruments 2019, 3, 11. [Google Scholar] [CrossRef]
- Skliarova, H.; Cisternino, S.; Cicoria, G.; Marengo, M.; Cazzola, E.; Gorgoni, G.; Palmieri, V. Medical Cyclotron Solid Target Preparation by Ultrathick Film Magnetron Sputtering Deposition. Instruments 2019, 3, 21. [Google Scholar] [CrossRef]
- Lange, G. Vortex Target: A New Design for a Powder-in-Gas Target for Large-Scale Radionuclide Production. Instruments 2019, 3, 24. [Google Scholar] [CrossRef]
- Alves, V.H.; Do Carmo, S.J.C.; Alves, F.; Abrunhosa, A.J. Automated Purification of Radiometals Produced by Liquid Targets. Instruments 2018, 2, 17. [Google Scholar] [CrossRef]
- Uhlending, A.; Henneken, H.; Hugenberg, V.; Burchert, W. Optimized Treatment and Recovery of Irradiated [18O]-Water in the Production of [18F]-Fluoride. Instruments 2018, 2, 12. [Google Scholar] [CrossRef]
- Skliarova, H.; Buso, P.; Carturan, S.; Rossi Alvarez, C.; Cisternino, S.; Martini, P.; Boschi, A.; Esposito, J. Recovery of Molybdenum Precursor Material in the Cyclotron-Based Technetium-99m Production Cycle. Instruments 2019, 3, 17. [Google Scholar] [CrossRef]
- Sitarz, M.; Jastrzębski, J.; Haddad, F.; Matulewicz, T.; Szkliniarz, K.; Zipper, W. Can We Extract Production Cross-Sections from Thick Target Yield Measurements? A Case Study Using Scandium Radioisotopes. Instruments 2019, 3, 29. [Google Scholar] [CrossRef]
- Vaudon, J.; Frealle, L.; Audiger, G.; Dutillly, E.; Gervais, M.; Sursin, E.; Ruggeri, C.; Duval, F.; Bouchetou, M.L.; Bombard, A.; et al. First Steps at the Cyclotron of Orléans in the Radiochemistry of Radiometals: 52Mn and 165Er. Instruments 2018, 2, 15. [Google Scholar] [CrossRef]
- Costa, P.; Metello, L.F.; Alves, F.; Duarte Naia, M. Cyclotron Production of Unconventional Radionuclides for PET Imaging: The Example of Titanium-45 and Its Applications. Instruments 2018, 2, 8. [Google Scholar] [CrossRef]
- Sitarz, M.; Nigron, E.; Guertin, A.; Haddad, F.; Matulewicz, T. New Cross-Sections for natMo(α,x) Reactions and Medical 97Ru Production Estimations with Radionuclide Yield Calculator. Instruments 2019, 3, 7. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Braccini, S.; Alves, F. Special Issue ”Instruments and Methods for Cyclotron Produced Radioisotopes”. Instruments 2019, 3, 60. https://doi.org/10.3390/instruments3040060
Braccini S, Alves F. Special Issue ”Instruments and Methods for Cyclotron Produced Radioisotopes”. Instruments. 2019; 3(4):60. https://doi.org/10.3390/instruments3040060
Chicago/Turabian StyleBraccini, Saverio, and Francisco Alves. 2019. "Special Issue ”Instruments and Methods for Cyclotron Produced Radioisotopes”" Instruments 3, no. 4: 60. https://doi.org/10.3390/instruments3040060
APA StyleBraccini, S., & Alves, F. (2019). Special Issue ”Instruments and Methods for Cyclotron Produced Radioisotopes”. Instruments, 3(4), 60. https://doi.org/10.3390/instruments3040060