X-ray Technologies for Astrophysics Missions Supported by the Italian Space Agency
Abstract
:1. Introduction
2. X-ray Technologies for Astrophysics Missions
2.1. BeppoSAX
- MECS: three telescopes, each one consisting of a Conical Wolter I type grazing incidence X-ray optics coupled to a Gas Scintillation Proportional Counter for the X-ray detection in the 1.3–10 keV range;
- LECS: telescope with a thin window position sensitive Gas Scintillation Proportional Counter to extend, with respect to MECS, the detection range down to 0.1 keV;
- HPGSPC: Gas Scintillation Proportional Counter for the X-ray detection in the 4.0–120.0 keV range;
- PSD: Na(Tl)/CsI(Na) scintillator crystals in phoswich configuration to detect X-ray events, filtered by the gamma rays taking advantage of the “sandwich configuration”.
- AGILE: Italian mission. For the first time, AGILE [17] combined, in a single satellite (see Figure 2), a gamma detector (Si-W tracker [18,19], a 30 MeV–50 GeV), an X-ray detector (Si, 18–60 keV), a CsI Calorimeter [20] for the reconstruction of the ray energy gamma and an anti-coincidence system. Launched in 2007, in 2012 it was awarded with the Bruno Rossi prize for having revealed a variability in the emission of the Crab nebula, recording flares likely linked to the neutron star rapidly rotating on its axis [21].
- Fermi: Since 2008, it has been scanning the sky providing a map of the Universe in the gamma ray wavelength. It is the largest operating silicon strip detector in space, with its 70 m2 of active surface. The mission [22] is the result of a collaboration between NASA and ASI, which supports the construction of the LAT detector [23]. Over the almost two decades of operations, FERMI has been awarded with four Bruno Rossi prizes.
2.2. IXPE
- Filter and calibration wheel (FCW): calibration set including sources and filters for specific observations. They are designed to monitor the performance of the detector during the life of the mission, keeping the gain calibrated during the observations, checking the low/high-energy modulation factor and spurious modulation;
- Back-end electronics (BEE): electronic boards (DAQ, data acquisition board to manage the ASIC) and power lines;
- Stray-light collimator (STC): coupled with the X-ray shield, prevent contamination induced by photons impinging from outside the FoV;
- DU housing (DUH): mechanical and thermal interface of the DU;
- DU wiring (DUW): electrical interfaces (internal to the DU) between the BEE and the GPD;
- Testing/calibration stations: X-ray sources, collimators, crystals and automated stages;
2.3. eXTP
- Spectroscopic focusing array (SFA): nine Wolter-I grazing incidence X-ray telescopes dedicated to the cosmic spectral and timing observations in the range between 0.5 and 10 keV. Focal plane camera is made by a 19-hexagonal cell SDD (Silicon Drift Detector) array (450 m thick and 3.2 mm sides), with the energy resolution below 180 eV at 6 keV, the time resolution of 10 s, the dead time (expected) of less than 5% at 1 Crab and angular resolution below 1 arcmin.
- Polarimetry focusing array (PFA): four X-ray imaging telescopes optimized for polarimetry, operating in the energy range of 2–8 keV. It is equipped with GPDs (possibly equipped with ASICs developed by Italy/INFN) at the focal plane to provide spatial, energy, and/or temporal resolved X-ray polarimetry at high sensitivity. GPDs determine the 2D ionization track of the photoelectron in the gas chamber and infer the polarization of the incident X-ray beam via the modulation of the emission angle reconstructed from the track image.
- Wide Field Monitor (WFM): three pairs, orthogonal to each other, for accurate 2D position, of coded mask cameras equipped with position-sensitive SDDs (2–50 keV, FWHM 300 eV at 6 keV, time accuracy 1 s and FoV 70° × 70°–90° × 90° at zero response). Each camera is composed of one detector tray with four SDDs, four FEEs (Front-End Electronics), four Be windows, one BEE (Back-End Electronic) assembly, one collimator, and one 150 m Tungsten foil-coded mask (260 mm × 260 mm area, 1040 × 16 open/closed elements) to project images from a certain direction in the sky on the position-sensitive SDD.
