Hubbard Bands and Exotic States in Doped and Undoped Mott Systems: The Kotliar–Ruckenstein Representation
Abstract
1. Introduction
2. Slave–Particle Representations of the Hubbard Model
3. Mott Transition and Hubbard Bands in the Paramagnetic and Spin–Liquid State
4. Magnetic States of the Doped Mott Insulator
4.1. Derivation of the Hamiltonian in the Spin-Wave Region
4.2. Electron States and Spin Waves in the Strongly Correlated Hubbard Model
4.3. Antiferromagnetic Case: Small and Large Fermi Surfaces
5. Discussion
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mott, N.F. Metal-Insulator Transitions; Taylor and Francis: London, UK, 1974. [Google Scholar]
- Imada, M.; Fujimori, A.; Tokura, Y. Metal-insulator transitions. Rev. Mod. Phys. 1998, 70, 1039. [Google Scholar] [CrossRef]
- Igoshev, P.A.; Irkhin, Y.V. Metal-insulator transition and antiferromagnetism in the generalized Hubbard model: Treatment of correlation effects. Phys. Rev. B 2021, 104, 045109. [Google Scholar] [CrossRef]
- Vojta, M. Frustration and quantum criticality. Rep. Prog. Phys. 2018, 81, 064501. [Google Scholar] [CrossRef] [PubMed]
- Senthil, T. Theory of a continuous Mott transition in two dimensions. Phys. Rev. B 2008, 78, 045109. [Google Scholar] [CrossRef]
- Anderson, P.W. The resonating valence bond state in La2CuO4 and superconductivity. Science 1987, 235, 1196–1198. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.A.; Nagaosa, N.; Wen, X.G. Doping a Mott insulator: Physics of high-temperature superconductivity. Rev. Mod. Phys. 2006, 78, 17. [Google Scholar] [CrossRef]
- Kotliar, G.; Ruckenstein, A.E. New functional integral approach to strongly correlated Fermi systems: The Gutzwiller approximation as a saddle point. Phys. Rev. Lett. 1986, 57, 1362. [Google Scholar] [CrossRef]
- Wen, X.-G. Quantum Field Theory of Many-Body Systems; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Irkhin, V.Y.; Skryabin, Y.N. Modern physics of the condensed state: Strong correlations and quantum topology. Phys. Met. Metallogr. 2019, 120, 513–548. [Google Scholar] [CrossRef]
- Senthil, T. Critical Fermi surfaces and non-Fermi liquid metals. Phys. Rev. B 2008, 78, 035103. [Google Scholar] [CrossRef]
- Sachdev, S.; Metlitski, M.A.; Punk, M. Antiferromagnetism in metals: From the cuprate superconductors to the heavy fermion materials. J. Phys. Cond. Mat. 2012, 24, 294205. [Google Scholar] [CrossRef]
- Punk, M.; Sachdev, S. Fermi surface reconstruction in hole-doped t-J models without long-range antiferromagnetic order. Phys. Rev. B 2012, 85, 195123. [Google Scholar] [CrossRef]
- Sachdev, S. Topological order, emergent gauge fields, and Fermi surface reconstruction. Rep. Progr. Phys. 2018, 82, 014001. [Google Scholar] [CrossRef] [PubMed]
- Volovik, G.E. Exotic Lifshitz transitions in topological materials. Phys. Usp. 2018, 61, 89–98. [Google Scholar] [CrossRef]
- Irkhin, V.Y. Quantum topological transitions and spinons in metallic ferro-and antiferromagnets. Phys. Lett. A 2019, 383, 1506–1509. [Google Scholar] [CrossRef]
- Irkhin, V.Y.; Skryabin, Y.N. Topological Phase Transitions in Strongly Correlated Systems: Application to Co3Sn2S2. JETP Lett. 2021, 114, 551–555. [Google Scholar] [CrossRef]
