Strong-Coupling Behavior of the Critical Temperature of Pb/Ag, Pb/Cu and Pb/Al Nanocomposites Explained by Proximity Eliashberg Theory
Abstract
:1. Introduction
2. Model: Proximity Eliashberg Equations
3. Results and Discussion
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deutscher, G.; de Gennes, P.G. Superconductivity; Marcel Dekker, Inc.: New York, NY, USA, 1969. [Google Scholar]
- Wolf, E.L. Principles of Electron Tunneling Spectroscopy; Oxford University Press: New York, NY, USA, 1985. [Google Scholar]
- Daghero, D.; Ummarino, G.A.; Gonnelli, R.S. The Oxford Handbook of Small Superconductors; Narlikar, A.V., Ed.; Oxford University Press: Oxford, UK, 2017; pp. 144–182. ISBN 978-0-19-873816-9. [Google Scholar]
- Bose, S.; Ayyub, P. A review of finite size effects in quasi-zero dimensional superconductors. Rep. Prog. Phys. 2014, 77, 116503. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Picot, T.; Houben, K.; Moorkens, T.; Grigg, J.; Haesendonck, C.V.; Biermans, E.; Bals, S.; Brown, S.A.; Vantomme, A.; et al. The superconducting proximity effect in epitaxial Al/Pb nanocomposites. Supercond. Sci. Technol. 2014, 27, 015008. [Google Scholar] [CrossRef]
- McMillan, W.L. Tunneling Model of the Superconducting Proximity Effect. Phys. Rev. 1968, 175, 537. [Google Scholar] [CrossRef]
- Schachinger, E.; Carbotte, J.P. Critical temperature of a proximity junction using Eliashberg theory. J. Low Temp. Phys. 1984, 54, 129. [Google Scholar] [CrossRef]
- Zarate, H.G.; Carbotte, J.P. Effects of paramagnons in a proximity sandwich. Phys. Rev. B 1987, 35, 3256. [Google Scholar] [CrossRef]
- Zarate, H.G.; Carbotte, J.P. Tunneling in proximity junctions with paramagnons. Physica B+ C 1985, 135, 203. [Google Scholar] [CrossRef]
- Stephan, W.; Carbotte, J.P. Properties of proximity systems including magnetic impurities. J. Low Temp. Phys. 1991, 82, 145. [Google Scholar] [CrossRef]
- Kresin, V.Z.; Morawitz, H.; Wolf, S.A. Mechanisms of Conventional and High Tc Superconductivity; Oxford University Press: Oxford, UK, 1999. [Google Scholar]
- Ummarino, G.A. Superconductive critical temperature of Pb/Ag heterostructures. Physica C 2020, 568, 1353566. [Google Scholar] [CrossRef]
- Daghero, D.; Gonnelli, R.S.; Ummarino, G.A.; Stepanov, V.A.; Jun, J.; Kazakov, S.M.; Karpinski, J. Point-contact spectroscopy in MgB2 single crystals in magnetic field. Physica C 2003, 385, 255. [Google Scholar] [CrossRef]
- Daghero, D.; Calzolari, A.; Ummarino, G.A.; Tortello, M.; Gonnelli, R.S.; Stepanov, V.A.; Tarantini, C.; Manfrinetti, P.; Lehmann, E. Point-contact spectroscopy in neutron-irradiated. Phys. Rev. B 2006, 74, 174519. [Google Scholar] [CrossRef]
- Ummarino, G.A.; Piatti, E.; Daghero, D.; Gonnelli, R.S.; Sklyadneva, I.Y.; Chulkov, E.V.; Heid, R. Proximity Eliashberg theory of electrostatic field-effect doping in superconducting films. Phys. Rev. B 2017, 96, 064509. [Google Scholar] [CrossRef]
- Ummarino, G.A.; Romanin, D. Theoretical Explanation of Electric Field-Induced Superconductive Critical Temperature Shifts in Indium Thin Films. Phys. Status Solidi B 2020, 257, 1900651. [Google Scholar] [CrossRef]
- Ummarino, G.A.; Romanin, D. Proximity two bands Eliashberg theory of electrostatic field-effect doping in a superconducting film of MgB2. J. Phys. Condens. Matter 2019, 31, 024001. [Google Scholar] [CrossRef] [PubMed]
- Romanin, D.; Ummarino, G.A.; Piatti, E. Migdal-Eliashberg theory of multi-band high-temperature superconductivity in field-effect-doped hydrogenated (111) diamond. Appl. Surf. Sci. 2021, 536, 147723. [Google Scholar] [CrossRef]
- Gonnelli, R.S.; Calzolari, A.; Daghero, D.; Natale, L.; Ummarino, G.A.; Stepanov, V.A.; Ferretti, M. Evidence for pseudogap and phase-coherence gap separation by Andreev reflection experiments in Au/La2-x Sr x CuO4 point-contact junctions. Eur. Phys. J. B 2001, 22, 411. [Google Scholar]