- Large area detector (LAD): photon-by-photon spectral and timing measurements on a large collecting area in the energy range of 2–30 keV (80 keV for out-of-field-of-view burst events) with FoV of about 1° due to the collimator needed for an X-ray background. Each module consists of a set of a 4 × 4 large area SDDs and 4 × 4 capillary plate collimators, supported by two grid-like frame reduction. Overall, each module consists of a collimator (16 co-aligned collimator plate tiles), the detector tray (16 SDDs and the FEEs), the MBEE (Module Back-End Electronic) (two sectors, eight detectors each for SDDs, FEEs, PSUs, management and readout), the PSU, a 300 m Lead back-shield to reduce the background events in the SDDs, and a 2 mm aluminum radiator for heat dissipation.
2.4. NewAthena
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pittori, C.; on behalf of SSDC Team. The AGILE data center and its legacy. Rend. Lincei. Sci. Fis. Nat. 2019, 30, 217–223. [Google Scholar] [CrossRef]
- Frontera, F. The key role of BeppoSAX in the GRB history. Rend. Lincei. Sci. Fis. Nat. 2019, 30, 171–184. [Google Scholar] [CrossRef]
- D’Amico, F.; Tavani, M.; Annoni, G.; Contini, C.; Tempesta, P.; Masci, E.; Pittori, C.; Argan, A.; Negri, B. In-orbit operations of AGILE mission: 11 years successfully in space. Rend. Lincei. Sci. Fis. Nat. 2019, 30, 231–240. [Google Scholar] [CrossRef]
- Deininger, W.D.; Peterson, C.; Kalinowski, W.; Bladt, J.; Ly, T.; Mithcell, S.; Maddox, T.; Osborne, D.; Ruswick, S.; Davis, K.; et al. Imaging X-Ray Polarimetry Explorer (IXPE)-One Year On-Orbit. In Proceedings of the 2023 IEEE Aerospace Conference, Big Sky, MT, USA, 4–11 March 2023; pp. 1–18. [Google Scholar]
- Zhang, S.-N.F.; Santangelo, A.; Feroci, M.; Xu, Y.P.; Lu, F.J.; Chen, Y.; Feng, H.; Zhang, S.; Brandt, S.; Hernanz, M.; et al. The enhanced X-ray Timing and Polarimetry mission-eXTP. Sci. China Phys. Mech. Astron. 2018, 62, 1869–1927. [Google Scholar] [CrossRef]
- Barcons, X.; Barret, D.; Decourchelle, A.; den Herder, J.W.; Fabian, A.C.; Matsumoto, H.; Lumb, D.; Nandra, K.; Piro, L.; Smith, R.K.; et al. Athena: ESA’s X-ray observatory for the late 2020s. Astron. Notes 2017, 338, 153–158. [Google Scholar] [CrossRef]
- Piro, L. BeppoSAX overview. AIP Conf. Proc. 1997, 410, 1485–1492. [Google Scholar]
- Frontera, F.; Costa, E.; Piro, L.; Muller, J.M.; Amati, L.; Feroci, M.; Fiore, F.; Pizzichini, G.; Tavani, M.; Castro-Tirado, A.; et al. Spectral Properties of the Prompt X-ray Emission and Afterglow from the Gamma-Ray Burst of 1997 February 28. Astrophys. J. 1998, 493, 67–70. [Google Scholar] [CrossRef]
- Pian, E.; Amati, L.; Antonelli, L.A.; Butler, R.C.; Costa, E.; Cusumano, G.; Danziger, J.; Feroci, M.; Fiore, F.; Frontera, F.; et al. BeppoSAX detection and follow-up of GRB 980425. Astron. Astrophys. Suppl. Ser. 1999, 138, 463–464. [Google Scholar] [CrossRef]
- Boella, G.; Butler, R.C.; Perola, G.C.; Piro, L.; Scarsi, L.; Bleeker, A.M. BeppoSAX, the wide band mission for X-ray astronomy. Astron. Astrophys. Suppl. Ser. 1997, 122, 299–307. [Google Scholar] [CrossRef]
- Jager, R.; Mels, W.A.; Brinkman, A.C.; Galama, M.Y.; Goulooze, H.; Heise, J.; Lowes, P.; Muller, J.M.; Naber, A.; Rook, A.; et al. The Wide Field Cameras onboard the BeppoSAX X-ray Astronomy Satellite. Astron. Astrophys. Suppl. Ser. 1997, 122, 557–572. [Google Scholar] [CrossRef]
