Tensile Microstrain Fluctuations in the BaPbO Units in Superconducting BaPb1−xBixO3 by Scanning Dispersive Micro-XANES
Abstract
:1. Introduction
2. Results
2.1. Variation of the Local Structure of BaPbO3 0.5 nm Nano Cluster Units in BaPb1−xBixO3
2.2. Scanning Micro XANES Microscopy: Microstrain Maps and Phase Separation
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zavaleta, R.C.; Fomichev, S.; Khaliullin, G.; Berciu, M. Effects of reduced dimensionality, crystal field, electron-lattice coupling, and strain on the ground state of a rare-earth nickelate monolayer. Phys. Rev. B 2021, 104, 205111. [Google Scholar] [CrossRef]
- Jiang, M.; Berciu, M.; Sawatzky, G.A. Critical nature of the Ni spin state in doped NdNiO2. Phys. Rev. Lett. 2020, 124, 207004. [Google Scholar] [CrossRef] [PubMed]
- Melinte, S.; Berciu, M.; Zhou, C.; Tutuc, E.; Papadakis, S.J.; Harrison, C.; De Poortere, E.P.; Wu, M.; Chaikin, P.M.; Shayegan, M.; et al. Laterally modulated 2D electron system in the extreme quantum limit. Phys. Rev. Lett. 2004, 92, 036802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, D.; Tasan, C.C.; Raabe, D. High resolution in situ mapping of microstrain and microstructure evolution reveals damage resistance criteria in dual phase steels. Acta Mater. 2015, 96, 399–409. [Google Scholar] [CrossRef]
- Mocherla, P.S.; Karthik, C.; Ubic RN, A.R.; Ramachandra Rao, M.S.; Sudakar, C. Tunable bandgap in BiFeO3 nanoparticles: The role of microstrain and oxygen defects. Appl. Phys. Lett. 2013, 103, 022910. [Google Scholar] [CrossRef]
- Fratini, M.; Caivano, R.; Puri, A.; Ricci, A.; Ren, Z.-A.; Dong, X.-L.; Yang, J.; Lu, W.; Zhao, Z.-X.; Barba, L.; et al. The effect of internal pressure on the tetragonal to monoclinic structural phase transition in ReOFeAs: The case of NdOFeAs. Supercond. Sci. Technol. 2008, 21, 092002. [Google Scholar] [CrossRef] [Green Version]
- Tarantini, C.; Gurevich, A.; Jaroszynski, J.; Balakirev, F.; Bellingeri, E.; Pallecchi, I.; Ferdeghini, C.; Shen, B.; Wen, H.H.; Larbalestier, D.C. Significant enhancement of upper critical fields by doping and strain in iron-based superconductors. Phys. Rev. B 2011, 84, 184522. [Google Scholar] [CrossRef] [Green Version]
- Imai, Y.; Nabeshima, F.; Maeda, A. Comparative review on thin film growth of iron-based superconductors. Condens. Matter 2017, 2, 25. [Google Scholar] [CrossRef] [Green Version]
- Ozaki, T.; Wu, L.; Zhang, C.; Jaroszynski, J.; Si, W.; Zhou, J.; Zhu, Y.; Li, Q. A route for a strong increase of critical current in nanostrained iron-based superconductors. Nat. Commun. 2016, 7, 13036. [Google Scholar] [CrossRef] [Green Version]
- Wiecki, P.; Frachet, M.; Haghighirad, A.A.; Wolf, T.; Meingast, C.; Heid, R.; Böhmer, A.E. Emerging symmetric strain response and weakening nematic fluctuations in strongly hole-doped iron-based superconductors. Nat. Commun. 2021, 12, 4824. [Google Scholar] [CrossRef]
- Kang, J.; Kemper, A.F.; Fernandes, R.M. Manipulation of gap nodes by uniaxial strain in iron-based superconductors. Phys. Rev. Lett. 2014, 113, 217001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.S.; Tam, G.N.; Stewart, G.R. Unusual sensitivity of superconductivity to strain in iron-based 122 superconductors. Phys. Rev. B 2015, 91, 144512. [Google Scholar] [CrossRef] [Green Version]