- Lavagna, M. Functional-integral approach to strongly correlated Fermi systems: Quantum fluctuations beyond the Gutzwiller approximation. Phys. Rev. B 1990, 41, 142. [Google Scholar] [CrossRef]
- Raimondi, R.; Castellani, C. Lower and upper Hubbard bands: A slave-boson treatment. Phys. Rev. B 1993, 48, 11453. [Google Scholar] [CrossRef]
- Irkhin, V.Y.; Irkhin, Y.P. Many-electron operator approach in the solid state theory. Phys. Status Solidi B 1994, 183, 9–58. [Google Scholar] [CrossRef]
- Spalek, J.; Fidrysiak, M.; Zegrodnik, M.; Biborski, A. Superconductivity in high-Tc and related strongly correlated systems from variational perspective: Beyond mean field theory. Phys. Rep. 2022, 959, 1–117. [Google Scholar] [CrossRef]
- Barnes, S.E. New method for the Anderson model. J. Phys. F Met. Phys. 1976, 6, 1375. [Google Scholar] [CrossRef]
- Coleman, P. New approach to the mixed-valence problem. Phys. Rev. B 1984, 29, 3035. [Google Scholar] [CrossRef]
- Kane, C.L.; Lee, P.A.; Read, N. Motion of a single hole in a quantum antiferromagnet. Phys. Rev. B 1989, 39, 6880. [Google Scholar] [CrossRef] [PubMed]
- Jolicoeur, T.; Le Guillou, J.C. Fluctuations beyond the Gutzwiller approximation in the slave-boson approach. Phys. Rev. B 1991, 44, 2403. [Google Scholar] [CrossRef] [PubMed]
- Arrigoni, E.; Strinati, G.C. Beyond the Gutzwiller approximation in the slave-boson approach: Inclusion of fluctuations with the correct continuum limit of the functional integral. Phys. Rev. Lett. 1993, 71, 3178. [Google Scholar] [CrossRef] [PubMed]
- Fresard, R.; Kopp, T. Exact results in a slave boson saddle point approach for a strongly correlated electron model. Phys. Rev. B 2008, 78, 073108. [Google Scholar] [CrossRef][Green Version]
- Fresard, R.; Kopp, T. Exact results with the Kotliar-Ruckenstein slave-boson representation. Ann. Phys. 2012, 524, 175–181. [Google Scholar] [CrossRef]
- Li, T.; Wölfle, P.; Hirschfeld, P.J. Spin-rotation-invariant slave-boson approach to the Hubbard model. Phys. Rev. B 1989, 40, 6817. [Google Scholar] [CrossRef]
- Fresard, R.; Wölfle, P. Unified slave boson representation of spin and charge degrees of freedom for strongly correlated Fermi systems. Int.J. Mod. Phys. B 1992, 6, 685–704. [Google Scholar] [CrossRef]
- Lee, S.S.; Lee, P.A. U(1) gauge theory of the Hubbard model: Spin liquid states and possible application to κ-(BEDT-TTF)2Cu2(CN)3. Phys. Rev. Lett. 2005, 95, 036403. [Google Scholar] [CrossRef]
- Hermele, M. SU (2) gauge theory of the Hubbard model and application to the honeycomb lattice. Phys. Rev. B 2007, 76, 035125. [Google Scholar] [CrossRef][Green Version]
- Vollhardt, D.; Wölfle, P.; Anderson, P.W. Gutzwiller-Hubbard lattice-gas model with variable density: Application to normal liquid He3. Phys. Rev. B 1987, 35, 6703. [Google Scholar] [CrossRef] [PubMed]
- Senthil, T.; Lee, P.A. Coherence and pairing in a doped Mott insulator: Application to the cuprates. Phys. Rev. Lett. 2009, 103, 076402. [Google Scholar] [CrossRef] [PubMed]
- Harris, A.B.; Lange, R.V. Single-particle excitations in narrow energy bands. Phys. Rev. 1967, 157, 295. [Google Scholar] [CrossRef]
