Prospects of Using Fe-Ga Alloys for Magnetostrictive Applications at High Frequencies
Abstract
:1. Introduction
2. Comparison of AC Functional Properties of Fe-Ga with the Most Common Magnetostrictive Alloys
3. Engineering Solutions for High-Frequency Applications of Fe-Ga
3.1. Laminated Stacks
3.2. Metal/Insulator Composites
4. Prospects and Directions for Further Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hristoforou, E.; Ktena, A.; Gong, S. Magnetic Sensors: Taxonomy, Applications, and New Trends. IEEE Trans. Magn. 2019, 55, 1–14. [Google Scholar] [CrossRef]
- Claeyssen, F.; Lhermet, N.; Le Letty, R.L.; Bouchilloux, P. Actuators, transducers and motors based on giant magnetostrictive materials. J. Alloys Compd. 1997, 258, 61–73. [Google Scholar] [CrossRef]
- Dapino, M.J.; Deng, Z.; Calkins, F.T.; Flatau, A.B. Magnetostrictive Devices. In Wiley Encyclopedia of Electrical and Electronics Engineering; Webster, J.G., Ed.; 2016; Available online: https://onlinelibrary.wiley.com/doi/10.1002/047134608X.W4549.pub2 (accessed on 4 September 2023).
- Akinaga, H. Recent advances and future prospects in energy harvesting technologies. Jpn. J. Appl. Phys. 2020, 59, 110201. [Google Scholar] [CrossRef]
- Gao, C.; Zeng, Z.; Peng, S.; Shuai, C. Magnetostrictive alloys: Promising materials for biomedical applications. Bioact. Mater. 2022, 8, 177–195. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, G.; Celegato, F.; Barrera, G.; Olivetti, E.S.; Coisson, M.; Hajduček, J.; Arregi, J.A.; Čelko, L.; Uhlíř, V.; Rizzi, P.; et al. Magnetic properties of FeGa/Kapton for flexible electronics. Sci. Rep. 2022, 12, 17503. [Google Scholar] [CrossRef] [PubMed]
- Yermakov, A.; Thompson, A.; Coaty, C.; Sabo, R.; Law, C.T.; Elhajjar, R. Flexible Magnetostrictive Nanocellulose Membranes for Actuation, Sensing, and Energy Harvesting Applications. Front. Mater. 2020, 7, 38. [Google Scholar] [CrossRef]
- Golovin, I.S.; Palacheva, V.V.; Mohamed, A.K.; Balagurov, A.M. Structure and Properties of Fe–Ga Alloys as Promising Materials for Electronics. Phys. Met. Metallogr. 2020, 121, 851–893. [Google Scholar] [CrossRef]
- Ma, T.; Gou, J.; Hu, S.; Liu, X.; Wu, C.; Ren, S.; Zhao, H.; Xiao, A.; Jiang, C.; Ren, X.; et al. Highly thermal-stable ferromagnetism by a natural composite. Nat. Commun. 2017, 8, 13937. [Google Scholar] [CrossRef]
- Wang, H.; Zheng, Y.; Liu, J.; Jiang, C.; Li, Y. In vitro corrosion properties and cytocompatibility of Fe-Ga alloys as potential biodegradable metallic materials. Mater. Sci. Eng. C 2017, 71, 60–66. [Google Scholar] [CrossRef]
- Clark, A.E.; Restorff, J.B.; Wun-Fogle, M.; Lograsso, T.A.; Schlagel, D.L. Magnetostrictive Properties of Body-Centered Cubic. IEEE Trans. Magn. 2000, 36, 3238–3240. [Google Scholar] [CrossRef]
- Ueno, T.; Summers, E.; Wun-Fogle, M.; Higuchi, T. Micro-magnetostrictive vibrator using iron-gallium alloy. Sens. Actuators A Phys. 2008, 148, 280–284. [Google Scholar] [CrossRef]
- Yao, Y.; Pan, Y.; Liu, S. Power ultrasound and its applications: A state-of-the-art review. Ultrason. Sonochem. 2020, 62, 104722. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Mo, X.; Li, Y.; Chai, Y.; Liu, Y.; Zhang, Y. A magnetostrictive underwater transducer directly driven by Iron-Gallium alloy (Galfenol) without bias magnetic field. In Proceedings of the OCEANS 2015-MTS/IEEE Washington, Washington, DC, USA, 19–22 October 2015; pp. 5–8. [Google Scholar] [CrossRef]