- Costa, E.; Frontera, F.; Dal Fiume, D.; Amati, L.; Cinti, M.N.; Collina, P.; Feroci, M.; Nicastro, L.; Orlandini, M.; Palazzi, E.; et al. The Gamma-Ray Bursts Monitor onboard SAX. Adv. Space Res. 1998, 22, 1129–1132. [Google Scholar] [CrossRef]
- Manzo, G.; Giarrusso, S.; Santangelo, A.; Ciralli, F.; Fazio, G.; Piraino, S.; Segreto, A. The high pressure gas scintillation proportional counter on-board the BeppoSAX X-ray astronomy satellite. Astron. Astrophys. Suppl. Ser. 1997, 122, 341–356. [Google Scholar] [CrossRef]
- Frontera, F.; Costa, E.; Dal Fiume, D.; Feroci, M.; Nicastro, L.; Orlandini, M.; Palazzi, E.; Zavattini, G. The high energy instrument PDS on-board the BeppoSAX X-ray astronomy satellite. Astron. Astrophys. Suppl. Ser. 1997, 122, 357–389. [Google Scholar] [CrossRef]
- Parmar, A.N.; Martin, D.D.E.; Bavdaz, M.; Favata, F.; Kuulkers, E.; Vacanti, G.; Lammers, U.; Peacock, A.; Taylor, B.G. The low-energy concentrator spectrometer on-board the BeppoSAX X-ray astronomy satellite. Astron. Astrophys. Suppl. Ser. 1997, 122, 309–326. [Google Scholar] [CrossRef]
- Boella, G.; Chiappetti, L.; Conti, G.; Cusumano, G.; Del Sordo, S.; La Rosa, G.; Maccarone, M.C.; Mineo, T.; Molendi, S.; Re, S.; et al. The medium-energy concentrator spectrometer on board the BeppoSAX X-ray astronomy satellite. Astron. Astrophys. Suppl. Ser. 1997, 122, 327–340. [Google Scholar] [CrossRef]
- Tavani, M.; Barbiellini, G.; Argan, A.; Boffelli, F.; Bulgarelli, A.; Caraveo, P.; Cattaneo, P.W.; Chen, A.W.; Cocco, V.; Costa, E.; et al. The AGILE mission. Astron. Astrophys. 2009, 502, 995–1013. [Google Scholar] [CrossRef]
- Barbiellini, G. AGILE development and silicon detector. Rend. Lincei. Sci. Fis. Nat. 2019, 30, 51–56. [Google Scholar] [CrossRef]
- Prest, M.; Barbiellini, G.; Bordignon, G.; Fedel, G.; Liello, F.; Longo, F.; Pontoni, C.; Vallazza, E. The AGILE silicon tracker: An innovative gamma-ray instrument for space. Nucl. Instrum. Methods Phys. Res.-A 2003, 501, 280–287. [Google Scholar] [CrossRef]
- Labanti, C.; Marisaldi, M.; Fuschino, F.; Galli, M.; Argan, A.; Bulgarelli, A.; Di Cocco, G.; Gianotti, F.; Tavani, M.; Trifoglio, M. Design and construction of the Mini-Calorimeter of the AGILE satellite. Nucl. Instrum. Methods Phys. Res.-A 2009, 598, 470–479. [Google Scholar] [CrossRef]
- Striani, E.; Tavani, M.; Vittorini, V.; Donnarumma, I.; Giuliani, A.; Pucella, G.; Argan, A.; Bulgarelli, A.; Colafrancesco, S.; Cardillo, M.; et al. Variable gamma-ray emission from the crab nebula: Short Flares and long “waves”. Astrophys. J. 2013, 765, 52. [Google Scholar] [CrossRef]
- Michelson, P.F.; Atwood, W.B.; Ritz, S. Fermi Gamma-ray Space Telescope: High-Energy Results from the First Year. Rep. Prog. Phys. 2010, 73, 074901. [Google Scholar] [CrossRef]
- Atwood, W.B.; Abdo, A.A.; Ackermann, M.; Althouse, W.; Anderson, B.; Axelsson, M.; Baldini, L.; Ballet, J.; Band, D.L.; Barbiellini, G.; et al. The large area telescope on the fermi gamma-ray space telescope mission. Astrophys. J. 2009, 697, 1061. [Google Scholar] [CrossRef]
- Xie, F.; Di Marco, A.; La Monaca, F.; Liu, K.; Muleri, F.; Bucciantini, N.; Romani, R.W.; Costa, E.; Rankin, J.; Soffitta, P.; et al. Vela pulsar wind nebula X-rays are polarized to near the synchrotron limit. Nature 2022, 612, 658–660. [Google Scholar] [CrossRef] [PubMed]