- Tan, S.; Zhang, Y.; Xia, M.; Ye, Z.; Chen, F.; Xie, X.; Peng, R.; Xu, D.; Fan, Q.; Xu, H.; et al. Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films. Nat. Mater. 2013, 12, 634–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Worasaran, T.; Ikeda, M.S.; Palmstrom, J.C.; Straquadine, J.A.; Kivelson, S.A.; Fisher, I.R. Nematic quantum criticality in an Fe-based superconductor revealed by strain-tuning. Science 2021, 372, 973–977. [Google Scholar] [CrossRef]
- Sato, H.; Hiramatsu, H.; Kamiya, T.; Hosono, H. Strain engineering at heterointerfaces: Application to an iron pnictide superconductor, cobalt-doped BaFe2As2. ACS Appl. Mater. Interfaces 2020, 12, 50096–50104. [Google Scholar] [CrossRef] [PubMed]
- Phan, G.N.; Nakayama, K.; Sugawara, K.; Sato, T.; Urata, T.; Tanabe, Y.; Tanigaki, K.; Nabeshima, F.; Imai, Y.; Maeda, A.; et al. Effects of strain on the electronic structure, superconductivity, and nematicity in FeSe studied by angle-resolved photoemission spectroscopy. Phys. Rev. B 2017, 95, 224507. [Google Scholar] [CrossRef] [Green Version]
- Philippe, J.C.; Lespinas, A.; Faria, J.; Forget, A.; Colson, D.; Houver, S.; Cazayous, M.; Sacuto, A.; Paul, I.; Gallais, Y. Nematic-fluctuation-mediated superconductivity revealed by anisotropic strain in Ba (Fe1−xCox)2As2. Phys. Rev. Lett. 2022, 129, 187002. [Google Scholar] [CrossRef]
- Di Castro, D.; Agrestini, S.; Campi, G.; Cassetta, A.; Colapietro, M.; Congeduti, A.; Continenza, A.; Negri, S.D.; Giovannini, M.; Massidda, S.; et al. The amplification of the superconducting Tc by combined effect of tuning of the Fermi level and the tensile microstrain in Al1−xMgxB2. EuroPhysics Lett. 2002, 58, 278. [Google Scholar] [CrossRef]
- Agrestini, S.; Saini, N.L.; Bianconi, G.; Bianconi, A. The strain of CuO2 lattice: The second variable for the phase diagram of cuprate perovskites. J. Phys. A Math. Gen. 2003, 36, 9133. [Google Scholar] [CrossRef] [Green Version]
- Bianconi, A.; Saini, N.L.; Agrestini, S.; Castro, D.D.; Bianconi, G. The strain quantum critical point for superstripes in the phase diagram of all cuprate perovskites. Int. J. Mod. Phys. B 2000, 14, 3342–3355. [Google Scholar] [CrossRef]
- Di Castro, D.; Bianconi, G.; Colapietro, M.; Pifferi, A.; Saini, N.L.; Agrestini, S.; Bianconi, A. Evidence for the strain critical point in high Tc superconductors. Eur. Phys. J. B-Condens. Matter Complex Syst. 2000, 18, 617–624. [Google Scholar] [CrossRef]
- Macis, S.; Paolozzi, M.C.; D’Arco, A.; Tomarchio, L.; Di Gaspare, A.; Lupi, S. Terahertz Resonators Based on YBa2Cu3O7 High-Tc Superconductor. Appl. Sci. 2022, 12, 10242. [Google Scholar] [CrossRef]
- Poccia, N.; Ricci, A.; Bianconi, A. Misfit strain in superlattices controlling the electron-lattice interaction via microstrain in active layers. Adv. Condens. Matter Phys. 2010, 7, 261849. [Google Scholar] [CrossRef] [Green Version]
- Müller, K.A.; Bussmann-Holder, A. (Eds.) Superconductivity in Complex Systems; Springer: Berlin, Germany, 2005; Volume 114. [Google Scholar]
- Kagan, M.Y.; Kugel, K.I.; Rakhmanov, A.L. Electronic phase separation: Recent progress in the old problem. Phys. Rep. 2021, 916, 1–105. [Google Scholar] [CrossRef]