- Ueno, T.; Miura, H.; Yamada, S. Evaluation of a miniature magnetostrictive actuator using Galfenol under tensile stress. J. Phys. D Appl. Phys. 2011, 44, 2–7. [Google Scholar] [CrossRef]
- Clemente, C.S.; Davino, D. Modeling and characterization of a kinetic energy harvesting device based on galfenol. Materials 2019, 12, 3199. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Dapino, M.J. Modeling and design of Galfenol unimorph energy harvesters. Smart Mater. Struct. 2015, 24, 125019. [Google Scholar] [CrossRef]
- Ahmed, U.; Aydin, U.; Zucca, M.; Palumbo, S.; Kouhia, R.; Rasilo, P. Modeling a Fe-Ga energy harvester fitted with magnetic closure using 3D magneto-mechanical finite element model. J. Magn. Magn. Mater. 2020, 500, 166390. [Google Scholar] [CrossRef]
- Palumbo, S.; Rasilo, P.; Zucca, M. Experimental investigation on a Fe-Ga close yoke vibrational harvester by matching magnetic and mechanical biases. J. Magn. Magn. Mater. 2019, 469, 354–363. [Google Scholar] [CrossRef]
- Xing, Q.; Lograsso, T.A. Effect of cooling rate on magnetoelasticity and short-range order in Fe-Ga alloys. Scr. Mater. 2011, 65, 359–362. [Google Scholar] [CrossRef]
- He, Y.; Jiang, C.; Wu, W.; Wang, B.; Duan, H.; Wang, H.; Zhang, T.; Wang, J.; Liu, J.; Zhang, Z.; et al. Giant heterogeneous magnetostriction in Fe-Ga alloys: Effect of trace element doping. Acta Mater. 2016, 109, 177–186. [Google Scholar] [CrossRef]
- Meng, C.; Wu, Y.; Jiang, C. Design of high ductility FeGa magnetostrictive alloys: Tb doping and directional solidification. Mater. Des. 2017, 130, 183–189. [Google Scholar] [CrossRef]
- Chen, Y.; Fu, Z.; Wu, Y.; Xu, Y.; Xiao, Y.; Wang, J.; Zhang, R.; Jiang, C. Giant heterogeneous magnetostriction induced by charge accumulation-mediated nanoinclusion formation in dual-phase nanostructured systems. Acta Mater. 2021, 213, 116975. [Google Scholar] [CrossRef]
- Adelani, M.O.; Olive-Méndez, S.F.; Espinosa-Magaña, F.; Matutes-Aquino, J.A.; Grijalva-Castillo, M.C. Structural, magnetic and electronic properties of Fe-Ga-Tbx (0 ≤ x ≤ 1.85) alloys: Density-functional theory study. J. Alloys Compd. 2021, 857, 157540. [Google Scholar] [CrossRef]
- Jin, T.; Wang, H.; Chen, Y.; Li, T.; Wang, J.; Jiang, C. Evolution of nanoheterogeneities and correlative influence on magnetostriction in FeGa-based magnetostrictive alloys. Mater. Charact. 2022, 186, 111780. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, J.; Liu, Y.; Li, M.; Jiang, H.; Mu, X.; Bao, X.; Gao, X. Magnetostriction and structure characteristics of Co70Fe30 alloy prepared by directional solidification. J. Magn. Magn. Mater. 2018, 451, 587–593. [Google Scholar] [CrossRef]
- Summers, E.M.; Lograsso, T.A.; Wun-Fogle, M. Magnetostriction of binary and ternary Fe-Ga alloys. J. Mater. Sci. 2007, 42, 9582–9594. [Google Scholar] [CrossRef]
- Steiner, J.; Lisfi, A.; Kakeshita, T.; Fukuda, T.; Wuttig, M. Unique magnetostriction of Fe68.8Pd31.2 attributable to twinning. Sci. Rep. 2016, 6, 34259. [Google Scholar] [CrossRef]