- Ferrazzoli, R.; Slane, P.; Prokhorov, D.; Zhou, P.; Vink, J.; Bucciantini, N.; Costa, E.; Di Lalla, N.; Di Marco, A.; Soffitta, P.; et al. X-Ray Polarimetry Reveals the Magnetic-field Topology on Sub-parsec Scales in Tycho’s Supernova Remnant. Astrophys. J. 2023, 945, 14. [Google Scholar] [CrossRef]
- Marin, F.; Churazov, E.; Khabibullin, I.; Ferrazzoli, R.; Di Gesu, L.; Barnouin, T.; Di Marco, A.; Middei, R.; Vikhlinin, A.; Costa, E.; et al. X-ray polarization evidence for a 200-year-old flare of Sgr A*. Nature 2023, 619, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Krawczynski, H.; Muleri, F.; Dovčiak, M.; Veledina, A.; Rodriguez Cavero, N.; Svoboda, J.; Ingram, A.; Matt, G.; Garcia, J.A.; Loktev, V.; et al. Polarized x-rays constrain the disk-jet geometry in the black hole x-ray binary Cygnus X-1. Science 2022, 378, 650–654. [Google Scholar] [CrossRef] [PubMed]
- Taverna, R.; Turolla, R.; Muleri, F.; Heyl, J.; Zane, S.; Baldini, L.; González-Caniulef, D.; Bachetti, M.; Rankin, J.; Caiazzo, I.; et al. Polarized x-rays from a magnetar. Science 2022, 378, 646–650. [Google Scholar] [CrossRef]
- Di Gesu, L.; Donnarumma, I.; Tavecchio, F.; Agudo, I.; Barnounin, T.; Cibrario, N.; Di Lalla, N.; Di Marco, A.; Escudero, J.; Errando, M.; et al. The X-ray Polarization View of Mrk 421 in an Average Flux State as Observed by the Imaging X-ray Polarimetry Explorer. Astrophys. J. Lett. 2022, 1, L7. [Google Scholar] [CrossRef]
- Soffitta, P.; Baldini, L.; Bellazzini, R.; Costa, E.; Latronico, L.; Muleri, F.; Del Monte, E.; Fabiani, S.; Minuti, M.; Pinchera, M.; et al. The Instrument of the Imaging X-ray Polarimetry Explorer. Astron. J. 2021, 162, 208. [Google Scholar] [CrossRef]
- Baldini, L.; Barbanera, M.; Bellazzini, R.; Bonino, R.; Borotto, F.; Brez, A.; Caporale, C.; Cardelli, C.; Castellano, S.; Ceccanti, M.; et al. Design, construction, and test of the Gas Pixel Detectors for the IXPE mission. Astropart. Phys. 2021, 133, 102628. [Google Scholar] [CrossRef]
- Manfreda, A. The Gas Pixel Detectors for the Imaging X-Ray Polarimetry Explorer mission. Nucl. Instrum. Methods Phys. Res.-A 2023, 1049, 168044. [Google Scholar] [CrossRef]
- O’Dell, S.L.; Baldini, L.; Bellazzini, R.; Costa, E.; Elsner, F.R.; Kaspi, V.M.; Kolodziejczak, J.J.; Latronico, L.; Marshall, H.L.; Matt, G.; et al. The Imaging X-ray Polarimetry Explorer (IXPE): Technical overview. In Proceedings of the SPIE Astronomical Telescopes + Instrumentation, 2018, Austin, TX, USA, 10–15 June 2018; Volume 10699. [Google Scholar]
- Minuti, M.; Baldini, L.; Bellazzini, R.; Brez, A.; Ceccanti, M.; Krummenacher, F.; Latronico, L.; Lucchesi, L.; Manfreda, A.; Orsini, L.; et al. XPOL-III: A new-generation VLSI CMOS ASIC for high-throughput X-ray polarimetry. Nucl. Instrum. Methods Phys. Res.-A 2023, 1046, 167674. [Google Scholar] [CrossRef]
- Muleri, F.; Piazzolla, R.; Di Marco, A.; Fabiani, S.; La Monaca, F.; Lefevre, C.; Morbidini, A.; Rankin, J.; Soffitta, P.; Tobia, A.; et al. The IXPE instrument calibration equipment. Astropart. Phys. 2021, 136, 102658. [Google Scholar] [CrossRef]
- Di Marco, A.; Fabiani, S.; La Monaca, F.; Muleri, F.; Rankin, J.; Soffitta, P.; Xie, F.; Amici, F.; Attinà, P.; Bachetti, M.; et al. Calibration of the IXPE Focal Plane X-ray Polarimeters to Polarized Radiation. Astron. J. 2022, 164, 103. [Google Scholar] [CrossRef]