- Kagan, M.Y.; Kugel, K.I. Inhomogeneous charge distributions and phase separation in manganites. Phys.-Uspekhi 2001, 44, 553. [Google Scholar] [CrossRef]
- Campi, G.; Barba, L.; Zhigadlo, N.D.; Ivanov, A.A.; Menushenkov, A.P.; Bianconi, A. Q-Balls in the pseudogap phase of Superconducting HgBa2CuO4+y. Condens. Matter 2023, 8, 15. [Google Scholar] [CrossRef]
- Bianconi, A.; Di Castro, D.; Bianconi, G.; Pifferi, A.; Saini, N.L.; Chou, F.C.; Johnston, D.C.; Colapietro, M. Coexistence of stripes and superconductivity: Tc amplification in a superlattice of superconducting stripes. Phys. C Supercond. 2000, 341, 1719–1722. [Google Scholar] [CrossRef]
- Mazziotti, M.V.; Bianconi, A.; Raimondi, R.; Campi, G.; Valletta, A. Spin–orbit coupling controlling the superconducting dome of artificial superlattices of quantum wells. J. Appl. Phys. 2022, 132, 193908. [Google Scholar] [CrossRef]
- Bianconi, G. Superconductor-insulator transition on annealed complex networks. Phys. Rev. E 2012, 85, 061113. [Google Scholar] [CrossRef] [Green Version]
- Bianconi, A.; Saini, N.L.; Lanzara, A.; Missori, M.; Rossetti, T.; Oyanagi, H.; Oka, Y.K.; Ito, T. Determination of the Local Lattice Distortions in the CuO2 plane of La1.85Sr0.15CuO4. Phys. Rev. Lett. 1996, 76, 3412. [Google Scholar] [CrossRef] [Green Version]
- Egami, T.; Billinge, S.J.L. Lattice effects in high-Tc superconductors. Phys. Prop. High Temp. Supercond. V 1996, 5, 265. [Google Scholar]
- Campi, G.; Proffen, T.; Qiu, X.; Bozin, E.S.; Billinge, S.J.L.; Agrestini, S.; Saini, N.L.; Bianconi, A. Local lattice dynamics in the Mg0.5Al0.5B2 superconductor. J. Supercond. Nov. Magn. 2007, 20, 505–510. [Google Scholar] [CrossRef]
- Gavrichkov, V.A.; Shan’ko, Y.; Zamkova, N.G.; Bianconi, A. Is there any hidden symmetry in the stripe structure of perovskite high-temperature superconductors? J. Phys. Chem. Lett. 2019, 10, 1840–1844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gavrichkov, V.A.; Polukeev, S.I. Magnetic interaction in doped 2D perovskite cuprates with nanoscale inhomogeneity: Lattice nonlocal effects vs. superexchange. Condens. Matter 2022, 7, 57. [Google Scholar] [CrossRef]
- Climent-Pascual, E.; Ni, N.; Jia, S.; Huang, Q.; Cava, R.J. Polymorphism in BaPb1−xBixO3 at the superconducting composition. Phys. Rev. B 2011, 83, 174512. [Google Scholar] [CrossRef]
- Giraldo-Gallo, P.; Lee, H.; Zhang, Y.; Kramer, M.J.; Beasley, M.R.; Geballe, T.H.; Fisher, I.R. Field-tuned superconductor-insulator transition in BaPb1−xBixO3. Phys. Rev. B 2012, 85, 174503. [Google Scholar] [CrossRef] [Green Version]
- Giraldo-Gallo, P.; Lee, H.; Beasley, M.R.; Geballe, T.H.; ·Fisher, I.R. Inhomogeneous Superconductivity in BaPb1−xBixO3. J. Supercond. Nov. Magn. 2013, 26, 2675–2678. [Google Scholar] [CrossRef]
- Luna, K.; Giraldo-Gallo, P.; Geballe, T.; Fisher, I.; Beasley, M. Disorder driven Metal-Insulator transition inBaPb1−xBixO3 and inference of disorder-free critical temperature. Phys. Rev. Lett. 2014, 113, 17004. [Google Scholar] [CrossRef] [Green Version]
- Giraldo-Gallo, P.; Zhang, Y.; Parra, C.; Manoharan, H.; Beasley, M.; Geballe, T.; Kramer, M.; Fisher, I. Stripe-like nanoscale structural phase separation in superconducting BaPb1−xBixO3. Nat. Commun. 2015, 6, 8231. [Google Scholar] [CrossRef] [Green Version]