- Petculescu, G.; Leblanc, J.B.; Wun-Fogle, M.; Restorff, J.B.; Burton, W.C.; Cao, J.X.; Wu, R.Q.; Yuhasz, W.M.; Lograsso, T.A.; Clark, A.E. Magnetoelasticity of Fe100-xGex(5 < x < 18) single crystals from 81 K to 300 K. IEEE Trans. Magn. 2009, 45, 4149–4152. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, J.; Yang, B.; Liu, J.; Jiang, C. Morphology evolution and enhanced magnetostriction of (Fe0.81Ga0.19)99.9Tb0.1 crystals prepared by liquid metal cooling Bridgman directional solidification. J. Alloys Compd. 2021, 856, 158166. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Gao, X. Effect of Al substitution for Ga on the mechanical properties of directional solidified Fe-Ga alloys. J. Magn. Magn. Mater. 2017, 423, 245–249. [Google Scholar] [CrossRef]
- Snodgrass, J.D.; McMasters, O.D. Optimized TERFENOL-D manufacturing processes. J. Alloys Compd. 1997, 258, 24–29. [Google Scholar] [CrossRef]
- Yang, Z.; Li, J.; Zhou, Z.; Gong, J.; Bao, X.; Gao, X. Recent Advances in Magnetostrictive Tb-Dy-Fe Alloys. Metals 2022, 12, 341. [Google Scholar] [CrossRef]
- Weng, L.; Li, W.; Sun, Y.; Huang, W.; Wang, B. High frequency characterization of Galfenol minor flux density loops. AIP Adv. 2017, 7, 056023. [Google Scholar] [CrossRef]
- Huang, W.; Xia, Z.; Guo, P.; Weng, L. Analysis and experimental research on high frequency magnetic properties of different magnetostrictive materials under variable temperature conditions. AIP Adv. 2022, 12, 035231. [Google Scholar] [CrossRef]
- Birčáková, Z.; Milyutin, V.; Kollár, P.; Fáberová, M.; Bureš, R.; Füzer, J. Magnetic characteristics and core loss separation in magnetostrictive FeGa and FeGaRE (RE = Tb, Y) alloys. Intermetallics 2022, 151, 107744. [Google Scholar] [CrossRef]
- Zhang, R.; Zhou, C.; Chen, K.; Cao, K.; Zhang, Y.; Tian, F.; Murtaza, A.; Yang, S.; Song, X. Near-zero magnetostriction in magnetostrictive FeCo alloys. Scr. Mater. 2021, 203, 114043. [Google Scholar] [CrossRef]
- Niu, X.; Li, M.; Wang, Q.; Liu, M.; Wang, B.; Huang, W.; Weng, L.; Sun, Y. Non-contact torque sensor based on magnetostrictive Fe30Co70alloy. AIP Adv. 2022, 12, 035112. [Google Scholar] [CrossRef]
- Colaiori, F.; Durin, G.; Zapperi, S. Eddy current damping of a moving domain wall: Beyond the quasistatic approximation. Phys. Rev. B Condens. 2007, 76, 224416. [Google Scholar] [CrossRef]
- Sondheimer, E.H. The mean free path of electrons in metals. Adv. Phys. 2001, 50, 499–537. [Google Scholar] [CrossRef]
- Xu, S.F.; Zhang, H.P.; Wang, W.Q.; Guo, S.H.; Zhu, W.; Zhang, Y.H.; Wang, X.L.; Zhao, D.L.; Chen, J.L.; Wu, G.H. Magnetostriction and electrical resistivity of Mn doped Fe81Ga19 alloys. J. Phys. D Appl. Phys. 2008, 41, 135304. [Google Scholar] [CrossRef]
- Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef]
- Milyutin, V.; Birčáková, Z.; Fáberová, M.; Bureš, R.; Kollár, P.; Füzer, J. Effect of Rare-Earth Doping on Dynamic Magnetic Properties of FeGa Alloy. Mater. Sci. Forum 2023, 1081, 149–154. [Google Scholar] [CrossRef]
- Javed, A.; Szumiata, T.; Morley, N.A.; Gibbs, M.R.J. An investigation of the effect of structural order on magnetostriction and magnetic behavior of Fe-Ga alloy thin films. Acta Mater. 2010, 58, 4003–4011. [Google Scholar] [CrossRef]