- Klapwijk, T.M. Proximity effect from an Andreev perspective. J. Supercond. 2004, 17, 593. [Google Scholar] [CrossRef]
- Pannetier, B.; Courtois, H. Andreev reflection and proximity effect. J. Low Temp. Phys. 2000, 118, 599. [Google Scholar] [CrossRef]
- Bose, S.; Ayyub, P. Superconducting proximity effect in nanocomposites. Phys. Rev. B 2007, 76, 144510. [Google Scholar] [CrossRef]
- Sternfeld, I.; Shelukhin, V.; Tsukernik, A.; Karpovski, M.; Gerber, A.; Palevski, A. Proximity effect in granular superconductor–normal metal structures. Phys. Rev. B 2005, 71, 064515. [Google Scholar] [CrossRef]
- De Gennes, P.G. Boundary Effects in Superconductors. Rev. Mod. Phys. 1964, 36, 225. [Google Scholar] [CrossRef]
- Werthamer, N.R. Theory of the superconducting transition temperature and energy gap function of superposed metal films. Phys. Rev. 1963, 132, 2440. [Google Scholar] [CrossRef]
- Nam, H.; Zhang, C.; Lee, W.; Zhu, S.; Gao, H.; Niu, Q.; Fiete, G.A.; Shih, C. Behavior of superconductivity in a Pb/Ag heterostructure. Phys. Rev. B 2019, 100, 094512. [Google Scholar] [CrossRef]
- Croitoru, M.D.; Shanenko, A.A.; Vagov, A.; Milosevic, M.V.; Axt, V.M.; Peeters, F.M. Phonon limited superconducting correlations in metallic nanograins. Sci. Rep. 2015, 5, 16515. [Google Scholar] [CrossRef] [PubMed]
- Croitoru, M.D.; Shanenko, A.A.; Vagov, A.; Vasenko, A.S.; Milosevic, M.V.; Axt, ·.M.; Peeters, F.M. Influence of disorder on superconducting correlations in nanoparticles. J. Supercond. Nov. Magn. 2016, 29, 605. [Google Scholar] [CrossRef]
- Carbotte, J.P. Properties of boson-exchange superconductors. Rev. Mod. Phys. 1990, 62, 1027. [Google Scholar] [CrossRef]
- Ummarino, G.A. Eliashberg Theory. In Emergent Phenomena in Correlated Matter; Pavarini, E., Koch, E., Schollwöck, U., Eds.; Forschungszentrum Jülich GmbH and Institute for Advanced Simulations: Jülich, Germany, 2013; pp. 13.1–13.36. ISBN 978-3-89336-884-6. [Google Scholar]
- Ummarino, G.A.; Gonnelli, R.S. Breakdown of Migdal’s theorem and intensity of electron-phonon coupling in high-Tc superconductors. Phys. Rev. B 1997, 56, 14279. [Google Scholar] [CrossRef]
- Bauer, R.; Schmid, A.; Pavone, P.; Strauch, D. Electron-phonon coupling in the metallic elements Al, Au, Na, and Nb: A first-principles study. Phys. Rev. B 1998, 57, 11276. [Google Scholar] [CrossRef]
- Giri, A.; Tokina, M.V.; Prezhdo, O.V.; Hopkins, P.E. Electronephonon coupling and related transport properties of metals and intermetallic alloys from first principles. Mater. Today Phys. 2020, 12, 100175. [Google Scholar] [CrossRef]
- Butler, W.H.; Williams, R.K. Electron-phonon interaction and lattice thermal conductivity. Phys. Rev. B 1978, 18, 6483. [Google Scholar] [CrossRef]
- Gasparovic, R.F.; McLean, W.L. Superconducting Penetration Depth of Lead. Phys. Rev. B 1970, 2, 2519. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ummarino, G.A. Strong-Coupling Behavior of the Critical Temperature of Pb/Ag, Pb/Cu and Pb/Al Nanocomposites Explained by Proximity Eliashberg Theory. Condens. Matter 2023, 8, 45. https://doi.org/10.3390/condmat8020045
Ummarino GA. Strong-Coupling Behavior of the Critical Temperature of Pb/Ag, Pb/Cu and Pb/Al Nanocomposites Explained by Proximity Eliashberg Theory. Condensed Matter. 2023; 8(2):45. https://doi.org/10.3390/condmat8020045
Chicago/Turabian StyleUmmarino, Giovanni Alberto. 2023. "Strong-Coupling Behavior of the Critical Temperature of Pb/Ag, Pb/Cu and Pb/Al Nanocomposites Explained by Proximity Eliashberg Theory" Condensed Matter 8, no. 2: 45. https://doi.org/10.3390/condmat8020045
APA StyleUmmarino, G. A. (2023). Strong-Coupling Behavior of the Critical Temperature of Pb/Ag, Pb/Cu and Pb/Al Nanocomposites Explained by Proximity Eliashberg Theory. Condensed Matter, 8(2), 45. https://doi.org/10.3390/condmat8020045