- Sleight, A.W.; Gillson, J.L.; Bierstedt, P.E. High-temperature superconductivity in the BaPb1−xBixO3 systems. Solid State Commun. 1975, 17, 27–28. [Google Scholar] [CrossRef]
- Balzarotti, A.; Menushenkov, A.P.; Motta, N.; Purans, J. EXAFS of the superconducting oxide BaPb1−xBixO3. Solid State Commun. 1984, 49, 887–890. [Google Scholar] [CrossRef]
- Murakami, T. Basic Properties in Superconducting Perovskite-Type oxide BaPb1−xBixO3. Jpn. J. Appl. Phys. 1985, 24 (Suppl. S2), 10. [Google Scholar] [CrossRef]
- Oda, M.; Hidaka, Y.; Katsui, A.; Murakami, T. The crystallographic symmetries of single BaPb1−xBixO3 crystals grown from BaCO3-PbO2-Bi2O3 solutions. Solid State Commun. 1986, 60, 897–900. [Google Scholar] [CrossRef]
- Uchida, S.; Kitazawa, K.; Tanaka, S. Superconductivity and metal-semiconductor transition in BaPb1−xBixO3. Phase Transit. 1987, 8, 95–128. [Google Scholar] [CrossRef]
- Claeson, T.; Boyce, J.B.; Bridges, F.; Geballe, T.H.; Remeika, J.M.; Sleight, A.W. X-ray absorption study of superconducting BaBi1−xPbxO3 and BaBiO3. Phys. C Supercond. Its Appl. 1989, 162, 544–545. [Google Scholar] [CrossRef]
- Boyce, J.B.; Bridges, F.G.; Claeson, T.; Geballe, T.H.; Li, G.G.; Sleight, A.W. Local structure of BaBixPb1−x O3 determined by x-ray-absorption spectroscopy. Phys. Rev. B 1991, 44, 6961. [Google Scholar] [CrossRef]
- Marx, D.T.; Radaelli, P.G.; Jorgensen, J.D.; Hitterman, R.L.; Hinks, D.G.; Shiyou Pei Dabrowski, B. Metastable behavior of the superconducting phase in the BaBi1−xPbxO3 system. Phys. Rev. B 1992, 46, 1144. [Google Scholar] [CrossRef]
- Menushenkov, A.P.; Ignatov, A.Y.; Klementev, K.V.; Benazeth, S.; Purans, J. Debye-Waller factor low temperature anomalies in BaPb1−xBixO3. J. Physique. 1997, 7 Pt 2, 1073–1075. [Google Scholar] [CrossRef]
- Menushenkov, A.P.; Klementev, K.V. Extended X-ray absorption fine-structure indication of a double-well potential for oxygen vibration in Ba1−xKxBiO3. J. Phys. Condens. Matter 2000, 12, 3767. [Google Scholar] [CrossRef]
- Liu, S.Y.; Meng, Y.; Liu, S.; Li, D.J.; Li, Y.; Liu, Y.; Shen, Y.; Wang, S. Phase stability, electronic structures, and superconductivity properties of the BaPb1−xBixO3 and Ba1−xKxBiO3 perovskites. J. Am. Ceram. Soc. 2017, 100, 1221–1230. [Google Scholar] [CrossRef]
- Harris, D.T.; Campbell, N.; Uecker, R.; Brützam, M.; Schlom, D.G.; Levchenko, A.; Rzchowski, M.S.; Eom, C.B. Superconductivity-localization interplay and fluctuation magnetoresistance in epitaxial BaPb1−xBixO3 thin films. Phys. Rev. Mater. 2018, 2, 041801. [Google Scholar] [CrossRef]
- Fu, W.T.; Visser, D.; IJdo, D.J.W. High-resolution neutron powder diffraction study on the structure of BaPbO3. Solid State Commun. 2005, 134, 647–652. [Google Scholar] [CrossRef]
- Visser, D.; Knight, K.S.; IJdo, D.J. High-resolution neutron powder diffraction study on the phase transitions in BaPbO3. J. Solid State Chem. 2007, 180, 1559–1565. [Google Scholar] [CrossRef]
- Seiler, P.; Bartel, R.; Kopp, T.; Hammerl, G. Electronic transport in thin films of BaPbO3: Unraveling two-dimensional quantum effects. Phys. Rev. B 2019, 100, 165402. [Google Scholar] [CrossRef] [Green Version]