- Boesenberg, A.J.; Restorff, J.B.; Wun-Fogle, M.; Sailsbury, H.; Summers, E. Texture development in Galfenol wire. J. Appl. Phys. 2013, 113, 10–13. [Google Scholar] [CrossRef]
- Milyutin, V.A.; Gervasyeva, I.V.; Volkova, E.G.; Alexandrov, A.V.; Cheverikin, V.V.; Mansouri, Y.; Palacheva, V.V.; Golovin, I.S. Texture formation in FeGa alloy at cold hydrostatic extrusion and primary recrystallization. J. Alloys Compd. 2020, 816, 153283. [Google Scholar] [CrossRef]
- Leuning, N.; Steentjes, S.; Hameyer, K. Effect of grain size and magnetic texture on iron-loss components in NO electrical steel at different frequencies. J. Magn. Magn. Mater. 2019, 469, 373–382. [Google Scholar] [CrossRef]
- Meloy, R.; Summers, E. Magnetic property-texture relationships in galfenol rolled sheet stacks. J. Appl. Phys. 2011, 109, 07A930. [Google Scholar] [CrossRef]
- Suzuki, S.; Kawamata, T.; Simura, R.; Asano, S.; Fujieda, S.; Umetsu, R.Y.; Fujita, M.; Imafuku, M.; Kumagai, T.; Fukuda, T. Anisotropy of magnetostriction of functional BCC iron-based alloys. Mater. Trans. 2019, 60, 2235–2244. [Google Scholar] [CrossRef]
- Mohamed, A.K.; Palacheva, V.V.; Cheverikin, V.V.; Zanaeva, E.N.; Cheng, W.C.; Kulitckii, V.; Divinski, S.; Wilde, G.; Golovin, I.S. The Fe–Ga phase diagram: Revisited. J. Alloys Compd. 2020, 846, 156486. [Google Scholar] [CrossRef]
- Atulasimha, J.; Flatau, A.B. A review of magnetostrictive iron-gallium alloys. Smart Mater. Struct. 2011, 20, 043001. [Google Scholar] [CrossRef]
- Na, S.-M.; Flatau, A.B. Single grain growth and large magnetostriction in secondarily recrystallized Fe–Ga thin sheet with sharp Goss (0 1 1)[1 0 0] orientation. Scr. Mater. 2012, 66, 307–310. [Google Scholar] [CrossRef]
- Fu, Q.; Sha, Y.H.; Zhang, F.; Esling, C.; Zuo, L. Correlative effect of critical parameters for η recrystallization texture development in rolled Fe81Ga19 sheet: Modeling and experiment. Acta Mater. 2019, 167, 167–180. [Google Scholar] [CrossRef]
- Sun, A.; Liu, J.; Jiang, C. Recrystallization, texture evolution, and magnetostriction behavior of rolled (Fe81Ga19)98B2 sheets during low-to-high temperature heat treatments. J. Mater. Sci. 2014, 49, 4565–4575. [Google Scholar] [CrossRef]
- Milyutin, V.A.; Gervasyeva, I.V.; Shishkin, D.A.; Beaugnon, E. Structure and texture in rolled Fe82Ga18 and (Fe82Ga18)99B1 alloys after annealing under high magnetic field. Phys. B Condens. Matter 2022, 639, 413994. [Google Scholar] [CrossRef]
- Na, S.M.; Smith, M.; Flatau, A.B. Deformation Mechanism and Recrystallization Relationships in Galfenol Single Crystals: On the Origin of Goss and Cube Orientations. Metall. Mater. Trans. A 2018, 49, 2499–2512. [Google Scholar] [CrossRef]
- Li, J.; Qi, Q.; Yuan, C.; Bao, X.; Gao, X. Selective abnormal growth behavior of Goss grains in magnetostrictive Fe-Ga alloy sheets. Mater. Trans. 2016, 57, 2083–2088. [Google Scholar] [CrossRef]
- Qi, Q.; Li, J.; Mu, X.; Ding, Z.; Bao, X.; Gao, X. Microstructure evolution, magnetostrictive and mechanical properties of (Fe83Ga17)99.9(NbC)0.1 alloy ultra-thin sheets. J. Mater. Sci. 2020, 55, 2226–2238. [Google Scholar] [CrossRef]
- Mansouri, Y.; Cheverikin, V.V.; Palacheva, V.V.; Koshmin, A.N.; Aleshchenko, A.S.; Astakhov, V.A.; Dementeva, O.Y.; Milyutin, V.A.; Golovin, I.S. Texture and Magnetostriction in Warm Rolled and Recrystallized Fe–Ga Alloy. Phys. Met. Metallogr. 2021, 122, 389–395. [Google Scholar] [CrossRef]