- in’t Zand, J.J.M.; Bozzo, E.; Qu, J.; Li, X.-D.; Amati, L.; Chen, Y.; Donnarumma, I.; Doroshenko, V.; Drake, S.A.; Hernanz, M.; et al. Observatory science with eXTP. Sci. China Phys. Mech. Astron. 2019, 62, 29506. [Google Scholar] [CrossRef]
- Rachevski, A.; Antonelli, M.; Bellutti, P.; Bonvicini, V.; Borghi, G.; Campana, R.; Ceraudo, F.; Cirrincione, D.; Del Monte, E.; Evangelista, Y.; et al. eXTP Large Area Detector: Qualification procedure of the mass production. Nucl. Instrum. Methods Phys. Res.-A 2023, 1046, 167750. [Google Scholar] [CrossRef]
- Hernanz, M.; Brandt, S.; Feroci, M.; Orleansky, P.; Santangelo, A.; Schanne, S.; Xin, W.; in’t Zand, J.; Zhang, S.N.; Xu, Y.P.; et al. The wide field monitor onboard the eXTP mission. In Proceedings of the Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray, Austin, TX, USA, 10–15 June 2018; Volume 10699, p. 1069948. [Google Scholar]
- Evangelista, Y.; Donnarumma, I.; Campana, R.; Schmid, C.; Feroci, M. Instrumental and scientific simulations of the LOFT wide field monitor. In Proceedings of the Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray, Montréal, QC, Canada, 22–27 June 2014; Volume 9144, p. 914468. [Google Scholar]
- Carpenter, J.; Iono, D.; Kemper, F.; Wooten., A. The ALMA Development Program: Roadmap to 2030. arXiv 2020, arXiv:2001.11076. [Google Scholar] [CrossRef]
- Padovani, P.; Cirasuolo, M. The Extremely Large Telescope. Contemp. Phys. 2023, 64, 47–64. [Google Scholar] [CrossRef]
- Milam, S.N.; Stansberry, J.A.; Sonneborn, G.; Thomas, C. The James Webb Space Telescope’s Plan for Operations and Instrument Capabilities for Observations in the Solar System. Publ. Astron. Soc. Pac. 2016, 128, 018001. [Google Scholar] [CrossRef]
- McMullin, J.P.; Diamond, P.; McPherson, A.M.; Laing, R.; Dewdney, P.; Casson, A.; Stringhetti, L.; Rees, N.; Stevenson, T.; Lilley, M.; et al. The Square Kilometre Array project. In Proceedings of the Ground-Based and Airborne Telescopes VIII, Online Only, CA, USA, 14–18 December 2020; Volume 11445, p. 1144512. [Google Scholar]
- The CTA Consortium; Ong, R.A. The Cherenkov Telescope Array Science Goals and Current Status. In Proceedings of the EPJ Web of Conferences, RICAP18, 7th Roma International Conference on Astroparticle Physics, Roma, Italy, 4–7 September 2018; 219, p. 01038. [Google Scholar]
- Cahillan, C.; Mansell, G. Review of the Advanced LIGO Gravitational Wave Observatories Leading to Observing Run Four. Galaxies 2022, 10, 36. [Google Scholar] [CrossRef]
- Nardecchia, I. Detecting Gravitational Waves with Advanced Virgo. Galaxies 2022, 10, 28. [Google Scholar] [CrossRef]
- Amaro-Seoane, P.; Andrews, J.; Arca Sedda, M.; Askar, A.; Baghi, Q.; Balasov, R.; Bartos, I.; Bavera, S.; Bellovary, J.; Berry, C.P.L.; et al. Astrophysics with the Laser Interferometer Space Antenna. Living Rev. Relativ. 2023, 26, 2. [Google Scholar] [CrossRef]
- The IceCube Collaboration. Highlights from the IceCube Neutrino Observatory. arXiv 2023, arXiv:2310.12840. [Google Scholar] [CrossRef]
- Margiotta, A.; on behalf KM3Net Collaboration. The KM3NeT deep-sea neutrino telescope. Nucl. Instrum. Methods Phys. Res.-A 2014, 766, 83–87. [Google Scholar] [CrossRef]
- Barret, D.; Albouys, V.; den Herder, J.-W.; Piro, L.; Cappi, M.; Huovelin, J.; Kelley, R.; Mas-Hesse, J.M.; Paltani, S.; Rauw, G.; et al. The Athena X-ray Integral Field Unit: A consolidated design for the system requirement review of the preliminary definition phase. Exp. Astron. 2023, 55, 373–426. [Google Scholar] [CrossRef]