- Meir, B.; Gorol, S.; Kopp, T.; Hammerl, G. Observation of two-dimensional superconductivity in bilayers of BaBiO3 and BaPbO3. Phys. Rev. B 2017, 96, 100507. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Mun, J.; Kim, B.; Lee, H.G.; Lee, D.; Kim, T.H.; Lee, S.; Kim, M.; Chang, S.H.; Noh, T.W. Coherent-strained superconducting BaPb1−xBixO3 thin films by interface engineering. Phys. Rev. Mater. 2019, 3, 113606. [Google Scholar] [CrossRef]
- Di Napoli, S.; Helman, C.; Llois, A.M.; Vildosola, V. Two-dimensional superconductivity driven by interfacial electron-phonon coupling in a BaPbO3/BaBiO3 bilayer. Phys. Rev. B 2021, 103, 174509. [Google Scholar] [CrossRef]
- Parra, C.; Niestemski, F.C.; Contryman, A.W.; Giraldo-Gallo, P.; Geballe, T.H.; Fisher, I.R.; Manoharan, H.C. Signatures of two-dimensional superconductivity emerging within a three-dimensional host superconductor. Proc. Natl. Acad. Sci. USA 2021, 118, e2017810118. [Google Scholar] [CrossRef]
- Zheng, X.; Farid, M.A.; Wang, X.; Wang, Y.; Geng, J.; Liao, F.; Sun, J.; Li, J.; Liu, L.; Lin, J. Synthesis, crystal structure, and superconductivity of Ba (Bi0.25Pb0.75)1−xMgxO3−δ. Solid State Commun. 2023, 360, 115051. [Google Scholar] [CrossRef]
- Bianconi, A. Surface X-ray absorption spectroscopy: Surface EXAFS and surface XANES. Appl. Surf. Sci. 1980, 6, 392–418. [Google Scholar] [CrossRef]
- Bianconi, A.; Bauer, R.S. Evidence of SiO at the Si-oxide interface by surface soft X-ray absorption near edge spectroscopy. Surf. Sci. 1980, 99, 76–86. [Google Scholar] [CrossRef]
- Bianconi, A. XANES Spectroscopy in X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES; Koningsberger, D.C., Prins, R., Eds.; John Wiley & Sons, Inc.: New York, NY, USA, 1988; ISBN 978-0-471-87547-5. [Google Scholar]
- Della Longa, S.; Soldatov, A.; Pompa, M.; Bianconi, A. Atomic and electronic structure probed by X-ray absorption spectroscopy: Full multiple scattering analysis with the G4XANES package. Comput. Mater. Sci. 1995, 4, 199–210. [Google Scholar] [CrossRef]
- Della Ventura, G.; Galdenzi, F.; Cibin, G.; Oberti, R.; Xue, W.; Macis, S.; Marcelli, A. Iron oxidation dynamics vs. temperature of synthetic potassic-ferro-richterite: A XANES investigation. Phys. Chem. Chem. Phys. 2018, 20, 21764–21771. [Google Scholar] [CrossRef] [PubMed]
- Rezvani, S.J.; D’Elia, A.; Macis, S.; Nannarone, S.; Lupi, S.; Schütt, F.; Rasch, F.; Adelung, R.; Lu, B.; Zhang, Z.; et al. Structural anisotropy in three dimensional macroporous graphene: A polarized XANES investigation. Diam. Relat. Mater. 2021, 111, 108171. [Google Scholar] [CrossRef]
- Macis, S.; Rezvani, J.; Davoli, I.; Cibin, G.; Spataro, B.; Scifo, J.; Faillace, L.; Marcelli, A. Structural Evolution of MoO3 Thin Films Deposited on Copper Substrates upon Annealing: An X-ray Absorption Spectroscopy Study. Condens. Matter 2019, 4, 41. [Google Scholar] [CrossRef] [Green Version]
- Rehr, J.J.; Kas, J.J.; Vila, F.D.; Prange, M.P.; Jorissen, K. Parameter-free calculations of X-ray spectra with FEFF9. Phys. Chem. Chem. Phys. 2010, 12, 5503–5513. [Google Scholar] [CrossRef]
- Menushenkov, A.P.; Ignatov AYu Klementev, K.V.; Kochubey, D.I. X-ray absorption spectroscopy of BaPb1−xBixO3 and Ba1−x Kx BiO3 superconducting oxides. Phys. B Condens. Matter 1995, 208, 295–296. [Google Scholar] [CrossRef]