- Li, J.H.; Gao, X.X.; Zhu, J.; Bao, X.Q.; Xia, T.; Zhang, M.C. Ductility, texture and large magnetostriction of Fe-Ga-based sheets. Scr. Mater. 2010, 63, 246–249. [Google Scholar] [CrossRef]
- Li, J.H.; Gao, X.X.; Xie, J.X.; Yuan, C.; Zhu, J.; Yu, R.B. Recrystallization behavior and magnetostriction under pre-compressive stress of Fe-Ga-B sheets. Intermetallics 2012, 26, 66–71. [Google Scholar] [CrossRef]
- Milyutin, V.A.; Gervasyeva, I.V. Formation of crystallographic texture in Fe-Ga alloys during various types of plastic deformation and primary recrystallization. Mater. Today Commun. 2021, 27, 102193. [Google Scholar] [CrossRef]
- He, Z.; Sha, Y.; Zhang, F.; Lin, F.; Zuo, L. Development of strong η fiber recrystallization texture in rolled Fe81Ga19 thin sheet. Metall. Mater. Trans. A 2014, 45, 129–133. [Google Scholar] [CrossRef]
- Yuan, C.; Li, J.; Bao, X.; Gao, X. Influence of annealing process on texture evolution and magnetostriction in rolled Fe-Ga based alloys. J. Magn. Magn. Mater. 2014, 362, 154–158. [Google Scholar] [CrossRef]
- Gervasyeva, I.V.; Milyutin, V.A. Texture formation under rolling and primary recrystallization in Fe86Ga14 alloy. Lett. Mater. 2018, 8, 341–345. [Google Scholar] [CrossRef]
- Li, J.; Gao, X.; Zhu, J.; He, C.; Qiao, J.; Zhang, M. Texture evolution and magnetostriction in rolled (Fe81Ga19)99Nb1 alloy. J. Alloys Compd. 2009, 476, 529–533. [Google Scholar] [CrossRef]
- Yuan, C.; Li, J.; Zhang, W.; Bao, X.; Gao, X. Secondary recrystallization behavior in the rolled columnar-grained Fe-Ga alloys. J. Magn. Magn. Mater. 2015, 391, 145–150. [Google Scholar] [CrossRef]
- He, Z.; Sha, Y.; Fu, Q.; Lei, F.; Jin, B.; Zhang, F.; Zuo, L. Sharp Goss texture and magnetostriction in binary Fe81Ga19 sheets. J. Magn. Magn. Mater. 2016, 417, 321–326. [Google Scholar] [CrossRef]
- Li, J.; Yuan, C.; Qi, Q.; Bao, X.; Gao, X. Effect of initial oriented columnar grains on the texture evolution and magnetostriction in Fe–Ga rolled sheets. Metals 2017, 7, 36. [Google Scholar] [CrossRef]
- Fu, Q.; Sha, Y.; He, Z.; Lei, F.; Zhang, F.; Zuo, L. Recrystallization texture and magnetostriction in binary Fe81Ga19 sheets. Jinshu Xuebao/Acta Metall. Sin. 2017, 53, 90–96. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Li, X.; Mu, X.; Bao, X.; Gao, X. Effects of rolling conditions on recrystallization microstructure and texture in magnetostrictive Fe-Ga-Al rolled sheets. J. Magn. Magn. Mater. 2018, 457, 30–37. [Google Scholar] [CrossRef]
- Xia, Y.; Zhang, Y.; Wu, T.; Wang, N.; Ran, R.; Wang, Y.; Fang, F.; Wang, G. Deformation twinning caused by warm rolling and secondary recrystallization in twin-roll strip casting Fe81Ga19 alloy. J. Alloys Compd. 2022, 922, 166039. [Google Scholar] [CrossRef]
- Yuan, C.; Gao, X.-X.; Li, J.-H.; Bao, X.-Q. Secondary recrystallization of Goss texture in magnetostrictive Fe–Ga-based sheets. Rare Met. 2020, 39, 1288–1294. [Google Scholar] [CrossRef]
- He, Z.; Hao, H.; Sha, Y.; Li, W.; Zhang, F.; Zuo, L. Sharp secondary recrystallization and large magnetostriction in Fe81Ga19 sheet induced by composite nanometer-sized inhibitors. J. Magn. Magn. Mater. 2019, 478, 109–115. [Google Scholar] [CrossRef]