- Meidinger, N.; Albrecht, S.; Beitler, C.; Bonholzer, M.; Emberger, V.; Frank, J.; Lederhuber, A.; Müller-Seidlitz, J.; Nandra, K.; Oser, J.; et al. Development status of the wide field imager instrument for Athena. In Proceedings of the Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray, Online Only, CA, USA, 14–18 December 2020; Volume 11444, p. 114440T. [Google Scholar]
- Macculi, C.; Argan, A.; Brienza, D.; D’Andrea, M.; Lotti, S.; Minervini, G.; Piro, L.; Biasotti, M.; Ferrari Barusso, L.; Gatti, F.; et al. The Cryogenic AntiCoincidence Detector for ATHENA X-IFU: The Project Status. J. Low Temp. Phys. 2020, 199, 416–424. [Google Scholar] [CrossRef]
- D’Andrea, M.; Macculi, C.; Torrioli, G.; Argan, A.; Brienza, D.; Lotti, S.; Minervini, G.; Piro, L.; Biasotti, M.; Ferrari Barusso, L.; et al. The Demonstration Model of the ATHENA X-IFU Cryogenic AntiCoincidence Detector. J. Low Temp. Phys. 2020, 199, 65–72. [Google Scholar] [CrossRef]
- Chiarello, F.; Torrioli, G.; Argan, A.; D’Andrea, M.; Macculi, C.; Piro, L. Study on the trigger logic for the X-IFU Athena anticoincidence system. In Proceedings of the In Space Telescopes and Instrumentation 2022: Ultraviolet to Gamma Ray, Montréal, QC, Canada, 17–23 July 2022; Volume 12181, pp. 1218141-1–1218141-8. [Google Scholar]
- Macculi, C.; Argan, A.; D’Andrea, M.; Lotti, S.; Minervini, G.; Piro, L.; Ferrari Barusso, L.; Boragno, C.; Celasco, E.; Gallucci, G.; et al. The Cryogenic Anticoincidence detector for the newAthena X-IFU instrument: A program overview. Condens. Matter 2023, 8, 108. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Number of Pixels | 4 |
Pixel size | 1.23 cm2 (TBC due to newAthena) |
TES material | Ir/Au |
Transition temperature | 100 mK (TBC) |
Absorber material | Silicon |
Absorber thickness | 500 m |
Distance from TES array | <1 mm |
Detector dynamic energy range | 6 keV–950 keV (TBC) |
Low energy threshold | <6 keV |
Power dissipation @ 50 mK | 10 nW/pixel |
Rise time | <15 s (TBC) |
ETF decay time | <250 s (TBC) |
Thermal decay time | <2.5 ms (TBC) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miliucci, M.; Volpe, A.; Fabiani, S.; Feroci, M.; Latronico, L.; Macculi, C.; Piro, L.; D’Andrea, M.; Gatti, F.; Puccetti, S.; et al. X-ray Technologies for Astrophysics Missions Supported by the Italian Space Agency. Condens. Matter 2024, 9, 11. https://doi.org/10.3390/condmat9010011
Miliucci M, Volpe A, Fabiani S, Feroci M, Latronico L, Macculi C, Piro L, D’Andrea M, Gatti F, Puccetti S, et al. X-ray Technologies for Astrophysics Missions Supported by the Italian Space Agency. Condensed Matter. 2024; 9(1):11. https://doi.org/10.3390/condmat9010011
Chicago/Turabian StyleMiliucci, Marco, Angela Volpe, Sergio Fabiani, Marco Feroci, Luca Latronico, Claudio Macculi, Luigi Piro, Matteo D’Andrea, Flavio Gatti, Simonetta Puccetti, and et al. 2024. "X-ray Technologies for Astrophysics Missions Supported by the Italian Space Agency" Condensed Matter 9, no. 1: 11. https://doi.org/10.3390/condmat9010011
APA StyleMiliucci, M., Volpe, A., Fabiani, S., Feroci, M., Latronico, L., Macculi, C., Piro, L., D’Andrea, M., Gatti, F., Puccetti, S., Soffitta, P., & Cavazzuti, E. (2024). X-ray Technologies for Astrophysics Missions Supported by the Italian Space Agency. Condensed Matter, 9(1), 11. https://doi.org/10.3390/condmat9010011