- Nagaosa, N.; Lee, P.A. Confinement and Bose condensation in gauge theory of high-Tc superconductors. Phys. Rev. B 2000, 61, 9166. [Google Scholar] [CrossRef]
- Irkhin, V.Y. Hubbard bands, Mott transition and deconfinement in strongly correlated systems. JETP Lett. 2023, 117, 48–53. [Google Scholar] [CrossRef]
- Dao, V.H.; Fresard, R. Collective modes in the paramagnetic phase of the Hubbard model. Phys. Rev. B 2017, 95, 165127. [Google Scholar] [CrossRef]
- Irkhin, V.Y.; Katsnelson, M.I. Spin waves in narrow band ferromagnet. J. Phys. C 1985, 18, 4173. [Google Scholar] [CrossRef]
- Irkhin, V.Y.; Katsnelson, M.I. Ground state and electron-magnon interaction in an itinerant ferromagnet: Half-metallic ferromagnets. J. Phys. Cond. Matt. 1990, 2, 7151. [Google Scholar] [CrossRef]
- Nagaoka, Y. Ferromagnetism in a narrow, almost half-filled s band. Phys. Rev. 1966, 147, 392. [Google Scholar] [CrossRef]
- Fresard, R.; Wölfle, P. Spiral magnetic states in the large-U Hubbard model: A slave boson approach. J. Phys. Cond. Mat. 1992, 4, 3625. [Google Scholar] [CrossRef]
- Igoshev, P.A.; Timirgazin, M.A.; Gilmutdinov, V.F.; Arzhnikov, A.K.; Irkhin, V.Y. Spiral magnetism in the single-band Hubbard model: The Hartree-Fock and slave-boson approaches. J. Phys. Condens. Matter 2015, 27, 446002. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, T.C.; Wen, X.G. Doped carrier formulation and mean-field theory of the tt’t”J model. Phys. Rev. B 2006, 74, 155113. [Google Scholar] [CrossRef]
- Irkhin, V.Y.; Skryabin, Y.N. Formation of exotic states in the s–d exchange and t–J models. JETP Lett. 2017, 106, 167–171. [Google Scholar] [CrossRef][Green Version]
- Shen, Y.; Li, Y.D.; Wo, H.; Li, Y.; Shen, S.; Pan, B.; Wang, Q.; Walker, H.C.; Steffens, P.; Boehm, M.; et al. Evidence for a spinon Fermi surface in a triangular-lattice quantum-spin-liquid candidate. Nature 2016, 540, 559–562. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Yu, S.L.; Li, S.; Yu, W.; Li, J.X. Experimental identification of quantum spin liquids. Npj Quantum Mater. 2019, 4, 12. [Google Scholar] [CrossRef]
- Senthil, T.; Vojta, M.; Sachdev, S. Weak magnetism and non-Fermi liquids near heavy-fermion critical points. Phys. Rev. B 2004, 69, 035111. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irkhin, V.Y. Hubbard Bands and Exotic States in Doped and Undoped Mott Systems: The Kotliar–Ruckenstein Representation. Condens. Matter 2023, 8, 75. https://doi.org/10.3390/condmat8030075
Irkhin VY. Hubbard Bands and Exotic States in Doped and Undoped Mott Systems: The Kotliar–Ruckenstein Representation. Condensed Matter. 2023; 8(3):75. https://doi.org/10.3390/condmat8030075
Chicago/Turabian StyleIrkhin, Valentin Yu. 2023. "Hubbard Bands and Exotic States in Doped and Undoped Mott Systems: The Kotliar–Ruckenstein Representation" Condensed Matter 8, no. 3: 75. https://doi.org/10.3390/condmat8030075
APA StyleIrkhin, V. Y. (2023). Hubbard Bands and Exotic States in Doped and Undoped Mott Systems: The Kotliar–Ruckenstein Representation. Condensed Matter, 8(3), 75. https://doi.org/10.3390/condmat8030075