- Van Order, M.; Sinha, S.; Wang, H.; Wu, R.; Gaskell, K.; Flatau, A. Non-Destructive Surface Energy Measurements on (1 0 0) Galfenol. Adv. Theory Simul. 2018, 2, 1800043. [Google Scholar] [CrossRef]
- Hayakawa, Y. Mechanism of secondary recrystallization of Goss grains in grain-oriented electrical steel. Sci. Technol. Adv. Mater. 2017, 18, 480–497. [Google Scholar] [CrossRef] [PubMed]
- Yoo, B.; Pines, D.J. Investigation of the use of uniaxial comb-shaped Galfenol patches for a guided wave-based magnetostrictive phased array sensor. AIP Adv. 2018, 8, 056641. [Google Scholar] [CrossRef]
- Li, J.H.; Gao, X.X.; Zhu, J.; Bao, X.Q.; Zhang, M.C.; Zhao, N. Effects of magnetic field annealing on recrystallization texture and magnetostriction in as-rolled Fe-Ga based alloy. In Proceedings of the Materials Science and Technology Conference and Exhibition (MS and T’09), Pittsburgh, PA, USA, 25–29 October 2009; pp. 115–123. [Google Scholar]
- Khachaturyan, A.G.; Viehland, D. Structurally heterogeneous model of extrinsic magnetostriction for Fe-Ga and similar magnetic alloys: Part II. Giant magnetostriction and elastic softening. Metall. Mater. Trans. A 2007, 38, 2317–2328. [Google Scholar] [CrossRef]
- Gou, J.; Ma, T.; Liu, X.; Zhang, C.; Sun, L.; Sun, G.; Xia, W.; Ren, X. Large and sensitive magnetostriction in ferromagnetic composites with nanodispersive precipitates. NPG Asia Mater. 2021, 13, 1–13. [Google Scholar] [CrossRef]
- Elhajjar, R.; Law, C.T.; Pegoretti, A. Magnetostrictive polymer composites: Recent advances in materials, structures and properties. Prog. Mater. Sci. 2018, 97, 204–229. [Google Scholar] [CrossRef]
- Bira, N.; Dhagat, P.; Davidson, J.R. A Review of Magnetic Elastomers and Their Role in Soft Robotics. Front. Robot. AI 2020, 7, 588391. [Google Scholar] [CrossRef]
- Yoo, B.; Na, S.M.; Flatau, A.B.; Pines, D.J. Ultrasonic guided wave sensing performance of a magnetostrictive transducer using Galfenol flakes-polymer composite patches. J. Appl. Phys. 2015, 117, 17A916. [Google Scholar] [CrossRef]
- Li, J.; Gao, X.; Zhu, J.; Jia, J.; Zhang, M. The microstructure of Fe-Ga powders and magnetostriction of bonded composites. Scr. Mater. 2009, 61, 557–560. [Google Scholar] [CrossRef]
- Yoo, B.; Na, S.M.; Flatau, A.B.; Pines, D.J. Directional magnetostrictive patch transducer based on Galfenol’s anisotropic magnetostriction feature. Smart Mater. Struct. 2014, 23, 95035. [Google Scholar] [CrossRef]
- Walters, K.; Busbridge, S.; Walters, S. Magnetic properties of epoxy-bonded iron-gallium particulate composites. Smart Mater. Struct. 2013, 22, 025009. [Google Scholar] [CrossRef]
- Na, S.-M.; Park, J.-J.; Lee, S.; Jeong, S.-Y.; Flatau, A.B. Magnetic and structural anisotropic properties of magnetostrictive Fe-Ga flake particles and their epoxy-bonded composites. Mater. Lett. 2018, 213, 326–330. [Google Scholar] [CrossRef]
- Kiseleva, T.; Zholudev, S.; Novakova, A.; Grigoryeva, T. The enhanced magnetodeformational effect in Galfenol/polyurethane nanocomposites by the arrangement of particle chains. Compos. Struct. 2016, 138, 12–16. [Google Scholar] [CrossRef]