- Ignatov AYu Menushenkov, A.P.; Chernov, V.A. Valency states of Bi BaPb1−x BixO3-d and BaK1−xBixO3-d superconducting oxide. Nucl. Instrum. Methods Phys. Res. A 1995, 359, 244–247. [Google Scholar] [CrossRef]
- Ignatov, A.Y.; Menushenkov, A.P.; Chernov, V.A. Influence of oxygen deficiency on the electronic and local structure of BaPb1−xBixO3-d and Ba0.6K0.4BiO3-d superconducting oxides: An X-ray absorption study. Phys. C Supercond. 1996, 271, 1–2. [Google Scholar] [CrossRef]
- Glazer, A.M. The classification of tilted octahedra in perovskites. Acta Crystallogr. B 1972, 28, 3384. [Google Scholar] [CrossRef]
- Glazer, A.M. Simple ways of determining perovskite structures. Acta Crystallogr. A 1975, 31, 756. [Google Scholar] [CrossRef] [Green Version]
- Howard, C.J.; Stokes, H.T. Group-theoretical analysis of octahedral tilting in perovskites. Acta Crystallogr. B 1998, 54, 782. [Google Scholar] [CrossRef] [Green Version]
- Sleight Arthur, W. Bismuthates: BaBiO3 and related superconducting phases. Phys. C Supercond. Its Appl. 2015, 514, 152–165. [Google Scholar] [CrossRef]
- Pascarelli, S.; Mathon, O. Energy Dispersive XAS. In XAFS Techniques for Catalysts, Nanomaterials, and Surfaces; Iwasawa, Y., Asakura, K., Tada, M., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Campi, G.; Bianconi, A. Functional nanoscale phase separation and intertwined order in quantum complex materials. Condens. Matter 2021, 6, 40. [Google Scholar] [CrossRef]
- Campi, G.; Bianconi, A.; Poccia, N.; Bianconi, G.; Barba, L.; Arrighetti, G.; Innocenti, D.; Karpinski, J.; Zhigadlo, N.D.; Kazakov, S.M.; et al. Inhomogeneity of charge-density-wave order and quenched disorder in a high-T c superconductor. Nature 2015, 525, 359–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albertini, R.; Macis, S.; Ivanov, A.A.; Menushenkov, A.P.; Puri, A.; Monteseguro, V.; Joseph, B.; Xu, W.; Marcelli, A.; Giraldo-Gallo, P.; et al. Tensile Microstrain Fluctuations in the BaPbO Units in Superconducting BaPb1−xBixO3 by Scanning Dispersive Micro-XANES. Condens. Matter 2023, 8, 57. https://doi.org/10.3390/condmat8030057
Albertini R, Macis S, Ivanov AA, Menushenkov AP, Puri A, Monteseguro V, Joseph B, Xu W, Marcelli A, Giraldo-Gallo P, et al. Tensile Microstrain Fluctuations in the BaPbO Units in Superconducting BaPb1−xBixO3 by Scanning Dispersive Micro-XANES. Condensed Matter. 2023; 8(3):57. https://doi.org/10.3390/condmat8030057
Chicago/Turabian StyleAlbertini, Ruben, Salvatore Macis, Andrei A. Ivanov, Alexey P. Menushenkov, Alessandro Puri, Virginia Monteseguro, Boby Joseph, Wei Xu, Augusto Marcelli, Paula Giraldo-Gallo, and et al. 2023. "Tensile Microstrain Fluctuations in the BaPbO Units in Superconducting BaPb1−xBixO3 by Scanning Dispersive Micro-XANES" Condensed Matter 8, no. 3: 57. https://doi.org/10.3390/condmat8030057
APA StyleAlbertini, R., Macis, S., Ivanov, A. A., Menushenkov, A. P., Puri, A., Monteseguro, V., Joseph, B., Xu, W., Marcelli, A., Giraldo-Gallo, P., Fisher, I. R., Bianconi, A., & Campi, G. (2023). Tensile Microstrain Fluctuations in the BaPbO Units in Superconducting BaPb1−xBixO3 by Scanning Dispersive Micro-XANES. Condensed Matter, 8(3), 57. https://doi.org/10.3390/condmat8030057