- Riesgo, G.; Elbaile, L.; Carrizo, J.; García, G.; Crespo, R.D.; García, M.A.; Torres, Y.; García, J.A. Villari effect in silicone/FeGa composites. Bull. Mater. Sci. 2019, 42, 1–7. [Google Scholar] [CrossRef]
- Milyutin, V.A.; Bures, R.; Faberova, M.; Kromka, F. Effect of Milling Parameters on Size, Morphology, and Structure of Fe-Ga Binary Alloy Powder. J. Mater. Eng. Perform. 2023, 32, 3839–3848. [Google Scholar] [CrossRef]
- Hong, J.I.; Solomon, V.C.; Smith, D.J.; Parker, F.T.; Summers, E.M.; Berkowitz, A.E. One-step production of optimized Fe-Ga particles by spark erosion. Appl. Phys. Lett. 2006, 89, 16–19. [Google Scholar] [CrossRef]
- Taheri, P.; Barua, R.; Hsu, J.; Zamanpour, M.; Chen, Y.; Harris, V.G. Structure, magnetism, and magnetostrictive properties of mechanically alloyed Fe81Ga19. J. Alloys Compd. 2016, 661, 306–311. [Google Scholar] [CrossRef]
- Zhao, X.; Tian, X.; Yao, Z.; Zhao, L.; Wang, R.; Yan, J.; Liu, X. Flexible Pr-Doped Fe–Ga Composite Materials: Preparation, Microstructure, and Magnetostrictive Properties. Adv. Eng. Mater. 2020, 22, 2000080. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, L.; Wang, R.; Yan, J.; Tian, X.; Yao, Z.; Tegus, O. The microstructure, preferred orientation and magnetostriction of Y doped Fe-Ga magnetostrictive composite materials. J. Magn. Magn. Mater. 2019, 491, 165568. [Google Scholar] [CrossRef]
- Dong, X.; Ou, J.; Guan, X.; Qi, M. Optimal orientation field to manufacture magnetostrictive composites with high magnetostrictive performance. J. Magn. Magn. Mater. 2010, 322, 3648–3652. [Google Scholar] [CrossRef]
- Milyutin, V.A.; Gervasyeva, I.V. Thermally activated transformations in alloys with different type of magnetic ordering under high magnetic field. J. Magn. Magn. Mater. 2019, 492, 165654. [Google Scholar] [CrossRef]
- Kobori, J.; Takahashi, Y.; Fujiwara, K. The international round robin test of magnetostriction measurement of grain-oriented electrical steel by means of a single sheet tester and an optical sensor. J. Magn. Magn. Mater. 2020, 513, 166541. [Google Scholar] [CrossRef]
- Holsworth, D.I.; Duquesnay, D.L. Fatigue properties of Galfenol steels. Int. J. Fatigue 2019, 128, 105177. [Google Scholar] [CrossRef]
- Holsworth, D.I.; DuQuesnay, D.L. The effects of hot iso-static pressing on the porosity and fatigue properties of Galfenol steels. Int. J. Fatigue 2020, 131, 105325. [Google Scholar] [CrossRef]
- He, Z.; Mi, C.; Sha, Y.; Chen, S.; Zhu, X.; Chen, L.; Zuo, L. Enhanced magnetostriction of rolled (Fe81Ga19)99.93Tb0.07 thin sheet by synergy strategy of secondary recrystallization and trace Tb-doping. J. Alloys Compd. 2023, 942, 169108. [Google Scholar] [CrossRef]
- Palacheva, V.V.; Mochugovskiy, A.G.; Chubov, D.G.; Koshmin, A.N.; Cheverikin, V.V.; Cifre, J. Influence of mechanical and heat treatment on structure evolution and functional properties of Fe-Al-Tb alloys. Mater. Lett. 2022, 310, 131521. [Google Scholar] [CrossRef]
Alloy | Coercivity, A/m | Saturaion Field, kA/m | Electrical Resistivity, µΩ·cm | Real Part of Complex Permeability at 10 kHz |
---|---|---|---|---|
Fe81Ga19 | ≈100 | ≈18 | 100 | 50 |
(Fe81Ga19)99.8Tb0.2 | ≈200 | ≈40 | 135 | 35 |
Fe30Co70 | ≈1000 | ≈40 | 33 * | 16 |
Terfenol-D | ≈2000 | ≈160 | 60 | 10 |
Alloy | Method of Powder Preparation | D, µm | Epoxy Content | Applied Field, T | Method of Composite Fabrication | λS, ppm | Ref. |
---|---|---|---|---|---|---|---|
Fe85Ga15 | Spark erosion | 20–25 | 52% vol. | 0.2 | Curing in mold at 100 °C | 34 | [91] |
Fe85Ga15 | Spark erosion | <20 | 52% vol. | 0.2 | Curing in mold at 100 °C | 15 | [91] |
Fe83.7Ga16.3 | Spark erosion | 20–25 | 52% vol. | 0.2 | Curing in mold at 100 °C | 35 | [91] |
Fe81.1Ga18.9 | Spark erosion | 20–25 | 52% vol. | 0.2 | Curing in mold at 100 °C | 54 | [91] |
Fe81.4Ga18.6 | Gas atomization | <25 | 30.9% vol. | 2 | Compaction at 271 MPa + curing at 170 °C | 58 | [84] |
Fe81.4Ga18.6 | Gas atomization | 25–40 | 32.6% vol. | 2 | Compaction at 271 MPa + curing at 170 °C | 49 | [84] |
Fe81.4Ga18.6 | Gas atomization | 40–75 | 34.4% vol. | 2 | Compaction at 271 MPa + curing at 170 °C | 45 | [84] |
Fe80Ga20 | Blade milling | 20–50 | 20% vol. | - | Compaction at 120 MPa (24 h) + curing at 80 °C | 96 | [86] |
Fe80Ga20 | Blade milling | 50–100 | 20% vol. | - | Compaction at 120 MPa (24 h) + curing at 80 °C | 225 | [86] |
Fe80Ga20 | Blade milling | 100–200 | 20% vol. | - | Compaction at 120 MPa (24 h) + curing at 80 °C | 160 | [86] |
Fe80Ga20 | Ball milling | 225 (flakes) | 40 wt.% | - | Compaction at 500 MPa | 53 | [87] |
Fe80Ga20 | Ball milling | 225 (flakes) | 40 wt.% | 0.2 | Compaction at 500 MPa | 70 | [87] |
Fe83Ga17 | Ball milling | <75 | 25 wt.% | - | Compaction between two pieces of plexiglass + air drying | 34 | [94] |
Fe83Ga17 | Ball milling | <75 | 25 wt.% | 1 | Compaction between two pieces of plexiglass + air drying | 60 | [94] |
(Fe83Ga17)97Y3 | Ball milling | <75 | 25 wt.% | - | The same | 32 | [94] |
(Fe83Ga17)97Y3 | Ball milling | <75 | 25 wt.% | 1 | The same | 112 | [94] |
Fe83Ga17 | Ball milling | <75 | 33 wt.% | - | The same | 42 | [93] |
Fe83Ga17 | Ball milling | <75 | 33 wt.% | 1 | The same | 73 | [93] |
Fe83Ga17 | Ball milling | <75 | 50 wt.% | 1 | The same | 49 | [93] |
(Fe83Ga17)99.8Pr0.2 | Ball milling | <75 | 33 wt.% | - | The same | 36 | [93] |
(Fe83Ga17)99.8Pr0.2 | Ball milling | <75 | 33 wt.% | 1 | The same | 168 | [93] |
(Fe83Ga17)99.8Pr0.2 | Ball milling | <75 | 50 wt.% | 1 | The same | 137 | [93] |
(Fe83Ga17)99Pr1 | Ball milling | <75 | 33 wt.% | - | The same | 75 | [93] |
(Fe83Ga17)99Pr1 | Ball milling | <75 | 33 wt.% | 1 | The same | 320 | [93] |
(Fe83Ga17)99Pr1 | Ball milling | <75 | 50 wt.% | 1 | The same | 251 | [93] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milyutin, V.; Bureš, R.; Fáberová, M. Prospects of Using Fe-Ga Alloys for Magnetostrictive Applications at High Frequencies. Condens. Matter 2023, 8, 80. https://doi.org/10.3390/condmat8030080
Milyutin V, Bureš R, Fáberová M. Prospects of Using Fe-Ga Alloys for Magnetostrictive Applications at High Frequencies. Condensed Matter. 2023; 8(3):80. https://doi.org/10.3390/condmat8030080
Chicago/Turabian StyleMilyutin, Vasily, Radovan Bureš, and Maria Fáberová. 2023. "Prospects of Using Fe-Ga Alloys for Magnetostrictive Applications at High Frequencies" Condensed Matter 8, no. 3: 80. https://doi.org/10.3390/condmat8030080
APA StyleMilyutin, V., Bureš, R., & Fáberová, M. (2023). Prospects of Using Fe-Ga Alloys for Magnetostrictive Applications at High Frequencies. Condensed Matter, 8(3), 80. https://doi.org/10.3390/condmat8030080